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We show that rhombohedral multilayer graphene supports topological frequency conversion,
whereby a fraction of electrons transfer energy between two monochromatic light sources at a quan-
tized rate. The pristine nature and gate tunability of these materials, along with a Berry curvature
that directly couples to electric fields, make them ideal platforms for the experimental realization
of topological frequency conversion. Among the rhombohedral family, we find that Bernal bilayer
graphene appears most promising for THz-scale applications due to lower dissipation. We discuss
strategies to circumvent cancellations between the two valleys of graphene and to minimize dissipa-
tive losses using commensurate frequencies, thus opening a potential pathway for net amplification.

Quantum systems coupled to light exhibit a range of
unique emergent phenomena, providing a powerful plat-
form to design and control phases of matter [1–15]. It was
recently appreciated that the paradigm of Floquet engi-
neering can be generalized to multi-chromatic driving,
leading to even richer physics [16–32]. In this setting,
the photon numbers of distinct modes act as synthetic
lattice coordinates, opening access to higher-dimensional
topological phases that support novel pumping mecha-
nisms. A prime example is topological frequency conver-
sion, whereby energy is transferred between two modes
with frequencies f1 and f2 at a rate given by the power
quantum hf1f2. In the solid-state realm, Weyl semimet-
als were recently proposed as a platform to realize this
effect, leveraging the sources and sinks of Berry curvature
carried by their Weyl points [31].

Here we propose rhombohedral multilayer graphene
(RMG) [33, 34] as an alternative platform for realiz-
ing topological frequency conversion. Similarly to Weyl
semimetals, RMG hosts Weyl nodes, but in a three-
dimensional hybrid space formed by the two crystal mo-
menta and the interlayer potential difference. This hy-
brid space can be dynamically addressed through the
in-plane vector potential and out-of-plane electric field
induced by the driving modes. Under suitable configu-
rations of incident beams, a fraction of charge carriers
in the system converts energy between the modes at the
quantized rate hf1f2, as illustrated in Fig. 1.

The quasi two-dimensional nature of RMG offers key
advantages including gate tunability, reduced screening
and lack of skin effects. Moreover, the different type
of coupling to in-plane and out-of-plane radiation fields
leads to a strong sensitivity to the angle and polariza-
tion of the incident beams. For THz implementations,
Bernal bilayer graphene appears most promising due to
its pristine nature and lower dissipation. We finally com-
ment on strategies to circumvent cancellations between
the two (time-reversed) valleys of graphene by inducing
valley-asymmetric electronic distributions.

FIG. 1. (a) Rhombohedral multilayer graphene can mediate
topological frequency conversion between two incident driv-
ing modes with frequencies f1, f2. An interlayer potential u
gaps out the low-energy bands of RMG [shown for bilayers in
(b) and trilayers in (c)], with a Berry curvature controlled by
sgn(u). (d) The driving modes couple to electrons via their
in-plane vector potential and perpendicular electric field, con-
tained in the 3d vector α [Eq. 3]. The Berry curvature Ω in α
space (black arrows) hosts a monopole or Weyl node located
at (−kx,−ky, 0) for an electron with wavevector (kx, ky). Un-
der quasi-periodic driving, the system explores a 2d surface
Sα, shown for the drive configuration in (a). Frequency con-
version power is given by the quantized flux of Berry curva-
ture Ω through Sα. (e) The intersection between Sα and the
Ez = 0 plane defines a momentum area Aα where electrons
contribute to conversion power at a quantized rate hf1f2L.
Contours are labeled by the ratio of electric fields Ez

0/E1.

Setup. RMG consists of L graphene sheets stacked
such that each A sublattice lies above the B sublattice
of the layer below—these superimposed sites are coupled
with the leading interlayer tunneling term γ1 ≈ 360 meV.
Near charge neutrality, the wavefunctions of carriers pri-
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marily reside in the subspace (A1, BL) comprising the
leftover A sites of the bottom layer and B sites of the
top layer. The system can thus be described by an effec-
tive two-level Hamiltonian in each of the two valleys [34],

Hξ(k) =

(
u/2 −γL (ξkx − iky)

L

−γL (ξkx + iky)
L −u/2

)
, (1)

with the wavevector k measured relative to the hexag-
onal Brillouin zone (BZ) corner corresponding to valley
ξ = ±1. Here u is an interlayer potential difference and
γL = (ℏvF )L/γL−1

1 where vF = 8.4×105 m/s denotes the
Fermi velocity of graphene. For u = 0 the low-energy ex-
citations of RMG are chiral fermions with an L-th power
dispersion [35]. Applying an out-of-plane electric field Ez

generates a potential u = d(L−1)eEz, with d = 0.33 nm
the interlayer distance, opening a gap in the dispersion
and controlling the Berry curvature of the low-energy
bands (Fig. 1b)—a feature at the heart of our proposal.

Bichromatic driving induces an electric field E(t) =
E1(t) + E2(t + ∆t) in the system, where Ej(t) is the
monochromatic field from mode j with frequency fj , and
∆t controls the relative phase shift between the modes—
relevant when f1 and f2 are commensurate. Due to the
quasi 2D nature of RMG we disregard skin effects and
plasmon excitations that become important in 3D im-
plementations such as Weyl semimetals [31]. We further
consider THz-scale frequencies, corresponding to wave-
lengths λ ∼ 100µm, such that the electric field can be
considered uniform in the sample. The in-plane compo-
nent of the E, E∥, couples to electronic crystal momenta
via the Peierls substitution k → k+eA∥(t)/ℏ, withA∥(t)
the net vector potential induced by E∥(t). In contrast,
the out-of-plane component of E, Ez, couples through
the effective dipole moment in the low-energy subspace,
Eq. (1). The coupling of radiation thus strongly depends
on the incidence angles θj and polarization of the drives
(Fig. 1a), a unique feature of this setup.

