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ODD WILSON SURFACES

OLGA CHEKERES AND VLADIMIR SALNIKOV

Abstract. Previously, Wilson surface observables were interpreted
as a class of Poisson sigma models. We profit from this construc-
tion to define and study the super version of Wilson surfaces. We
provide some ‘proof of concept’ examples to illustrate modifica-
tions resulting from appearance of odd degrees of freedom in the
target.

1. Introduction

Wilson lines, loops and surfaces are important examples of non-local
observables in gauge theory. This paper is the first in a series, where
we intend to explore natural generalizations of the Wilson surface ob-
servable construction of [1, 2]. The first non-trivial near-at-hand step
is the the supersymmetric setting. More precisely, we consider adding
extra degrees of freedom to the target, which can eventually be defined
on a super space or super manifold, mimicking thus some supersym-
metrization procedure.
The Wilson surface (WS) observables are originally defined on in-

tegral coadjoint orbits of compact Lie groups. One of the remarkable
results of [2], before addressing the quantization questions, is the idea
that up to an appropriate redefinition of fields the resulting theory can
be viewed as a Poisson sigma model (PSM – [3]). The respective (lin-
ear) Poisson structure comes from the Lie algebra structure, or more
precisely from its dual, which is used to define the target.
In more detail, this paper is essentially oriented to analysis of Lie

super groups/algebras instead of smooth (i.e. purely even) ones used
in the original construction. While the general guideline seems rather
straightforward: ‘make sure that the super analogues of all the ingredi-
ents are well-defined, and assemble them to observables’ as before, there
are some details worth being spelled out. For example, the standard
difficulty lies in the integration of differential forms; and the explicit
computations are more intricate for physically relevant cases. Here the
interpretation in terms of Poisson structures provides an important
geometric insight.

http://arxiv.org/abs/2403.09820v1
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The paper is organized as follows: First, we recall the results about
Wilson surface observables and the standard construction of the Pois-
son sigma model from Wilson surfaces (section 2). While the result
there is known, we still do it with a certain pedagogical effort, since
this is precisely the construction needed for further generalizations in
this paper and its sequels. In section 3 we add supersymmetry into the
play, namely consider super Lie groups instead of smooth ones. In the
original non-super case the relation to the Poisson sigma model was an
observation that allowed to compute partition functions of Wilson sur-
face theory for all compact Lie groups. Here it becomes an even more
powerful tool to avoid some ill-defined (or technically subtle) supergeo-
metric constructions. Examples of section 4 illustrate possible qualita-
tive outcomes of this procedure, in particular we pay attention to how
‘non-trivial’ is the odd part of the resulting theory. The main message
of the paper is to explain the subtleties related to super geometry in
the context, which we state in the main text, but for self-consistency
of it, some minimal working knowledge about supermanifolds and Lie
supergroups/algebras is recalled in the Appendix B.

2. From Wilson loops to PSM

2.1. Wilson line and surface definitions.

General gauge theory set up. Let G be a compact connected Lie group,
g “ LiepGq its Lie algebra, ă ¨, ¨ ą an invariant product on g. G plays
the role of a structure group for a gauge theory on a smooth orientable
manifold Σ, a short hand for it would be “G is the gauge group”. The
relevant geometric structure is a principal G-bundle P Ñ Σ. The gauge
connection A is given by a g-valued 1-form on P .

Wilson line. Historically, the Wilson line observable is defined by a
curve Γ : r0, 1s Ñ Σ and some representation R of the gauge group G:

WR
Γ

“ TrRPexp

ˆ
ż

Γ

AR

˙

,

where Pexp stands for the path ordered exponential, which is a way to
compute the holonomy of the gauge connection, and taking the trace
TrR in the representation R guarantees gauge invariance.
This construction was revisited by Alekseev, Faddeev and Shatashvili

who suggested in [4] a new description based on path integral quanti-
zation of symplectic phase space:

(1) WR
Γ

“

ż

DgeSrA,g,λs,
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where the integral is taken over all the maps from the curve Γ to the
gauge group G: g : Γ Ñ G, conveniently avoiding the need of path
ordering, and the action functional is

(2) SrA, g, λs “

ż

Γ

ă λ, g´1dg ` g´1Ag ą“

ż

Γ

ă b, gdg´1 ` A ą .

This is a 1-dimensional sigma model with a coadjoint orbit1 Oλ as
a target. The fields in the construction are as follows: λ P g˚ is a
constant orbit representative, the field g : Γ Ñ G takes values in the
gauge group, and b : Γ Ñ g˚ is an auxiliary field with the property
bptq “ gptqλgptq´1, t being a parameter on the curve Γ.

Toward Wilson surface. Further developping the theory, Diakonov and
Petrov noticed ([5]) that via Stokes theorem, one can rewrite the func-
tional (2) as an integral over the surface Σ enclosed by the curve Γ. In
[2] the following formula was obtained for Diakonov–Petrov action:

SrA, g, λs “

ż

Σ

d ă λ, g´1dg ` g´1Ag ą“

ż

Σ

d ă b, gdg´1 ` A ą .

