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Quantum master equations are commonly used to model the dynamics of open quantum systems,
but their accuracy is rarely compared with the analytical solution of exactly solvable models. In this
work, we perform such a comparison for the damped Jaynes-Cummings model of a qubit in a leaky
cavity, for which an analytical solution is available in the one-excitation subspace. We consider
the non-Markovian time-convolutionless master equation up to the second (Redfield) and fourth
orders as well as three types of Markovian master equations: the coarse-grained, cumulant, and
standard rotating-wave approximation (RWA) Lindblad equations. We compare the exact solution
to these master equations for three different spectral densities: impulse, Ohmic, and triangular.
We demonstrate that the coarse-grained master equation outperforms the standard RWA-based
Lindblad master equation for weak coupling or high qubit frequency (relative to the spectral den-
sity high-frequency cutoff ωc), where the Markovian approximation is valid. In the presence of
non-Markovian effects characterized by oscillatory, non-decaying behavior, the TCL approximation
closely matches the exact solution for short evolution times (in units of ω−1

c ) even outside the regime
of validity of the Markovian approximations. For long evolution times, all master equations perform
poorly, as quantified in terms of the trace-norm distance from the exact solution. The fourth-order
time-convolutionless master equation achieves the top performance in all cases. Our results highlight
the need for reliable approximation methods to describe open-system quantum dynamics beyond
the short-time limit.

I. INTRODUCTION

The study of open quantum systems presents both con-
ceptual and technical challenges due to the complexity
and high dimensionality of the environment, or bath.
Exact analytical solutions describing the joint system-
bath evolution are rarely attainable, necessitating the
development of approximation methods to capture the
reduced system dynamics [1–3]. To address this chal-
lenge, various approaches have been developed to de-
rive master equations that describe the system’s evolu-
tion using the reduced density matrix, the best known of
which is the Markovian Lindblad [or Gorini-Kossakowski-
Lindblad-Sudharshan (GKLS)] equation [4, 5]. Numer-
ous other master equations have been derived, some of
which include non-Markovian effects. In some cases, rig-
orous error bounds have been derived that quantify the
deviation between the solutions of known master equa-
tions and the exact solution [6]. However, these tend to
be rather loose. Hence, it is desirable to compare the
predictions of various master equations to non-trivial ex-
amples of exactly solvable open-system problems. This
has been done, e.g., for the central spin model [7, 8].

This is the goal of the present work, where we study
the damped Jaynes-Cummings model of a qubit inside a
leaky cavity [9]. In this model, the qubit system interacts
with the cavity electromagnetic field through the dipole
approximation [10]. The qubit decay rate can be associ-
ated with experimentally measurable parameters such as
the dipole moment and the energy gap [11]. Experimen-

tal proposals for simulating the spin-boson model with
an Ohmic spectral density using superconducting circuits
have been previously discussed [12–14]. We solve this
model analytically assuming the zero temperature limit
and the 1-excitation subspace of the joint qubit-cavity
system, where the cavity is populated by at most a sin-
gle photon. This is similar to previous studies assuming
a Lorentzian spectral density [15, 16], but we do this for
three different spectral densities: impulse, Ohmic, and
triangular (formally defined below). These choices are
motivated by experiments involving condensed matter
systems such as superconducting qubits interacting with
bosonic modes [17], rather than the original quantum-
optical setting of an atom in a cavity that inspired the
damped Jaynes-Cummings model. We then compare the
exact solution to a number of different Markovian and
non-Markovian master equations. We find that in the
weak-coupling limit and for large qubit frequencies rela-
tive to the spectral density cutoff, where the Markovian
approximation holds, the Lindblad equation derived us-
ing the coarse-graining approach [18] is more accurate
than the standard rotating wave approximation based
Lindblad equation. In the non-Markovian regime, the
time-convolutionless master equation proves to be accu-
rate in approximating the exact solution for relatively
short evolution times. All the approximation methods
we consider struggle at long evolution times.