The driven system is conveniently described by the
two-level Hamiltonian Hξ(k, t) = dξ(k, t) · σ, with σ =
(σx, σy, σz) a vector of Pauli matrices acting in the low-
energy subspace and

dξ(k, t) = γL
(
Re[ΠL

ξ (k, t)], Im[ΠL
ξ (k, t)], α

z(t)
)
. (2)

Here Πξ(k, t) = ξ(kx + αx(t)) + i(ky + αy(t)) and α ≡
α1 +α2 encode the coupling to electromagnetic fields,

αj(t) = e

(
Ax

j (t)

ℏ
,
Ay

j (t)

ℏ
,
d(L− 1)Ez

j (t)

2γL

)
. (3)

Below, we find it convenient to re-express αj (and there-
fore dξ) explicitly in terms of the phases ϕj = ωjt, with
ωj = 2πfj the angular frequency of mode j.

Frequency conversion. To see how topological fre-
quency conversion emerges, consider the time-averaged

rate of work P ξ
j (k) done by mode j on a valence-band

electron in valley ξ and wavevector k. Neglecting dissipa-
tive effects for now, energy conservation implies P ξ

1 (k) =

−P ξ
2 (k) = P ξ

FC(k), with the frequency conversion power

P ξ
FC(k) giving the time-averaged energy transfer rate

from mode 1 to mode 2 mediated by the electron.
When the time dependence of Hξ(k, t) is quasi-

adiabatic, P ξ
FC(k) is proportional to the number of times

the surface spanned by the unit vector d̂ξ ≡ dξ/|dξ| en-
closes the origin, P ξ

FC(k) = hf1f2
∫ 2π

0
dϕ1dϕ2

4π d̂ξ · (∂ϕ1
d̂ξ×

∂ϕ2
d̂ξ) [17, 31, 36]. This result is derived in the Appendix

and emerges from the leading-order diabatic correction
to the dynamics—along with the fact that, for incom-
mensurate frequencies, the system uniformly explores the
two-dimensional parameter space 0 ≤ ϕj ≤ 2π. For com-
mensurate frequencies, this formula is recovered by also
averaging P ξ

FC(k) over ∆t. Changing variables from ϕj
to α yields

P ξ
FC(k) =

hf1f2
2π

∫
Sα

dSα ·Ωξ(k,α), (4)

with
∫
Sα
dSα =

∫
dϕ1dϕ2∂ϕ1α× ∂ϕ2α the oriented inte-

gral on the surface Sα spanned by α(ϕ1, ϕ2), and Ωξ the
vector-valued Berry curvature associated with the wind-
ing of dξ, Ω

i
ξ = − ϵijl

2 d̂ξ ·(∂αj d̂ξ×∂αl d̂ξ). Thus, frequency
conversion power is controlled by the Berry curvature flux
through Sα (see Fig. 1d). The overall sign in Eq. 4 is re-
versed for conduction band electrons.
In analogy to Weyl semimetals, sources and sinks of

Berry curvature in the hybrid three-dimensional space
α are quantized and confined to topologically-protected
gap-closing points, analogous to Weyl nodes [37]. Indeed,
the RMG Hamiltonian in Eq. (2) hosts a charge-L Weyl
node at α0(k) = (−kx,−ky, 0),

∇α ·Ωξ(k,α) = −2πξLδ(α−α0(k)). (5)

Electrons therefore become topological frequency
converters—mediating an energy transfer at the quan-
tized rate P ξ

FC(k) = −hf1f2ξL—if located within the
BZ area delineated by the intersection of the surface Sα

and the αz = 0 plane of the Weyl node, denoted Aα (see

Fig. 1d, e). For electrons outside of Aα, P
ξ
FC(k) = 0.

We now consider the dynamics of the many-body state.
In the regime of adiabatic driving and slow relaxation rel-
ative to the driving frequency, the steady-state popula-
tion of band n = 0, 1 near valley ξ takes an approximately
stationary value, ρ̄ξn(k) [38]. The frequency conversion
intensity (i.e. the conversion power per unit area) from
valley ξ is obtained by weighing the individual contri-
bution P ξ

FC(k) of each electron with the corresponding
steady-state occupation [31],

Iξ
FC = hf1f2Lξ

∫
Aα

d2k

(2π)2

(
ρ̄ξ1(k)− ρ̄ξ0(k)

)
. (6)
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The boundary of Aα contains the wavevectors k for
which the instantaneous gap of Hξ(k, t) closes at some
time t. States near this boundary thus undergo inter-
band Landau-Zener tunneling, which causes significant
dissipation through Landau-Zener absorption—whereby
electrons pumped to the valence band relax dissipatively,
leading to an irreversible loss of the invested energy [31].

To estimate the conversion rate from a single valley at
charge neutrality, we set ρ̄ξ0 ≈ 1, ρ̄ξ1 ≈ 0 and approximate
Aα as a rectangle of sides 2eAj cos θj/ℏ,

Iξ
FC ≈ ξL

e2E1E2

2π3ℏ
cos θ1 cos θ2, (7)

where we used Aj ∼ Ej/ωj . For electric fields Ej ∼ 0.1

V/nm and θj ∼ 89◦, Iξ
FC ∼ 10L W/mm2 (see also

numerics in Fig. 3). Interestingly, the conversion in-
tensity is proportional to the geometric mean of ra-
diation intensities, I = cϵ0E1E2/2, through Iξ

FC/I ≈
4LαEM cos2(θ)/π2 with αEM the fine-structure constant.

When the chemical potential µξ in a given valley moves
away from charge neutrality, we expect the conversion
rate IξFC to decrease, due to the cancellation between
conduction and valence-band carriers (for µξ > 0) or de-
populating the valence band (for µξ < 0). Because of the
opposite contributions from carriers in valleys ξ = ±1
(a consequence of time-reversal symmetry), a net effect
requires a valley imbalance in the number of active fre-
quency converters, either through unequal chemical po-
tentials in each valley, µ+ ̸= µ−, or a valley-selective
population inversion. We discuss various strategies to
induce such imbalances below and in the Appendix.