After a simple calculation the resulting action functional becomes:

SrA, g, λs “

ż

Σ

ă b, FA ´
1

2
rdgg´1 ` A, dgg´1 ` As ą“

“

ż

Σ

ă b, FA ´ pdAgg
´1q2 ą,(3)

where FA “ dA ` 1

2
rA,As and dAg “ dg ` Ag.

In [2] formula (3) was interpreted as an equivariant extension of the
Kirillov–Kostant–Souriau symplectic form, allowing thus to construct
an observable on any closed 2d orientable surface. The key distinction
here is that this sigma model is not (necessarily) defined as a boundary
sigma model. We will consider this as a starting point for constructing
the analog of the theory in the setting of superalgebras.

Remark 1. In (3) the functional still depends on a “parameter” λ

that labels the orbits, it is hidden in the b field. The functional is in
principal defined for any “value” of λ. Although for the present paper
it is not particularly important, as a side remark, let us note that in
[2] only special values of λ were considered, corresponding to integral
orbits – this is related to the Kirillov’s orbit method and to geometric
quantization.

1For more details on geometry of g˚ and Oλ see Appendix A.
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2.2. Wilson surface as a Poisson sigma model.

As mentioned above, one of the messages of [2] is that there is a
natural way to view the functional of Wilson surface observable as a
Poisson sigma model. While in the original work it was not necessarily
explored in details, it will be crucial to have in mind for the present
paper and the sequels, we thus sketch the construction here.
Let Σ be a 2-dimensional orientable surface, possibly with several

boundary components. G, A, b, FA, etc as above. An auxiliary
horizontal (in the usual sense of equivarant cohomology) 1-form field
α P Ω1

horpP, gqG is introduced to modify the action (3) in the following
way:

Sπpb, g, A, αq “

ż

Σ

ă b, FA ` pdAgg
´1 ` αq2 ´ pdAgg

´1q2 ą“

“

ż

Σ

ă b, dpA ` αq ` pA ` αq2 ą .(4)

The two actions are not equal, but equivalent, in the sense that path
integrals are equal, that is when the auxiliary field α is integrated out,
the theory reduces to (3):

ż

DgDα eS
πpb,g,A,αq “

ż

Dg eSpb,g,Aq.

Several interesting observations can be made about (4). First, A`α is
a new connection on P . The 2-form FA`α “ dpA`αq ` pA ` αq2 is its
curvature. Second, one now sees rather clearly that it can be viewed
as a particular case of the Poisson sigma model.
As a reminder, the Poisson sigma model ([3]) is defined on vector

bundle morphisms between TΣ for some Σ – oriented two dimensional
manifold, and T ˚M , where pM,πq is a Poisson manifold. These mor-
phisms can be encoded in two types of fields: scalar X : Σ Ñ M , and
1-form A P Ω1pΣ, X˚T ˚Mq. The functional reads:

(5) Sπ “

ż

Σ

´

AdX `
1

2
X˚πpAq

¯

“

ż

Σ

´

AidX
i `

1

2
πijAiAj

¯

.

Equations of motion are obtained as extrema of (5):

(6) dX i ` πijAj “ 0, dAi ` π
jk
,i AjAk “ 0

And one checks that (5) is invariant under the following gauge trans-
formations:

(7) δεX
i “ πijεj, δεAi “ dεi ` π

jk
,i Ajεk
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A concise way to view the Wilson surface observable as a PSM con-
sists of two steps of simplifications of the latter. First, the considered
Poisson structure is linear, it is given by the standard construction2 on
the dual to a Lie algebra g˚; i.e. πij “ C

ij
k x

k, the coefficients being
the structure constants of the Lie algebra. Second, the target in the
Wilson surface setting is a fixed coadjoint orbit Oλ, so this Poisson
structure is restricted to it. This means that that the resulting Πred is
non-degenerate and is the inverse of a symplectic form on Oλ. A simple
computation shows that the form of equations of motion, symmetries,
etc, remains the same in this restricted setting; and we will drop the
subscript “red” in what follows.

Remark 2. The second step of simplification is not strictly necessary:
one can just consider Wilson surfaces with an enlarged target as linear
Poisson sigma models. We will explore this idea in the context of
interacting Wilson surfaces in [6].

Remark 3. While the general perception of linear Poisson structures is
rather as mathematically exotic creatures, the discussion above shows
that they have interesting physical meaning, despite their simplicity.
Note that, the constructed π´1

red in the generic situation is not necessar-
ily in Darboux form. But if the coordinate change to bring it to the
canonical form is known (like for SUp2q and SUp3q – [4]), this gives
some explicit information for the corresponding PSM.

Remark 4. Continuing the previous remark, the linear Poisson sigma
model is equivalent, as expected, to a 2d BF -theory:

S “

ż

Σ

ă b, FA`α ą

Here, the field b P g˚ is constrained to take values in the orbit. Wilson
surface can be interpreted as an independent 2d topological theory with
1d Hilbert space. The equations of motion, from variation with respect
to b and from variation with respect to the connection A ` α (up to a
sign): are in immediate analogy with the regression to linear Poisson

πij “ C
ij
k X

k in (6), as well as gauge transformation reproduce (7).