This paper is structured as follows. In Section II, we
introduce the damped Jaynes-Cummings model and de-
rive the exact solutions for all three spectral densities. In
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Section III, we explore various Markovian approximation
methods in the context of the damped Jaynes-Cummings
model. We begin with the coarse-grained Lindblad equa-
tion (CG-LE) in Section IIIA, then the cumulant LE
(C-LE) in Section III B, and finally the commonly used
rotating-wave approximation (RWA)-based LE (RWA-
LE, Section III C). We apply the time-convolutionless
(TCL) approach to second (TCL2, also known as the
Redfield equation) and fourth orders (TCL4) in Sec-
tion IIID. Section IV is the heart of this work, where we
present comparisons between the exact solutions and the
various approximation methods. This includes a com-
parison of the exact solution with Markovian and TCL
approximations for the Ohmic spectral density, a com-
parison of the exact solution with the Markovian CG-LE
and RWA-LE, and finally a comparison with the non-
Markovian TCL models for the impulse and triangu-
lar spectral densities. We summarize our findings and
present our conclusions in Section V. A variety of techni-
cal details that complement the main text are presented
in the Appendices.

Readers who are already familiar with the different
types of master equations may choose to skip Section III.
All our key analytical results are conveniently accessible
via Table I, which provides the corresponding equation
numbers. Readers who are interested primarily in the
results of the comparison between the exact model re-
sults and the various master equations may choose to
skip ahead to Section IV and focus on the graphs pre-
sented there.

II. EXACT DYNAMICS

A. General open system setup

The total Hamiltonian of the system and the bath is
given by

H = H0 +HSB , (1)

where H0 = HS ⊗ IB + IS ⊗HB with HS and HB being
the pure system and bath Hamiltonians, respectively, I
the identity operator.

We move to the interaction picture, where all operators
transform according to:

X 7→ X̃(t) = eiH0tXe−iH0t . (2)

The dynamics of the total system in the interaction
picture are governed by the Liouville-von Neumann equa-
tion:

dρ̃SB

dt
= −i[H̃SB , ρ̃SB ] , (3)

where ρ̃SB is the density matrix of the total system acting
on the Hilbert space HSB = HS⊗HB . The joint system-
bath state is thus given by:

ρ̃SB(t) = Ũ(t)ρ̃SB(0)Ũ
†(t) , (4)

where the unitary evolution operator is:

Ũ(t) = T+ exp

(
−i
∫ t

0

H̃SB(t
′)dt′

)
. (5)

and T+ denotes Dyson time-ordering.
The solution can equivalently be expressed as a Dyson

series by integrating and iterating Eq. (3):

ρ̃SB(t) = ρSB(0) +

∞∑
n=1

(−i)n
∫ t

0

dt1

∫ t1

0

dt2 · · · (6)∫ tn−1

0

dtn[H̃SB(t1), [H̃SB(t2), ...[H̃SB(tn), ρSB(0)]]....] .

The state of the system is given by the reduced density
operator:

ρ̃(t) = TrB [ρ̃SB(t)] , (7)

where TrB denotes the partial trace over the bath state.

B. Model of a qubit in a leaky cavity

We analyze the dynamics of a single qubit inside a
leaky cavity, coupled to a bosonic bath at zero tem-
perature. By working in the single-excitation subspace
this model becomes analytically solvable, and we closely
follow the solution method of Refs. [10, 15] (see also
Ref. [2]). However, we consider different bath spectral
densities.