Numerical simulations. We support our con-
clusions with numerical simulations of Bernal bilayer
graphene subjected to bichromatic radiation, includ-
ing trigonal warping corrections to the low-energy band
structure [39]. Following Ref. [31], we model the system
through a master equation

∂tρ̂ξ(k, t) = − i

ℏ
[Ĥξ(k, t), ρ̂ξ(k, t)] +Dξ(k, t) ◦ ρ̂ξ(k, t),

(8)
where Ĥξ(k, t) and ρ̂ξ(k, t) denote the second-quantized
Hamiltonian and density matrix of the system in the Fock
space spanned by electronic modes with wavevector k
in valley ξ. We model dissipation through Dξ(k, t) =
− 1

τ (ρ̂ξ(k, t)−ρ̂
eq
ξ (k, t)), characterizing uniform relaxation

on a timescale τ towards the instantaneous equilibrium

state ρ̂eqξ (k, t) = e−β[Ĥξ(k,t)−µξn̂]/Tr[e−β[Ĥξ(k,t)−µξn̂]],
with β the inverse temperature of the bath and n̂ the
density operator. For simplicity we work at charge neu-
trality, µξ = 0; we consider effects of driving in the pres-
ence of a Fermi surface (for µξ ̸= 0) in the Appendix.

We numerically obtain the steady-state solution to
Eq. (8) for a representative grid of k points and extract
the time-averaged power per area transferred into the

FIG. 2. Momentum-resolved frequency conversion in Bernal
bilayer graphene. We consider two linearly-polarized modes in
the configuration of Fig. 1a with (θj − π/2) ≈ 0.1◦, relaxation
time τ = 500 ps and charge neutrality, µ = 0. Contributions
to frequency conversion from valleys ξ = +1 (a,d) and −1
(b,e) are shown alongside dissipated power (c,f). Frequencies
f1 ≈ 0.128 THz and f2 = f1/

√
2 [(a)–(c)] or f2 = 2f1/3

[(d)–(f)] illustrate quasi-periodic and periodic driving. The
color scales indicate time-averaged conversion power in units
of hf1f2. The overlaid contour shows the boundary of Aα.

system from mode j through Iξ
j =

∫
d2k
(2π)2P

ξ
j (k), where

Pξ
j (k) = lim

T→∞

∫ T

0

dt

T
∂tαj(t) · Tr

[
ρ̂ξ(k, t)∇αj Ĥξ(k, t)

]
.

(9)
This expression can be derived from first principles and,
being agnostic to our theoretical analysis, serves as an
independent check of its conclusions.
We consider two linearly-polarized modes prop-

agating with incidence angles θj (relative to ẑ)
in the xz and yz planes, as depicted in Fig. 1a.
The induced vector potentials are given by
A1(t) = A1(cos θ1 cos[ω1t], 0, sin θ1 cos[ω1t]) and A2(t) =
A2(0,− cos θ2 cos[ω2(t+∆t)], sin θ2 cos[ω2(t+∆t)]), with
∆t controlling the phase shift between the modes.
We consider large angles of incidence θ ≈ π/2, to
compensate for the weaker effective coupling between
the radiation fields and σz in Eq. 1. In order to obtain a
finite area Aα we include a time-independent component
of the out-of-plane field, coming from a substrate or a
back gate, such that Ez = −∂tAz + Ez

0 (see Fig. 1c). In
our simulations, we set E1 = 0.1 V/nm and Ez

0 ≈ 2/3E1,
and tune E2 = rE1. This electric field scale induces
momentum displacements within the region of validity
of the low-energy description, eAj cos θj ≲ γ1/2vF [35].
We first set ω1 ≈ 0.8 THz and probe different fre-

quency ratios r = ω2/ω1. Fig. 2 shows the frequency
conversion rates P±

FC(k) =
1
2 (P

±
1 (k)− P±

2 (k)), obtained

for r = 1/
√
2 (a–b) and r = 2/3 (d–e), respectively. For
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FIG. 3. Valley-resolved frequency conversion I+
FC and dissi-

pation I+
diss in bilayer graphene as a function of Ω =

√
ω1ω2.

The incidence angles θj are scaled to keep cos θj/ωj constant,
using Fig. 2 as a reference point. The dashed line ∼ Ω2 corre-
sponds to the low-frequency limit of I+

FC, where non-adiabatic
corrections can be neglected. We contrast (a) incommensu-
rate and (b) commensurate frequency ratios r = 1/

√
2 and

2/3. For commensurate drives, frequency conversion over-
powers dissipative losses in the THz regime.

the latter case, we compute P±
FC(k) by averaging over ∆t.

Consistent with our analysis, electrons located within
Aα transfer energy between the modes at the quantized
rate 2hf1f2. Near the boundary, these electrons generate
substantial dissipation, Pdiss(k) =

∑
ξ(P

ξ
1 (k) + Pξ

2 (k)),
through the Landau-Zener absorption mechanism [Fig. 2
(c,f)]. Dissipation is strongly reduced for commensu-
rate driving due to the mechanism of Lissajous conver-
sion [31]: Only a few electrons on the boundary of Aα

are taken to the Weyl node by eA(t)/ℏ and hence gener-
ate Landau-Zener absorption. The anisotropic profile of
conversion power along the boundary (panels d-e) arises
from the distinct mode polarizations, which leads to a
significant k dependence on the mode most responsible
for pumping electrons between bands.