The following example will be important for the super version of the
Wilson surface observable, so we give it in detail.

Example 1. Let G “ SUp2q, the algebra sup2q – R3. The Poisson
bracket on R3 is txi, xju “ ǫijkxk, ǫ being the Levi-Civita symbol. The
symplectic leaves (orbits) are Oλ – S2, each sphere has radius corre-
sponding to a Casimir function R2 “ xixi (summation over repeated

2See again Appendix A.
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indices is implied). Orbits are labeled not only by elements λ P h˚, but
also by Casimir functions. This is expected, since Casimir functions
are invariants of representations. The Poisson structure reads:

π “ ǫijkxk B

Bxi

B

Bxj
.

The restriction of this structure to an orbit does not make it vanish, it
just implies that there is a constraint on the generators: xixi “ const.
The corresponding symplectic structure is:

ω “
1

2R2
ǫijkxidxjdxk.

3. Supersymmetrized Wilson surface observable

Let us now turn to the extension of the Wilson surface: adding the
super degrees of freedom. As expected, this means considering Lie
supergroups instead of smooth (purely even) ones. In this section we
provide only the upshot of the construction, paying attention to the
subtleties that occur. We suppose that the reader is familiar with
super geometry, if this is not the case, some notions are recalled in
Appendix B.

3.1. Towards the definition. The first natural attempt would be to
go through all the steps of the previous section adding the word “su-
per” everywhere. While theoretically doable, this procedure is rather
technical: the structures on Lie groups/algebras, as well as their links
to representation theory is now less straightforward, and some concepts
need to be redefined. We will thus focus directly on constructing the
super analog of 2-dimensional model (3).
The starting point of our construction in the super case is the defini-

tion (4) of the Wilson surface in terms of Poisson sigma-model. That
is, we define the functional of the supersymmetric Wilson surface to be
the super Poisson sigma model with a linear super Poisson structure
on the target space. We consider the identification of the data of dual
to a Lie superalgebra g˚ with some linear super Poisson structure π,
which works almost verbatim as in the smooth case, obviously up to
signs in the identities.

Remark 5. The standard g˚-like example of a super Lie–Poisson struc-
ture ([7]) contains a subtlety: for a Lie supergroup G with the Lie su-
peralgebra g “ g0 ‘ g1, one considers the superalgebra g “ g˚

0
‘ g1, i.e.

reads off the Poisson structure on (g˚
0
, Spg1q). In what follows we will

mainly use some modifications of it.
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Then, the coadjoint orbits should correspond to symplectic leaves,
and those, equipped with the restriction of the super Poisson structure
πred will be viewed as the target of the theory. This result is much more
subtle in the super case: the Weinstein splitting theorem is not auto-
matic. But for our purposes it is enough to consider one orbit, which,
according to [8], is super symplectic. Constructing a super Wilson
surface observable as a super Poisson sigma-model on super symplec-
tic leaves has two important advantages: it provides a great source of
examples and it is based on well-defined classical super geometry.

Remark 6. When we say that super PSM is well-defined, we do not
mean that it is a simple construction. The original paper [9] only
treated its physical applications (for supergravity), not going into su-
pergeometric details. It has been revisited in [10] with a more or less
by hand construction of the mapping spaces. A more conceptual ap-
proach would be to view sPSM in the context of Q-bundles ([11]).
Even the simplified (linear) case we consider, should be properly de-
fined as a functional between multigraded (super) manifolds. By this
we mean that the rigorous way to describe all the fields is to view them
as mappings between manifolds graded by a monoid (Z2 ˆ N), which
is a straighforward regression of [12].

Remark 7. As mentioned above, it is in principal possible to perform
the supersymmetrization procedure along the lines of section 2, starting
from Wilson loops. This relates to an interesting purely mathematical
question of holonomy on supermanifolds ([13]), which we are going to
explore elsewhere.

3.2. Super WS action functional. We define the super WS func-
tional as a particular case of super PSM, i.e. the equation (5) with π

being a linear super Poisson structure. For applications and concrete
examples it is still important and convenient to keep track of the rela-
tion to the BF form of the model. The supersymmetric functional is
then structurally the same as non supersymmetric:

(8) S “

ż

Σ

Tr
´

bFA`a

¯

.

Now G is a matrix Lie supergroup with a Lie superalgebra g “ g0 ‘g1.
The fields (we write them in bold letters) are now superfields. The
gauge potential is a 1-form taking values in Lie superalgebra g:
A “ A

aξ
i dxi b Ta b eξ P Ω1pP, g0 ‘ g1q. The field b : Σ Ñ g˚

0
‘ g˚

1

is constrained to take values in the super orbit, with the property
b “ pg, αqpX, βqpg, αq´1, where pg, αq P G and pX, βq “ λ P h˚

0
‘ h˚

1

is the orbit representative with h˚
0

Ă g˚
0
being the dual to the Cartan
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subalgebra of g0, and h˚
1

“ Πh˚
0
being the odd extension of h˚

0
(Π stands

for shifted parity);
a P Ω1

horpP, gqG, as before, is an auxiliary field, given by a G-horizontal
1-form with values in the Lie superalgebra g. Tr stands for invariant
bilinear product on the Lie superalgebra g “ g0 ‘ g1.