The system Hamiltonian, HS , can be expressed as

HS = Ω0|1⟩⟨1| = Ω0σ+σ− . (8)

Here, σ+ = |1⟩⟨0| and σ− = |0⟩⟨1| are the raising and
lowering operators for the qubit, respectively. The qubit
ground state is |0⟩ with energy 0 and its excited state is
|1⟩ with energy Ω0. The bath Hamiltonian, HB , is given
by:

HB =
∑
k

ωkb
†
kbk =

∑
k

ωknk . (9)

Here, bk and b†k represent the annihilation and creation
operators for the bosonic modes and nk is the number op-
erator for mode k with energy ωk (we set ℏ = 1 through-
out). The qubit-cavity interaction Hamiltonian is

HSB = σ+ ⊗B + σ− ⊗B† , (10)

where B =
∑

k gkbk. Here the gk’s are coupling constants
with dimensions of energy. Introducing complex phases
in the couplings can model chirality [19].

In the interaction picture, the interaction Hamiltonian
HSB becomes:

H̃SB(t) = σ+(t)⊗B(t) + σ−(t)⊗B†(t) (11a)

σ±(t) = e±iΩ0tσ± , B(t) =
∑
k

e−iωktgkbk . (11b)
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This model is not analytically solvable in general, but it
is when we make the assumption that the cavity supports
at most one photon. We thus consider the initial joint
system-bath state to be:

|ϕ(0)⟩ = c0(0) |ψ0⟩+ c1(0) |ψ1⟩+
∑
k

ck(0) |φk⟩ , (12)

where

|ψ0⟩ = |0⟩S ⊗ |v⟩B (13a)

|ψ1⟩ = |1⟩S ⊗ |v⟩B (13b)

|φk⟩ = |0⟩S ⊗ |k⟩B . (13c)

Here |v⟩B denotes the vacuum state of the cavity, and

|k⟩B = b†k |v⟩B = |01, · · · , 0k−1, 1k, 0k+1, · · ·⟩ denotes the
state with one photon in mode k. The subspace spanned
by {|ψ0⟩ , |ψ1⟩ , |φk⟩} is referred to as the 1-excitation sub-
space, and is conserved under the Hamiltonian in Eq. (1).
I.e., the joint state remains in the following form for all
time t:

|ϕ(t)⟩ = c0(t) |ψ0⟩+ c1(t) |ψ1⟩+
∑
k

ck(t) |φk⟩ , (14)

subject to the normalization condition:

|c0(t)|2 + |c1(t)|2 +
∑
k

|ck(t)|2 = 1 . (15)

The problem remains solvable with a more general bath
state assuming interaction with a continuous-mode laser
field [20].

We assume that initially there are no photons in the
cavity [10], hence:

ck(0) = 0 . (16)

We introduce a spectral density J(ω) via:∑
k

|gk|2e−iωkt =

∫ ∞

0

dωJ(ω)e−iωt . (17)

The continuum of bath spectral modes is a necessary con-
dition for irreversibility; a discrete spectrum necessarily
results in recurrences.

To complete the model specification, we consider three
different bath spectral densities: an impulse function cen-
tered at the cutoff frequency ωc, an Ohmic function with
the same cutoff frequency, and a triangular spectral den-
sity with a sharp cutoff, namely:

J1(ω) = |g|2δ(ω − ωc) (18a)

J2(ω) = ηωe−ω/ωc (18b)

J3(ω) = ηωΘ(ωc − ω) , (18c)

where the Heaviside function obeys Θ(x) = 0 for x < 0
and Θ(x) = 1 for x ≥ 0. In the impulse spectral den-
sity J1(ω), the bath has a singular response at the cutoff

frequency, characterized by a Dirac delta function. The
Ohmic spectral density J2(ω) is ubiquitous in the study of
the spin-boson problem [21]. The dimensionless param-
eter η in the Ohmic spectral density serves as a measure
of the coupling strength between the bath and the sys-
tem, while the ratio of the qubit frequency to the cutoff
frequency measures the ratio of the photonic energy gap,
which is the energy between the ground state and the
excited state, and the number of frequency modes be-
fore reaching the cutoff frequency. The triangular spec-
tral density J3(ω) is a sharp-cutoff approximation to the
Ohmic spectral density, which we introduce to simplify
analytical calculations. The case of a Lorentzian spectral
density was studied in Ref. [2].