In Fig. 3 we plot the integrated conversion rate from
a single valley, I+

FC ≡ 1
2

(
I+
1 − I+

2

)
, and the correspond-

ing dissipated power I+
diss ≡ (I+

1 + I+
2 ) as a function of

frequency, with the same values of r as in Fig. 2. To
remove geometric factors from the analysis, we scale the
incidence angle θj such that cos θj/ωj remains constant,
ensuring that the surface Sα is unchanged (electrons are
only moving faster along it). In both cases, I+

FC initially
grows quadratically with frequency, following the scaling
of the conversion power quantum hf1f2L. This growth
is eventually arrested due to the expansion of the bound-
ary region of Aα, where electrons exhibit Landau-Zener
absorption. This leads to a sub-quadratic scaling and, be-
yond a critical frequency, a sharp decrease in conversion
power. Crucially, for commensurate driving on the THz
scale [Fig. 3(b)], Iξ

FC can vastly outperform dissipative
losses with τ of order 100− 1000 ps. In the Appendix we
estimate typical heating rates of order 0.1− 1 K/ps, po-
tentially allowing to perform topological frequency con-
version over many THz drive cycles.

To demonstrate the extension of topological frequency
conversion to other members of the RMG family, we sim-

FIG. 4. Frequency conversion power (a,b) and dissipation
(c,d) in valley ξ = −1 of rhombohedral trilayer graphene.
We consider quasi-periodic (a,c) and periodic (b,d) driving,
with parameters identical to Fig. 2. While electrons in the
quantized regions contribute 50% more to frequency conver-
sion due to Weyl nodes carrying charge L = 3, dissipation
through Landau-Zener absorption is also enhanced because
of the flatter low-energy dispersion.

ulate rhombohedral trilayer graphene irradiated by the
same bichromatic driving as above (Fig. 4). Our results
show a quantized plateau hosting topological frequency
conversion at the rate 3hf1f2 per electron (due to the
charge-3 Weyl nodes in this system). This gain compared
to bilayer graphene is however offset by a larger dissi-
pation rate, due to a flatter low-energy dispersion that
enhances the non-adiabatic region—a trend expected to
continue with increasing number of layers.
Outlook. We have shown that RMG can mediate

energy transfer between electromagnetic modes through
the mechanism of topological frequency conversion. The
two-dimensional nature of this platform results in an
anisotropic coupling to radiation, which in turn leads to
a strong dependence of conversion power on the incidence
angle and polarization of the drives.
Our results indicate that amplification from a single

valley can be achieved with commensurate frequencies
in the THz range and relaxation timescales τ of or-
der 100 ps. In order to achieve net conversion, how-
ever, time-reversal symmetry (which relates the two
valleys) must be broken. We speculate that valley-
imbalanced populations can be realized either sponta-
neously through electronic interactions at low temper-
atures [40–51], by interfacing with magnetic/spin-orbit
coupled materials [49, 52–57], or through photoexcita-
tions generated by circularly-polarized light [58–62]. Re-
cent experiments suggest that valley-imbalanced tran-
sient states can be long-lived (with valley lifetimes re-
ported in a large range from 1µs to 100ms in recent bi-
layer graphene quantum dot experiments with applied
magnetic fields [63, 64]). The investigation of such
schemes present an interesting opportunity for further
studies of frequency conversion phenomena.
Among the RMG family, we find Bernal bilayer

graphene to be most promising for achieving THz-scale
amplification, due to its steeper low-energy dispersion
which minimizes dissipation from Landau-Zener absorp-
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tion. With low-temperature mean free paths of order l ∼
10 µm [45–47] and typical Fermi velocities v ∼ 105 m/s
near charge neutrality, electronic relaxation timescales
τ ∼ l/v ∼ 100 ps appear within experimental reach. Pro-
vided that valley-imbalanced populations can be achieved
and controlled, our simulations indicate that THz fre-
quency conversion can overpower dissipative loss in this
regime and occur before excessive heating sets on.

Finally, topological frequency conversion in RMG re-
quires relatively strong electric fields and precise align-
ment of the polarization of the incoming radiation. We
speculate that both challenges can be addressed by fo-
cusing the beams using waveguides and antennas—such
structures, along with backgates of suitable geometry
providing the required constant electric fields, could be-
come part of a future frequency conversion device.
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tems., Phys. Rev. Lett. 131 2, 026901 (2023).

[16] A. Verdeny, J. Puig, and F. Mintert, Quasi-periodically
driven quantum systems, Z. Naturforsch. A 71, 897
(2016).

[17] I. Martin, G. Refael, and B. Halperin, Topological fre-
quency conversion in strongly driven quantum systems,
Phys. Rev. X 7, 041008 (2017).

[18] M. H. Kolodrubetz, F. Nathan, S. Gazit, T. Morimoto,
and J. E. Moore, Topological floquet-thouless energy
pump, Phys. Rev. Lett. 120, 150601 (2018).

[19] Y. Peng and G. Refael, Topological energy conversion
through the bulk or the boundary of driven systems,
Phys. Rev. B 97, 134303 (2018).

[20] F. Nathan, I. Martin, and G. Refael, Topological fre-
quency conversion in a driven dissipative quantum cavity,
Phys. Rev. B 99, 094311 (2019).

[21] P. J. D. Crowley, I. Martin, and A. Chandran, Topo-
logical classification of quasiperiodically driven quantum
systems, Phys. Rev. B 99, 064306 (2019).

[22] D. V. Else, W. W. Ho, and P. T. Dumitrescu, Long-
lived interacting phases of matter protected by multiple
time-translation symmetries in quasiperiodically driven
systems, Phys. Rev. X 10, 021032 (2020).

[23] E. Boyers, P. J. D. Crowley, A. Chandran, and A. O.
Sushkov, Exploring 2d synthetic quantum hall physics
with a quasiperiodically driven qubit, Phys. Rev. Lett.
125, 160505 (2020).

[24] Q. Chen, H. Liu, M. Yu, S. Zhang, and J. Cai, Dynam-
ical decoupling for realization of topological frequency
conversion, Phys. Rev. A 102, 052606 (2020).