4. Examples and interpretation

Let us recall the effect of adding the Wilson surface observable to a
background 2-dimensional gauge theory. In [1] and [2] the modification
of 2-dimensional Yang-Mills partition function due to the WS has been
computed for various compact Lie groups.
For the case G “ Up1q the partition function is modified by a pref-

actor depending on the orbit representative λ. For SOp3q the partition
function is split into 2 terms, each of them is multiplied by its own pref-
actor, again depending on λ. The same phenomenon occurs for other
compact Lie groups: the result is given by summation over all classes
of the principal G-bundles over the source and each term is multiplied
by the corresponding WS phase. Not to overload the message with
unnecessary details about the test theory, we will only consider the
partition function of a “pure” supersymmetric Wilson surface observ-
able. Namely, we illustrate how the mentioned prefactors may behave
depending on the choice of the super group.
As mentioned above, the definition of the functional via super Pois-

son structure provides a class of geometric examples – one of them (to-
tally artificial, section 4.1) will serve as a warm up exercise to observe
the supersymmetrization phenomenon. A more systematic approach
(sections 4.2 and 4.3) consists in extending the group or extending the
space it is acting on. As in the non-super case, an important class of
examples comes from quadractic Lie algebras, where, in particular, we
do not have to worry about the remark 5. For the first such example
we will only study the orbit space, and for the second one we will also
compute partition functions.

4.1. “Twisted” SU(2). In the usual SUp2q case the orbit space is
very explicit: R3 is foliated by two-dimensional spheres. Then, recall
that in the construction of Wilson surface the orbit parameter λ labels
these spheres and can be related to the radial (transversal) coordinate.
Consider now the same foliation, but declare formally the radial com-

ponent to be odd. This corresponds to a “twist” of the sup2q Lie
bracket, making it odd. Or, alternatively, a similar construction can
be obtained from the Heisenberg group with one odd generator. A
possible interpretation of this construction is also a change of parity in
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the Cartan subalgebra of g. Regardless of the origin of the foliation,
we can just view it geometrically. Recall now, that in [2] λ was en-
tering the game in the exponential prefactor of the modified partition
function, and for integral orbits for simply connected groups was not
producing any modification. Now, when we formally consider it to be
an odd element, the exponential reduces to p1 ` λq, which is always a
non-trivial super phase prefactor.
A similar construction may be carried out in a more general setting

of SUpNq – in contrast with non-super case, the partition function will
be modified by a non-trivial super phase.

4.2. Extension of SU(2) by its odd algebra. This example is in
a sense inspired by the theory of odd quadratic superalgebras ([14]),
and in particular the extension of slp2q, we adapt it to the supergroup
G “ SUp2q ˙ Πsup2q, and its Lie algebra g “ sup2q ‘ Πsup2q. Here
Π stands for shifted parity. We will compute adjoint orbits for this
group with the purpose to explore their structure. In the usual (non-
super) case they would have been isomorphic to coadjoint ones, for a
superalgebra the relation is again more intricate, we will comment on
that below.
Let us first recall the form of the operations on G :“ G0 ˙Πg0. The

elements of G are pairs pg, αq P G, where g P G0, α P Πg0. The group
product is given (as for usual semi-direct products) by

ph, βq ¨ pg, αq “ phg, β ` hαh´1q.

Then the inverse pg, αq´1 “ pg´1,´g´1αgq is defined from a simple
calculation:

ph, βq ¨ pg, αq “ phg, β ` hαh´1q “ pI, 0q.

The left and right actions are

Lpg,αqph, βq “ pgh, α ` gβg´1q,

Rpg,αqph, βq “ phg, β ` hαh´1q.

The Lie algebra of G is LiepGq “ g0 ‘ g1, where g0 “ LiepG0q and
g1 “ ΠLiepG0q. The adjoint action is defined by

Adpg,αq “ Rpg,αq´1 ˝ Lpg,αq at pI, 0q.
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For pX, βq P LiepGq it is computed as follows:

Adpg,αqpX, βq “
d

dt

´

Rpg,αq´1 ˝ Lpg,αqpe
tX , tβq

¯

ˇ

ˇ

ˇ

ˇ

t“0

“
´

gXg´1, gβg´1 ` rgXg´1, αs
¯

“ pg, αqpX, βqpg, αq´1.

We will now specialize these computations for particular elements, to
describe the orbit space.
We are interested in potential correspondence between orbits and rep-
resentations, that is why we consider orbits passing through elements
pX, βq P h0 ‘ Πh0.

Adjoint orbits with an even representative

For pX, 0q, the stabilizer consists of elements pg, αq such that

pX, 0q “ Adpg,αqpX, 0q “
´

gXg´1, rgXg´1, αs
¯

.