C. Exact Solution

Considering the entire qubit-cavity system as closed,
its evolution is governed by the Schrödinger equation,
which can be expressed as [see Appendix A]:

i∂t |ϕ(t)⟩ =
∑
k

gkck(t)e
i(Ω0−ωk)t |ψ1⟩

+
∑
k

g∗kc1(t)e
−i(Ω0−ωk)t |φk⟩ . (19)

Multiplying this equation by ⟨ψ1| or ⟨φk|, we obtain the
following set of differential equations for the amplitudes:

ċ0(t) = 0 (20a)

ċ1(t) = −i
∑
k

gkck(t)e
i(Ω0−ωk)t (20b)

ċk(t) = −ig∗kc1(t)e−i(Ω0−ωk)t (20c)

Integrating, we arrive at:

c0(t) = c0(0) (21a)

ck(t) = −i
∫ t

0

dt′g∗kc1(t
′)e−i(Ω0−ωk)t

′
(21b)

Let us define the memory kernel f(t) as the Fourier trans-
form of the spectral density, shifted by the qubit fre-
quency Ω0:

f(t) =

∫ ∞

0

dωJ(ω)ei(Ω0−ω)t . (22)

Substituting Eq. (21b) into Eq. (20b), we obtain:

ċ1(t) = −
∫ t

0

dt′f(t− t′)c1(t
′) , (23)

which can be solved via a Laplace transform since the
RHS is a convolution. Denoting the Laplace transform
Lap of a general function g(t) by ĝ(s), and recalling that
Lap[ġ(t)] = sĝ(s)− g(0), we have:

ĉ1(s) =
c1(0)

s+ f̂(s)
, (24)
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and c1(t) is then found via the inverse Laplace transform
of Eq. (24).

Next, in order to determine the interaction picture sys-
tem state by tracing out the bath state, we can utilize
Eq. (14) and find:

ρ̃(t) = TrB (|ϕ(t)⟩⟨ϕ(t)|) =
(

1− |c1|2 c0c
∗
1(t)

c∗0c1(t) |c1|2
)
, (25)

so that:

˙̃ρ(t) =

(
−∂t|c1|2 c0ċ

∗
1(t)

c∗0ċ1(t) ∂t|c1|2
)
. (26)

At this point, it is straightforward to verify that the dy-
namics are time-local,

˙̃ρ = KS(t)ρ̃ , (27)

with a generator given by:

KS(t)ρ̃(t) = − i

2
S(t)[σ+σ−, ρ̃(t)]

+ γ(t)

(
σ−ρ̃(t)σ+ − 1

2
{σ+σ−, ρ̃(t)}

)
, (28)

provided we identify:

S(t) = −2 Im

(
ċ1(t)

c1(t)

)
(29a)

γ(t) = −2Re

(
ċ1(t)

c1(t)

)
(29b)

The rate γ(t) can be negative, corresponding to non-
Markovian dynamics according to the CP non-divisibility
criterion [22].

We focus on the excited state population and the co-
herence, which evolve in time according to:

ρ̃11(t) = |c1(t)|2 = |c1(0)|2 exp
{
−
∫ t

0

γ(t′)dt′
}

(30a)

ρ̃01(t) = c0c
∗
1(t) = c0c

∗
1(0) exp

{
1

2

∫ t

0

(iS(t′)− γ(t′)) dt′
}
.

(30b)

Details of the derivation above can be found in Ap-
pendix A.

We next discuss the solutions for the three spectral
densities of Eq. (18). In each case, we express the solution
in terms of c1(t) or its Laplace transform.