[25] D. M. Long, P. J. D. Crowley, and A. Chandran, Nonadi-
abatic topological energy pumps with quasiperiodic driv-
ing, Phys. Rev. Lett. 126, 106805 (2021).

[26] P. J. D. Crowley, I. Martin, and A. Chandran, Half-
integer quantized topological response in quasiperiodi-
cally driven quantum systems, Phys. Rev. Lett. 125,
100601 (2020).

[27] F. Nathan, R. Ge, S. Gazit, M. Rudner, and M. Kolodru-
betz, Quasiperiodic floquet-thouless energy pump, Phys.
Rev. Lett. 127, 166804 (2021).

[28] S. Körber, L. Privitera, J. C. Budich, and B. Trauzettel,
Interacting topological frequency converter, Phys. Rev.
Research 2, 022023 (2020).

[29] F. Nathan, R. Ge, S. Gazit, M. Rudner, and M. Kolodru-
betz, Quasiperiodic floquet-thouless energy pump, Phys.
Rev. Lett. 127, 166804 (2021).

https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1103/PhysRevB.91.155422
https://api.semanticscholar.org/CorpusID:199687151
https://api.semanticscholar.org/CorpusID:199687151
https://api.semanticscholar.org/CorpusID:883197
https://api.semanticscholar.org/CorpusID:1652633
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevB.96.155118
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1038/s42254-020-0170-z
https://doi.org/10.1103/PhysRevB.99.195133
https://doi.org/10.1103/PhysRevB.99.195133
https://api.semanticscholar.org/CorpusID:220546458
https://api.semanticscholar.org/CorpusID:220546458
https://api.semanticscholar.org/CorpusID:255522790
https://doi.org/10.1515/zna-2016-0079
https://doi.org/10.1515/zna-2016-0079
https://doi.org/10.1103/PhysRevX.7.041008
https://doi.org/10.1103/PhysRevLett.120.150601
https://doi.org/10.1103/PhysRevB.97.134303
https://doi.org/10.1103/PhysRevB.99.094311
https://doi.org/10.1103/PhysRevB.99.064306
https://doi.org/10.1103/PhysRevX.10.021032
https://doi.org/10.1103/PhysRevLett.125.160505
https://doi.org/10.1103/PhysRevLett.125.160505
https://doi.org/10.1103/PhysRevA.102.052606
https://doi.org/10.1103/PhysRevLett.126.106805
https://doi.org/10.1103/PhysRevLett.125.100601
https://doi.org/10.1103/PhysRevLett.125.100601
https://doi.org/10.1103/PhysRevLett.127.166804
https://doi.org/10.1103/PhysRevLett.127.166804
https://doi.org/10.1103/PhysRevResearch.2.022023
https://doi.org/10.1103/PhysRevResearch.2.022023
https://doi.org/10.1103/PhysRevLett.127.166804
https://doi.org/10.1103/PhysRevLett.127.166804


6

[30] D. Malz and A. Smith, Topological two-dimensional flo-
quet lattice on a single superconducting qubit, Phys. Rev.
Lett. 126, 163602 (2021).

[31] F. Nathan, I. Martin, and G. Refael, Topological fre-
quency conversion in weyl semimetals, Phys. Rev. Res.
4, 043060 (2022).

[32] K. Schwennicke and J. Yuen-Zhou, Enantioselective topo-
logical frequency conversion, J. Phys. Chem. Lett. 13,
2434 (2022).

[33] F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Elec-
tronic states and landau levels in graphene stacks, Phys.
Rev. B 73, 245426 (2006).

[34] H. Min and A. H. MacDonald, Electronic structure of
multilayer graphene, Prog. Theor. Phys. Suppl. 176, 227
(2008).

[35] For |k| ≳ γ1/2ℏvf , the dispersion crosses over to linearly-
dispersing dirac cones and the eigenstates have support
beyond the sublattices a1, bl.

[36] I. Esin, Étienne Lantagne-Hurtubise, F. Nathan, and
G. Refael, Quantum geometry and bounds on dis-
sipation in slowly driven quantum systems (2023),
arXiv:2306.17220 [quant-ph].

[37] The term Weyl node normally refers to such nodal points
in the parameter space comprising the crystal momenta
in 3D reciprocal space. Here we use the term “Weyl node”
in a generalized sense to describe gap closings as a func-
tion of any three parameters.

[38] In a simple relaxation-time approximation, ρ̄ξn(k) is given
by the time-averaged value of fβ([εn(k, t) − µ]) with
fβ(E) the Fermi-Dirac distribution [31]; we expect more
genral dissipation mechanisms will lead to qualitatively
similar distributions.

[39] J. Jung and A. H. MacDonald, Accurate tight-binding
models for the π bands of bilayer graphene, Phys. Rev.
B 89, 035405 (2014).

[40] J. Jung, M. Polini, and A. H. MacDonald, Persistent cur-
rent states in bilayer graphene, Phys. Rev. B 91, 155423
(2015).

[41] Y. Shi, S. Xu, Y. Yang, S. Slizovskiy, S. V. Morozov, S.-
K. Son, S. Ozdemir, C. Mullan, J. Barrier, J. Yin, A. I.
Berdyugin, B. A. Piot, T. Taniguchi, K. Watanabe, V. I.
Fal’ko, K. S. Novoselov, A. K. Geim, and A. Mishchenko,
Electronic phase separation in multilayer rhombohedral
graphite, Nature 584, 210 (2020).

[42] H. Zhou, T. Xie, A. Ghazaryan, T. Holder, J. R. Ehrets,
E. M. Spanton, T. Taniguchi, K. Watanabe, E. Berg,
M. Serbyn, and A. F. Young, Half- and quarter-metals in
rhombohedral trilayer graphene, Nature 598, 429 (2021).

[43] A. Kerelsky, C. Rubio-Verdú, L. Xian, D. M. Kennes,
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Topological frequency conversion in slowly-driven
two-level systems

In this Appendix we review the physical mechanism of
topological frequency conversion, following the approach
in Ref. [31], and its application to rhombohedral multi-
layer graphene. We consider a single valence-band elec-
tron at crystal momentum k and in valley ξ, and omit
these indices below for notational simplicity.