For X P up1q, the conditions X “ gXg´1 and rX,αs “ 0 are satisfied
when g P Up1q is in maximal torus subgroup of SUp2q, and α P Πh0 “
Πup1q is in Cartan subalgebra of sup2q with shifted parity.
The super stabilizer is: HpX,0q “ Up1q ˙ Πup1q.
The corresponding orbit, as a manifold, is:

OpX,0q – SUp2q ˆ Πsup2q{Up1q ˆ Πup1q – S2 ˆ ΠR2.

And for X “ 0 the stabilizer is obviously the entire group
Hp0,0q “ SUp2q ˙ Πsup2q.

Adjoint orbits with an odd representative

For p0, βq, the stabilizer consists of elements pg, αq such that

p0, βq “ Adpg,αqp0, βq “
´

0, gβg´1

¯

.

The element is β P Πup1q. The only condition is β “ gβg´1, and it is
satisfied when g P Up1q is in maximal torus subgroup of SUp2q, and
α P Πsup2q is any element of Πsup2q.
The stabilizer is: Hp0,βq “ Up1q ˙ Πsup2q.
As a manifold, the orbit is

Op0,βq – SUp2q ˆ Πsup2q{Up1q ˆ Πsup2q – “S2 ˆ odd vector2.

Remark 8. Let us explain the last equality in the above line. When
computing the quotients, we obtain the result up to an isomorphism
of (super)manifolds. While topologically the result is a sphere (viewed
as a subset of G0), it clearly has only an odd part. Hence imagining
Op0,βq as a set of points is misleading, the proper way is to consider the
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sheaf of functions on it, which would be equivalent to functions on S2

up to an odd (constant) prefactor.

Adjoint orbits with a generic representative.

For pX, βq, the stabilizer consists of elements pg, αq such that

pX, βq “ Adpg,αqpX, βq “
´

gXg´1, gβg´1 ` rgXg´1, αs
¯

.

The element is pX, βq P up1q‘Πup1q. The conditions for a stabilizer are
β “ gβg´1, X “ gXg´1 and rgXg´1, αs “ 0. They are satisfied when
g P Up1q is in maximal torus subgroup of SUp2q, and α P Πh “ Πup1q
is in Cartan subalgebra of sup2q with shifted parity.
The stabilizer is HpX,βq “ Up1q ˙ Πup1q.
As a manifold, the orbit is

OpX,βq – SUp2q ˆ Πsup2q{Up1q ˆ Πup1q – S2 ˆ ΠR2.

While the computation is slightly different, one notices that the even
and the generic case coincide, and are essentially different (even for
dimension reasons) from the odd case. This means that the orbit space
indeed defines a non-trivial singular (super)foliation.

The functional.

Let us now come back to the construction of the WS functional. There
is no automatic identification of adjoint and coadjoint orbits, but it
may be done in two steps: first identify Πg0 and Πpg˚

0
q, then use a bi-

linear form on the whole algebra. The subtle point is that the resulting
“identification” is an odd one, i.e. parity reversing. This is however
enough for our illustrative purposes – we see two types of orbits: one
with mixed and another with pure parity. This means that such a
super extension of SUp2q produces two essentially different classes of
super extensions of WS functionals.

Generalization to compact Lie groups.

Note that the above computation can be performed for any compact
Lie group extended by its odd algebra.
For an even/generic representative, the stabilizer of pX, βq P g0 ‘ Πg0
is HpX,βq “ H0 ˙ Πh0.

The orbit is OpX,βq – G0 ˆ Πg0{H0 ˆ Πh – G0{H0 ˆ ΠRdimpg0q´dimph0q,

where H0 Ă G0 is a maximal torus subgroup of G0 and h0 Ă g0 is a
Cartan subalgebra of g0.
For an odd representative, the stabilizer of p0, βq P go ‘ Πg0 is
Hp0,βq “ H0 ˙ Πg0.
The orbit is, as in a similar case of SUp2q, a subspace of the odd
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subalgebra Πg0, which is, as a geometric figure, isomorphic to G0{H0:

Op0,βq – G0 ˆ Πg0{H0 ˆ Πg0 – “G0{H0 ˆ odd vector2.

And once again, after identifications of corresponding dual algebras,
this produces non-trivial WS functionals.

Remark 9. Interpreting the above construction in terms of Poisson ge-
ometry, we expect a non-trivial relation to tangent Poisson structures,
see also [10].

4.3. Coadjoint orbits of OSp(1|2). OSpp1|2q is a classical Lie su-
pergroup, its algebra admits a bilinear invariant non-degenerate form.
Since this form is even, we can identify g – g˚.
Coadjoint orbits ofOSpp1|2q are super discs: Dp2|2q – OSpp1|2q{Up1q

([15]). They admit an even super symplectic form and are superexten-
sions of a one-parametric family of elliptic Spp2,Rq – SUp1, 1q-orbits:
D2 – SUp1, 1q{Up1q. Geometric quantization of D2 yields highest
weight representations of SUp1, 1q. The procedure extends to Dp2|2q

to yield irreducible super unitary representations of OSpp1|2q.
OSpp1|2q is the simplest super extension of Spp2,Rq – SUp1, 1q.