D. Exact solution for three different spectral
densities

1. J1 = |g|2δ(ω − ωc)

As a toy example, we consider the impulse bath spec-
tral density, which replaces the continuum of bath modes

with a single mode. Consequently, we do not expect ir-
reversibility and indeed, the solution is oscillatory. To
demonstrate this, we circumvent the Laplace transform
and instead use Eq. (22) to write:

f(t) = |g|2ei(Ω0−ωc)t . (31)

As a result, Eq. (23) becomes:

ċ1(t) = −|g|2
∫ t

0

dt′ei(Ω0−ωc)(t−t′)c1(t
′) . (32)

Differentiating both sides yields:

c̈1(t)− i(Ω0 − ωc)ċ1(t) + |g|2c1(t) = 0 , (33)

whose solution is:

c1(t)

c1(0)
= ei(Ω0−ωc)t/2

(
cos

(
t

2
δ

)
− i

Ω0 − ωc

δ
sin

(
t

2
δ

))
,

(34)

where δ is a real number:

δ =
√

(Ω0 − ωc)2 + 4g2 . (35)

Since the solution is perfectly periodic, any master equa-
tion approximation with a non-trivial dissipator term
will deviate from this exact solution for sufficiently long
times. Note that the excited state population |c1(t)|2 ∈
|c1(0)|2[ (Ω0−ωc)

2

(Ω0−ωc)2+4g2 , 1].

The Lamb shift and decay rate are now found from
Eq. (29) to be:

S(t) =
(
1− (Ω0 − ωc)

2

δ2

) Ω0−ωc

δ

cot2
(
tδ
2

)
+ (Ω0−ωc)2

δ2

(36a)

γ(t) =

(
1− (Ω0 − ωc)

2

δ2

)
cot
(
tδ
2

)
cot2

(
tδ
2

)
+ (Ω0−ωc)2

δ2

(36b)

2. J2(ω) = ηωe−ω/ωc

Now we turn our attention to the Ohmic spectral den-
sity. The memory kernel, as given in Eq. (22), takes the
form:

f(t) =
ηω2

ce
iΩ0t

(1 + iωct)2
. (37)

To obtain the Laplace transform analytically, we inte-
grate by parts and obtain:

f̂(s) =η
[
(s− iΩ0) e

−Ω0+is
ωc

(
i
π

2
− Ci

(
s− iΩ0

ωc

)
−iSi

(
s− iΩ0

ωc

))
− iωc

]
, (38)
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where the sine and cosine integral functions are defined
as:

Si(z) ≡
∫ z

0

sin(t)

t
dt = π/2−

∫ ∞

z

sin(t)

t
dt (39a)

Ci(z) ≡ −
∫ ∞

z

cos(t)

t
dt (39b)

Ei(z) ≡ −
∫ ∞

−z

e−t

t
dt , (39c)

where for future reference we have also defined the expo-
nential integral function.

Due to the absence of analytic expressions for the
Laplace transforms of the trigonometric integral func-
tions, we use the numerical inverse Laplace transform
of Eq. (24) to obtain c1(t). The Lamb shift and decay
rate are then calculated numerically using Eq. (29).

3. J3(ω) = ηωΘ(ωc − ω)

Finally, we compute the memory kernel for the trian-
gular spectral density, for which we obtain:

f(t) =

∫ ωc

0

ηωeit(Ω0−ω) = ηeit(Ω0−ωc)
1− eiωct + iωct

t2
.

(40)

The Laplace transform is:

f̂(s) = −iηωc − η(s− iΩ0) ln

(
s− iΩ0

s− iΩ0 + iωc

)
, (41)

and once more the (numerical) inverse Laplace transform
of Eq. (24) yields c1(t). Finally, the Lamb shift and decay
rate are again computed numerically using Eq. (29).

III. APPROXIMATION METHODS

In this section, we compute the excited state popula-
tion predictions for the damped Jaynes-Cummings model
of the previous section using three different Markovian
master equations and using the TCL to second and fourth
orders. In each case, we first provide a brief summary of
the underlying theory of the corresponding master equa-
tion, both to assist the reader who may be unfamiliar
with this theory and to establish our notation.