We start with the general expression for the instan-
taneous rate of work P (t) done on the system from the
driving fields,

P (t) = ⟨ψ(t)|∂tH(t)|ψ(t)⟩, (10)

where H(t) = d(t) · σ is the driven two-level Hamilto-
nian parametrized by Eq. 2 and |ψ(t)⟩ is the instanta-
neous state of the electron. As discussed below, |ψ(t)⟩
differs slightly from the instantaneous ground state of
H(t) due to diabatic corrections. Expressing the corre-
sponding Bloch vector as v(t) = ⟨ψ(t)|σ|ψ(t)⟩, we have

P (t) = v(t) · ∂td(t). (11)

We now rewrite the time-dependent Hamiltonian
Bloch vector d(t) as a function of the phases of the
two modes, ϕ1 = ω1t and ϕ2 = ω2[t + ∆t], such that
d(t) = d(ω1t, ω2t+∆ϕ), where ∆ϕ ≡ ω2∆t. Then

∂td(t) = [ω1∂ϕ1 + ω2∂ϕ2 ]d(ω1t, ω2t+∆ϕ), (12)

with the phase difference ∆ϕ = ω2∆t. Inserting the
above into Eq. (11), we recognize the contribution v ·
ωj∂ϕj

d as the rate of work done by mode j. The time-
averaged conversion rate from mode 1 to mode 2 is given
by PFC = P1 = −P2 (neglecting dissipation), such that

PFC = ω1 lim
T→∞

∫ T

0

dt

T
v(t) · ∂ϕ1d(t). (13)

To evaluate the integrand, we note that for quasi-
adiabatic driving and slow relaxation, the time-

dependent Bloch vector of the system v(t) can be ex-
pressed as

v = d̂+
ℏ

2|d|
d̂× ∂td̂+O

(
ω2

|d2|

)
, (14)

where the second term on the r.h.s. denotes the leading-
order diabatic correction and is ultimately responsible for
topological frequency conversion. The result Eq. 14 can
be derived from a sequence of rotating frame transfor-
mations, see e.g. Refs. [36, 65]. We can thus express v
explicitly in terms of the phases ϕ1 and ϕ2,

v = d̂+
ℏ

2|d̂|
d̂× [ω1∂ϕ1 + ω2∂ϕ2 ]d̂. (15)

Plugging this result into Eq. (13) and using ∂ϕid =

d̂∂ϕi
|d|+ |d|∂ϕi

d̂, along with d̂ · ∂ϕi
d̂ = 1

2∂ϕi
(d̂ · d̂) = 0,

we find

v · ∂ϕ1
d = ∂ϕ1

|d|+ ℏ
2
(d̂× [ω1∂ϕ1

+ω2∂ϕ2
]d̂) · ∂ϕ1

d̂ (16)

where we also used that (d̂ × ∂id̂) · d̂ = 0. Next, we
use the identity a · (b × c) = c · (a × b) along with the
antisymmetry of the cross product to find

v · ∂ϕ1
d = ∂ϕ1

|d|−ℏω2

2
d̂ · (∂ϕ1

d̂× ∂ϕ2
d̂). (17)

We compute PFC by averaging Eq. 17 over time. To
this end, we restore explicit time (or phase) dependence
and note that v(ϕ1, ϕ2) · ∂ϕ1

d(ϕ1, ϕ2) is 2π-periodic in
its arguments. For incommensurate frequencies, time-
averaging is thus equivalent to phase-averaging:

lim
T→∞

∫ T

0

dt

T
[v · ∂ϕ1

d](ω1t, ω2t+∆ϕ)

=

∫ 2π

0

d2ϕ

4π2
[v · ∂ϕ1

d](ϕ1, ϕ2). (18)

For commensurate frequencies, P (ω1t, ω2t + ∆ϕ) is not
identical to phase-averaging becuase the system only ex-
plores a one-dimensional, closed contour on the “phase
Brillouin zone” ΦBZ spanned by ϕ1, ϕ2. However, we
recover the incommensurate driving result when also av-
eraging PFC over the phase difference between the two
modes ∆ϕ. (This procedure was used in our numerical
simulations for commensurate driving presented in the
main text.)
Finally, using that

∫
d2ϕ∂ϕ1 |d| = 0 due to periodic

boundary conditions, we obtain the final result for the
time-averaged (and phase-averaged for commensurate
drives) frequency conversion power,

PFC = −ℏω1ω2

2π

∫ 2π

0

dϕ1ϕ2
4π

d̂ · (∂ϕ1
d̂× ∂ϕ2

d̂). (19)

Using ℏω1ω2

2π = hf1f2, we obtain the result quoted in
Eq. 4 of the main text.

https://doi.org/10.1038/s41567-023-02334-7
https://arxiv.org/abs/2402.16691
https://arxiv.org/abs/2402.16691
https://doi.org/10.1098/rspa.1987.0131
https://doi.org/10.1098/rspa.1987.0131
https://doi.org/10.1557/mrs.2012.203
https://doi.org/10.1557/mrs.2012.203
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Scaling of conversion power and dissipation with
frequency

In this Appendix we examine how the profile of fre-
quency conversion and dissipation for electrons evolves
as a function of frequency. As explained in the main
text, we increase the driving frequencies ωj in tandem
with the incidence angles of the modes, θj , in such a way
that cos θj/ωj remains constant. This ensures that the
surface Sα along which the trajectories in α-space tra-
versed by electrons remain fixed. In our analysis, we keep
the ratio of frequencies r = ω1/ω2 fixed, and vary their
geometric mean Ω =

√
ω1ω2.