SUp1, 1q is the maximal even subgroup of OSpp1|2q. We consider the
compact real form of OSpp1|2q (see [16]), denoted by UOSpp1|2q which
is a supersymmetric extension of the compact simply connected group
Spp1q “ SUp2q “ Spinp3q.
The algebra uospp1|2q has the following structure: the even (bosonic)

generators h, b`, b´ are those of sup2q, and the odd (fermionic) gen-
erators f`, f´ are the basis of the odd subspace Πp0, where p0 is
the invariant compliment of the Cartan subalgebra h0 Ă g0 in the
Cartan decomposition g0 “ h0 ‘ p0, h is the generator of h0. Then
uospp1|2q “ sup2q ‘ Πp0. The commutation relations read:

rh, b`s “ b`, rh, b´s “ ´b´, rb`, b´s “ 2h, rh, f`s “
1

2
f`,

rh, f´s “ ´
1

2
f´, rb´, f`s “ f´, rb`, f´s “ f`, rb`, f`s “ rb´, f´s “ 0,

rf`, f`s “
1

2
b`, rf´, f´s “ ´

1

2
b´, rf`, f´s “ ´

1

2
h.

The explicit matrix representation of those can be found in [17]. And
in the physics language, this is N “ 1 supersymmetry.
We use the fact that for UOSpp1|2q, g – g˚ and identify adjoint

and coadjoint orbits. It is enough to consider the orbit representative
pX, 0q P h “ h0 ‘ 0 which is purely even, since Cartan subalgebra of
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g0 does not have an odd counterpart. The stabilizer is purely even:
H “ Up1q. And the orbit is

OpX,0q “ SUp2q ˙ Πp0{Up1q – S2 ˆ ΠR2.

The central elements e and ´e are purely even, since they are elements
of the maximal torus subgroup: the center ZpGq Ă H is a subgroup of
H. (Cartan subalgebra integrates to a maximal torus subgroup).

Remark 10. Note that the orbit turns out to be the same as for the
even representative of g “ sup2q ‘ Πsup2q, which may give a lead for
partition functions there.

Remark 11. Representation theory works on these examples ([18]), i.e.
we can construct super Wilson lines, illustrating remark 7. But more
importantly we can apply the technique from [1] to compute partition
functions, which we will do below.

4.4. Canonical quantization of WS – example. Let us recall the
steps described in [1] to canonically quantize the WS action functional
and obtain the partition function formula for the Wilson surface theory,
and see what changes in the super case.
Supersymmetric extension of G0 does not change the topology of the

group. Hence, the principal G-bundles P Ñ Σ over a closed surface
are also classified by the elements γ P π1pG0q, since the fundamental
groups of G and G0 are the same. The gauge group can be viewed
as G “ G̃{Γ, where G̃ is the universal cover of G and Γ Ă ZpG̃0q is

a subgroup of the center of G̃0. The universal cover G̃ can then be
described as G̃ “ G̃0 ˙ Πg0, where G̃0 is the universal cover of G0.
For each element γ P π1pGq in the fundamental group there exists

a corresponding element Cγ P Γ Ă ZpG̃q in the center of the covering
group, since Γ – π1pGq. Then the partition function of the Wilson
surface labeled by the element pX, βq for a particular equivalence class
of principal bundles P Ñ Σ, defined by γ P π1pGq is given by:

ZpCγ, pX, βqq “
χpX,βqpCγq

sDpX,βq

,

where χpX,βqpCγq “ sTrpCγq is a value of the character χpX,βq on the
element Cγ in the representation RpX,βq, corresponding to the orbit
element pX, βq, and sDpX,βq is the “super dimension” of the matrix
RpX,βqpCγq (i.e. number of nontrivial diagonal elements of the even
block minus the number of diagonal elements in the odd block in its
normal form).
Note, that we can only use this procedure to compute partition func-

tions, when there is a bijective correspondence between some class of



14 OLGA CHEKERES AND VLADIMIR SALNIKOV

coadjoint orbits and finite-dimensional representations of the group G,
i.e. when the highest weight of the representation is identified with the
orbit representative. In [2, 1] the examples of compact connected Lie
groups were treated, and the bijective correspondence between integral
coadjoint orbits and finite-dimensional irreducible representations of G
was explored. With super groups one has to be more careful. We ap-
ply the procedure to an example, where the orbit method is known to
work. For other examples one can compute partition functions as path
integrals (such examples will be treated in a separate paper), without
exploring representation theory, choosing wisely the orbit representa-
tive.
UOSpp1|2q partition function.

For G “ UOSpp1|2q the highest weight pX, 0q P h˚ defines an irre-
ducible finite-dimensional representation. In this case the target space
of the theory is given by the coadjoint orbit OpX,0q passing through the
point pX, 0q P g˚.
For G “ UOSpp1|2q, since there exists only the trivial class of prin-

cipal G-bundles over a closed surface Σ, the partition function of the
Wilson surface is

Zpe, pX, 0qq “
χpX,0qpeq

sDpX,0q

“
sTrpX,0qpeq

sDpX,0q

“
sDpX,0q

sDpX,0q

“ 1,

just like in non-supersymmetric case.
For G “ UOSpp1|2q{Z2 “ SOp3q ˙ Πp0 there are two classes of

principal G-bundles over a closed surface Σ. The partition function of
the Wilson surface for the trivial class is

Ztriv “ Zpe, pX, 0qq “
χpX,0qpeq

sDpX,0q

“
sTrpX,0qpeq

sDpX,0q

“
sDpX,0q

sDpX,0q

“ 1.

The partition function of the Wilson surface for the nontrivial class is

Znontriv “ Zp´e, pX, 0qq “
χpX,0qp´eq

sDpX,0q

“
sTrpX,0qp´eq

sDpX,0q

“
´sDpX,0q

sDpX,0q

“ ´1.

This result agrees with the (non supersymmetric) case of
G “ SUp2q{Z2 “ SOp3q computed in [2], in spite of the fact that the
orbit is supersymmetric.

Remark 12. We would like to call this phenomenon “bosonization”,
and we believe that it happens for super extensions of compact groups,
when the Cartan subalgebra of the respective super algebra has trivial
super extension. The proof of this conjecture would be technical, going
through the representation theory of Lie super groups – we do not think
it is necessary in this paper.
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Instead of conclusion – perspectives

In this paper we have seen that viewing Wilson surface observables
through the lens of Poisson sigma model can be very fruitful for gen-
eralizations. We have addressed the super version of it showing that
one can produce non-trivial supersymmetric modifications of the WS
functional by taking into account the information about the orbits of
supergroups. We have also seen that in some cases the super con-
tribution may disappear while performing the canonical quantization
procedure.
On top of the mentioned results, this geometric understanding of

Wilson surfaces offers several open directions. First, even before study-
ing supersymmetry, very naturally one may consider several WS ob-
servables and glue them together in the topological field theory sense.
This results eventually in higher dimensional generalization of those
([6]). Second, we have studied the super version of the target of the
model and said nothing about the source – this is also a subject un-
der consideration and we expect a lot of non-trivial links to [10]. And
last but not least, we have studied “independent” observables to un-
derstand the phenomena related to them, but the physically relevant
information is actually obtained when they are “tested” on other the-
ories. A near-at-hand example would be supersymmetric Yang–Mills
theory, by analogy with [2]. Those also merit a separate paper to figure
out the details, and we expect interesting connection to supergravity.
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Appendix A. Geometry of coadjoint orbits

Coadjoint orbits. Coadjoint orbits are the orbits of coadjoint ac-
tion, they have the form Oλ “ tAd˚

gλ, g P Gu. We assume that G is a
matrix group and use matrix notation:

Ad˚
g : λ ÞÑ g´1λg,

where λ P g˚ and g P G. The stabilizer subgroups are denoted by:

Hλ “ tg P G, Ad˚
gλ “ g´1λg “ λu.

Then the coadjoint orbit is isomorphic to the homogeneous space

Oλ – G{Hλ,

and it is convenient to introduce a canonical projection:

πλ : G Ñ Oλ.

The group G projects to every coadjoint orbit: we take a group element
and map it to the image of λ under the coadjoint action: g ÞÑ g´1λg “
µ, where µ is an arbitrary point on the orbit Oλ.
The symplectic 2-form on Oλ is constructed as follows. Consider

a principal Hλ-bundle G Ñ Oλ – G{Hλ. First, for a given point
on the orbit λ P Oλ, define a g-valued 1-form on the group G: α “
´Trpλg´1dgq P Ω1pG, gq. Here we also use matrix notation for Maurer-
Cartan form g´1dg P Ω1pG, gq. Then consider a 2-form on G taking
values in R:

ωG “ dα “ ´Trλpg´1dgq2 P Ω2pGq.

This 2-form is closed by definition and basic (i.e. horizontal and invari-
ant under the right Gλ-action). Since Ω

‚pGqbasic – Ω‚pOλq, it descends
on the orbit Oλ to the unique 2-form ω P Ω2pOλq. In more detail, there
exists the unique ω P Ω2pOλq, such that π˚

λω “ ωG P Ω2pGq. This 2-
form on the orbit is G-invariant, non-degenerate and closed. It defines
the symplectic structure on Oλ and is also known as Kirillov–Kostant–
Souriau form.
Coadjoint orbits for which the KKS-form ω defines an integral co-

homology class rωs P H2pOλ,Zq, are called integral. And Kirillov orbit
method states that integral coadjoint orbits Oλ of a compact Lie group
G are in bijective correspondence with irreducible finite-dimensional
representations of G: the orbit Oλ passing through the element λ P h˚

corresponds to the representation Rλ uniquely defined by the highest
weight λ P h˚.
g˚ is a Poisson manifold. Recall that the Lie algebra structure is

defined on generators Ta on g by the commutation relations rTa, Tbs “
f c
abTc. The basis of g can be considered as coordinate functions on g˚.
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On g˚ there exists the unique Poisson bivector π ([19]), defining a map
π : Tg˚ Ñ Tg. In coordinates on g˚, it has linear coefficients:

π “ f c
abTc

B

BTa

B

BTb

.