We contrast incommensurate (r = 1/
√
2, shown in

Fig. 5) and commensurate (r = 2/3, shown in Fig. 6)
driving. In both cases, the quantized conversion plateau
gradually shrinks with Ω, due to the expansion of BZ
areas dominated by non-adiabatic effects including, in
particular, Landau-Zener absorption. The energy dissi-
pation rate increases roughly linearly with frequency, and
therefore becomes progressively less visible when normal-
ized by the quantum of frequency conversion hf1f2.
Periodic driving (Fig. 6) possesses two main advan-

tages over quasi-periodic driving (Fig. 5), as discussed in
the main text: frequency conversion persists at higher
frequencies (panels a–e), and the total dissipated power
is smaller (panels f–j). As a result, commensurate driv-
ing supports much stronger net conversion at THz-scale
frequencies—as demonstrated in Fig. 3 of the main text.

Estimate of dissipation rate from nonzero chemical
potential

Here we estimate the contribution to dissipation from a
nonzero chemical potential µ—that is, from the presence
of an equilibrium Fermi surface. We consider the regime
where the characteristic relaxation time is much larger
than the oscillation period of the driving modes, ωτ ≫ 1
and neglect the effects of the perpendicular displacement
field on the band dispersion. We moreover assume µ to
be small, working to leading order in µ. Without loss of
generality, we consider the case where µ > 0 (negative
µ is related to our results below through particle hole
symmetry).

Eq. (8) of the main text implies that the dissipation
rate is given by

ηdiss(t) =
⟨E(t)⟩ − ⟨Eeq(t)⟩

τ
(20)

where

⟨E(t)⟩ =

∫
d2k

4π2
Tr[ρ̂(k, t)Ĥ(k, t)], (21)

⟨Eeq(t)⟩ =

∫
d2k

4π2
Tr[ρ̂eq(k, t)Ĥ(k, t)]. (22)

Here ·̂ indicate operators acting on second-quantized
Bloch space.

Since Ĥ(k, t) = Ĥ(k + eA(t)/ℏ), we have ρ̂eq(k, t) =
ρ̂eq(k+ eA(t)/ℏ). Thus, a shift of integration variable in
Eq. (22), k → k + eA(t)/ℏ shows that ⟨Eeq(t)⟩ is time-
independent and given by

Eeq =
∑
n

∫
d2k′

4π2
fβ(εn(k

′)− µ)εn(k
′). (23)

where fβ(ε) = 1/(1 + eβε) denotes the Fermi-Dirac dis-
tribution and εn(k) denote the energies of H(k, t) for
n = 0, 1. In the above we used k′ for the integration
variable, to make the distinction between “stationary”
and “comoving” wavevectors clear.

The goal of this Appendix is to compute the contri-
bution to dissipation from intra-band scattering. Inter-
band scattering in the form of Landau-Zener absorption
is discussed in the main text and arises from nonadia-
batic effects. We can hence isolate the dissipation from
intra-band scattering by assuming adiabatic dynamics in
our treatment [31].

Assuming adiabatic dynamics, and working in the
limit ωτ ≫ 1, ρ(k, t) is diagonal in the eigen-
basis of H, with stationary eigenvalues pn(k) =

limT→∞
1
T

∫ T

0
dtfβ(εn(k+ eA(t)/ℏ) [31]. As a result,

⟨E(t)⟩ =
∑
n

∫
d2k

4π2
pn(k)εn(k+ eA(t)/ℏ) (24)

The average dissipation from intra-band relaxation is
given by

η̄mr =
1

τ
(Ē − Eeq), (25)

with Ē ≡ limT→∞
∫ T

0
dt
T ⟨E(t)⟩ denoting the average to-

tal energy of all electrons in the system. We compute
this quantity by inserting the expression for pn(k) in the
definition for Ē. Using a change integration variables,
k → k− eA(t)/ℏ, we obtain

Ē =
∑
n

∫
d2k

4π2
p̄i(k)εn(k) (26)

where
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FIG. 5. Scaling of the (time-averaged) frequency conversion power P+
FC (panels a–e), and the corresponding dissipated power

P+
diss (panels f–j), as a function of the geometric mean of incident frequencies, Ω =

√
ω1ω2 (increasing from left to right). Color

bars are expressed in units of the power quantum hf1f2. We consider incommensurate drives with r = 1/
√
2.

FIG. 6. Scaling of the (time-averaged) frequency conversion power P+
FC (panels a–e), and the corresponding dissipated power

P+
diss (panels f–j), as a function of the geometric mean of incident frequencies, Ω =

√
ω1ω2 (increasing from left to right). Color

bars are expressed in units of the power quantum hf1f2. We consider commensurate drives with r = 2/3.

p̄n(k) = lim
Ti→∞

∫ T1

0

dt1
T1

∫ T2

0

dt2
T2
fβ

(
εn

(
k+

e

ℏ
[A(t1)−A(t2)]

)
− µ

)
(27)

Note that pi(k) is obtained from effectively averag-
ing the equilibrium distribution fβ(εi(k) − µ) over k-
points reached by the k-displacements in { e

ℏ [A(t1) −
A(t2)]|t1, t2 ∈ [0,∞)}. Using this result, we obtain

η̄mr =
1

τ

∑
n

∫
d2k

4π2
εn(k)[p̄n(k)− fβ(εn − µ)] (28)

To estimate η̄mr, we approximate p̄0(k) = 1, and as-
sume the valence band carriers to be uniformly smeared
over a disk of radius ∆k where ∆k = 3eA∥/2ℏ with A∥
denoting the characteristic scale of the in-plane vector
potential from the drive (recall that we consider the limit
of small µ, where kF in equilibrium is much smaller than
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∆k). This results in p̄1(k) =
k2
F

∆k2 θ(∆k − |k|) with θ de-
noting the step function. The estimate of p̄1(k) is based
on the fact that p̄(k) has maximum at |k| = 0, decreases
monotonically with |k|, and vanishes for |k| ≥ 2eA∥/ℏ.
We finally assume fβ(ε− µ) ∝ θ(−(ε− µ)).
Using the above assumptions along with ε1(k) = γLk

L

and ε0(k) = −γLkL, we obtain

η̄mr ≈
∫
d2k

4π2

γL
τ
kL

[
θ(∆− |k|) k

2
F

∆k2
− θ(kF − |k|)

]
(29)

Going to polar coordinates, k = k(cosϕ, sinϕ), we obtain

η̄mr ≈
γL
2πτ

∫ ∞

0

dk kL+1

[
θ(∆k − k)

k2F
∆k2

− θ(kF − k)

]
(30)

Evaluating the integral and using µ = γLk
L
F we find

η̄mr ≈
µk2F

2πτ(L+ 2)
[(∆k/kF)

L − 1] (31)

Using our estimate ∆k ≈ 3eA∥/2ℏ, we thus obtain

η̄mr ≈
(µ/γL)

2/L

2πτ(L+ 2)

[
γL

(
3eA∥

2ℏ

)L

− µ

]
. (32)

Working to leading order in µ yields

η̄mr ≈ µ2/L γ
2/L−1
L

2πτ(L+ 2)

(
3eA∥

ℏ

)L

(33)

We next use A∥ ∼ 2A cos θ ∼ 2E cos θ/ω with A and E
denoting the characteristic amplitude of the total vector
potential and electric field from each drive, respectively,
leading to

η̄mr ≈
µ2/Lγ

1−2/L
L

2πτ(L+ 2)

(
3eE cos θ

ℏω

)L

x (34)

For L = 2, this expression is particularly simple:

η̄mr ≈
µ

8πτ

(
3eE cos θ

ℏω

)2

(L = 2), (35)

We now estimate the dissipation caused by the Fermi
surface from this expression, and compare with numer-
ical simulations carried out at non-zero µ in Figs. 7, 8.
Note that Fig. 8 shows the total dissipated power, includ-
ing both Landau-Zener absorption and momentum relax-
ation due to the presence of a Fermi surface. We expect
that dissipation strength at µ = 0 serves as a good proxy

for the characteristic rate of Landau-Zener absorption,
while the difference in dissipation to the µ = 0 value,
I+
diss(µ)−I+

diss(0) serves as a reasonable estimate for the
momentum-relaxation induced dissipation, ηmr.

Using frequencies ω ∼ 0.68 THz, electric fields E ∼
0.1 V/nm, relaxation time τ = 500 ps, incidence angles
θj−π/2 ≈ 0.1◦, our estimate in Eq. (35) yields ηmr ≈ 0.5
W/mm2 for µ ≈ 40 meV. This rough estimate agrees
reasonably well with the numerical simulations shown in
Fig. 8, which suggest ηmr ∼ 2 W/mm2.

This analysis also predicts that Fermi-surface-induced
dissipation stays constant when scaling up the frequen-
cies in conjunction with the incidence angle such that
cos θj/ωj remains fixed, as in Fig. 3 of the main text.
We also verify this scaling in Fig. 8. While the µ = 0 dis-
sipation increases with frequency due to more prominent
Landau-Zener tunneling, the Fermi surface contribution
(which turns on with µ) is on the same scale and roughly
independent of frequency. Note that we consider incom-
mensurate frequencies; for commensurate frequencies, we
expect the dissipation from Landau-Zener absorption to
be further suppressed as demonstrated in Fig. 3.

Estimate of the heating rate from driving

We finally estimate the heating rate from the driv-
ing configuration we consider in the main text, which
will limit the lifetime of topological frequency conver-
sion. From the numerical simulations in Fig. 3 we ex-
tract a typical scale for the dissipation intensity Idiss ∼
40 W/mm2 for commensurate driving with frequencies
fi ∼ 1 THz and τ = 500 ps, accounting for dissipa-
tion from both valleys. The heat capacity of graphene
in the temperature range T ∼ 10 − 100K is dominated
by phonons and of order C ∼ (0.1− 1) J

Kmol [66]. Us-
ing the density of carbon atoms of 2/Auc with the unit

cell area Au.c. = 5.2 Å
2
yields the heat capacity per

unit area c ∼ 10−11 − 10−12 J
Kmm2 . We use this value

to estimate the heat capacity for bilayer graphene as
2c ∼ 2×(10−11−10−12) J

Kmm2 , resulting in a heating rate

given by η = Idiss
2c ∼ 1011 − 1012 K/s. The phonon tem-

perature in irradiated bilayer graphene is thus expected
to increase by a Kelvin for every 1− 10 ps. This should
allow for multiple THz-frequency cycles before the tem-
perature increase of phonons causes the electronic life-
time τ to decrease substantially—thus resulting in the
gradual disappearance of frequency conversion.
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FIG. 7. Scaling of the (time-averaged) frequency conversion power P+
FC (panels a–d), and the corresponding dissipated power

P+
diss (panels e–h), as a function of the chemical potential µ. Color bars are expressed in units of the power quantum hf1f2.

We consider incommensurate frequencies with ratio r = 1/
√
2 and parameters identical to those used for Fig. 2a–c in the

main text. As the chemical potential is increased, two trends are observed. First, the quantization of the frequency conversion
power is gradually lost due to the opposite contribution of the conduction band (panels a–d). Second, the dissipation profile
acquires a diffuse contribution from the underlying Fermi surface (panels e–h), which coexists with the sharp “ring of fire” due
to Landau-Zener absorption.

0.68 THz

1.3 THz

2.6 THz

Ω

FIG. 8. Scaling of the valley-resolved frequency conversion intensity I+
FC (left) and the corresponding dissipated power I+

diss

(right), as a function of the chemical potential µ and different frequencies Ω =
√
ω1ω2 as in Figs. 2 and 7. The data for the

lowest Ω are obtained by integrating the power distributions shown in Fig. 7 (a-d) and (e-h), respectively.
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