The map π : Tg˚ Ñ Tg is not invertible in general. However, as a Pois-
son manifold, pg˚, πq can be represented as a disjoint union of smooth
even-dimensional submanifolds: symplectic leaves. Constant values of
Casimir functions are assigned to each leaf and thus parametrize the
coadjoint orbits Oλ Ă g˚.

Appendix B. Recap from super geometry

The purpose of this Appendix is to give a fleeting overview of some
folkloric facts from supergeometry, mostly to fix the notations and
backup the constructions from the main part of this paper. More details
can be found in any classical book on supergeometry, for example [20].
Superspaces and local models.

As usual, a super vector space is decomposed into a direct sum V “
V0 ‘ V1, coordinates on Vi (i.e. elements of V ˚

i ) are of parity i. This
parity pp¨q P Z2 enters the commutation relations, and defines the
Koszul sign rule: a ¨ b “ εpa, bqb ¨ a, where εpa, bq “ p´1qppaqppbq. One
then constructs the tensor products and the (super)symmetric algebra.

T kE “ E b . . . b E
loooooomoooooon

k

.

And for TpEq :“
À

kě0
T k,

SpEq :“ TpEq{ 〈x b y ´ εpx, yqy b x | x, y P E〉 .

The functional space on V is then FpV q “ C8pV0q b SpV1q, i.e.
polynomials on V1 with smooth coefficients on V0. Such functional
spaces supported over open sets covering a smooth manifold M0 can
be consistently glued together, giving rise to the following definition.
Def. A supermanifold Mk|l is the data of pM0,OMq, where M0 is a
smooth manifold of dimension k and OM is the structure sheaf, locally
modelled as FpV q above, with dimpV0q “ k, dimpV1q “ l.

Most of differential geometry works out of the box, up to the Koszul
signs. One of the intricate points is related to measure and integra-
tion. For instance, not all the ingredients for the Stokes theorem are
automatically defined.
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Out of all the rich data about supermanifolds, we will need the spe-
cific case of Lie groups and algebras (see e.g. [21]), and for the struc-
tures related to the resulting gauge theories super symplectic and super
Poisson structures are relevant, that we recall below.
Supergroups and superalgebras

Def. A Lie superalgebra is a vector superspace (over R or C)

g “ g0 ‘ g1

together with a super skew-symmetric bilinear operation of even parity

r´,´s : g b g Ñ g rx, ys “ p´1qppxqppyq`1ry, xs, x, y P g, ,

which satisfies the super Jacobi identity
“

x, ry, zs
‰

“
“

rx, ys, z
‰

` p´1qppxqppyq
“

y, rx, zs
‰

Def. An invariant product on Lie superalgebra g “ g0 ‘g1 is a bilinear
form Trp¨, ¨q on g, which is supersymmetric, non-degenerate, invariant,
and can be even or odd.
A bilinear form on Lie superalgebra g is
– supersymmetric if Trpx, yq “ p´1qppxqppyqTrpy, xq, for all homoge-
neous x and y.
– non-degenerate if x P g satisfies Trpx, yq “ 0, for all y P g, then
necessarily x “ 0.
– invariant if Trprx, ys, zq “ Trpx, ry, zsq, for all x, y, z P g.
– even if Trpg0, g1q “ Trpg1, g0q “ t0u.
– odd if Trpg0, g0q “ Trpg1, g1q “ t0u.
Def. A Lie supergroup G is a group object in the category of su-
permanifolds. That is G is a supermanifold on which the standard
group operations (multiplication, inverse and identity) are defined as
morphisms, and satisfy the standard group axioms.
While the proper way to describe supergroups is to do it through the

sheaf of functions to distinguish odd and even elements, a shorthand
notation is sometimes: G “ G0 ˆG1. As in the smooth case Lie super-
groups and superalgebras are related by an integration / differentiation
procedure.
Super Poisson and super symplectic structures

The standard construction of tensor fields from classical differential ge-
ometry can be extended to supermanifolds in a rather straightforward
way. The key difference is obviously related to supersymmetry and
superskewsymmetry: for each (skew)symmetric tensor field written in
local coordinates the coefficients will be divided into two groups corre-
sponding to odd and even variables. Not going into general details we
mention only three important particular cases:
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— superskewsymmetric covariant 2-tensor field i.e. differential 2-form
— supersymmetric covariant 2-tensor field i.e. metric
— superskewsymmetric contravariant 2-tensor field i.e. bivector field.
All of them are allowed to be odd or even.
Def. A supersymplectic form is a closed and non degenerate differential
2-form on a vector superspace / supermanifold.
Def. Given a supermanifold M , a super Poisson structure on OM is a
mapping t¨, ¨u : OM ˆOM Ñ OM , such that pOM , t, uq is a Lie superal-
gebra in the sense above, and any tf, ¨u acts as a superderivation.
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