A. Coarse-Grained Lindblad Equation (CG-LE)

We follow the derivation of Ref. [23]. Let us choose
a dimensionless, fixed and orthogonal system operator
basis for B(HS) as {Sα}Mα=0 with S0 = I andM = d2−1,
where d = dim(HS) and

Tr(S†
αSβ) =

1

Nα
δαβ , (42)

where Nα is a normalization factor. We can then always
write the system-bath interaction Hamiltonian in the fol-
lowing form:

HSB =
∑
α

gαSα ⊗Bα , (43)

where {Bα} are dimensionless bath operators and {gα}
are the coupling coefficients. In the interaction picture,
with US(t) = e−iHSt and UB(t) = e−iHBt, we obtain:

H̃SB =
∑
α

gαSα(t)⊗Bα(t) (44a)

Sα(t) = U†
S(t)SαUS(t) =

∑
β

pαβ(t)Sβ (44b)

Bα(t) = U†
B(t)BαUB(t) =

∑
β

qαβ(t)Bβ , (44c)

with initial conditions pαβ(0) = qαβ(0) = δαβ . The
dynamics of the total system+bath are described by
Eqs. (4) and (5). The system state is obtained by tracing
over the bath and, assuming the initial state is factorized
[ρSB(0) = ρ(0) ⊗ ρB(0)], can be represented as a com-
pletely positive quantum dynamical map:

ρ̃(t) = TrB [ρ̃SB(t)] =

M∑
i=0

K̃i(t)ρ(0)K̃
†
i (t) (45)

where {K̃i} are Kraus operators in the interaction pic-
ture, which are defined as:

K̃i={µν}(t) =
√
λµ ⟨ν| Ũ(t) |µ⟩ , (46)

where the initial bath state is spectrally decomposed as
ρB(0) =

∑
µ λµ|µ⟩⟨µ|. Using a standard Dyson series

expansion of Ũ(t) similar to Eq. (6), we can write:

K̃i(t) =
√
λµδµνI +

∞∑
n=1

K
(n)
i (t) (47a)

=

M∑
α=0

biα(t)Sα = bi0I +

M∑
α=1

∞∑
n=1

b
(n)
iα (t)Sα , (47b)

where K
(n)
i (t) is the nth order term in the Dyson series,

and the second line is an expansion in the system oper-
ator basis. In the weak-coupling limit (maxα gαt ≪ 1),

the higher-order terms in the expansion of K
(n)
i (t) be-

come negligible, i.e., ∥K(n+1)
i ∥ ∼ gαt∥K(n)

i ∥. Therefore,
we can approximate the exact Kraus operators by trun-
cating the expansion to first order. This yields:

K̃
(1)
i (t) = −i

√
λµ ⟨ν|

∫ t

0

dt1H̃SB(t1) |µ⟩ (48a)

= −i
√
λµ
∑
α

gα

∫ t

0

dt1Sα(t1) ⟨ν|Bα(t1) |µ⟩

(48b)

= −it
√
λµ
∑
αβγ

gαSβ ⟨ν|Bγ |µ⟩Γβγ
α (t) , (48c)
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where:

Γβγ
α (t) ≡ 1

t

∫ t

0

dt1pαβ(t1)qαγ(t1) . (49)

Then, to match Eqs. (47b) and (48c), we have:

b
(1)
iα (t) = −it

√
λµ
∑
α′α′′

gα′ ⟨ν|Bα′′ |µ⟩Γαα′′

α′ (t) , (50)

and Eq. (47) implies that bi0 =
√
λµδµν . Next, we can

construct the process matrix χ(t) (closely related to the
Choi matrix), where

χαβ(t) =
∑
i=µν

biα(t)b
∗
iβ(t) , (51)

and truncate it to lowest order (n ≤ 1) in the Dyson
expansion as follows:

χ00(t) =
∑
µ

λµ = 1 (52)

χ
(1)
α0 (t) = −it

∑
α′α′′

gα′ ⟨Bα′′⟩B Γαα′′

α′ (t), α ≥ 1 (53)

χ
(1)
αβ(t) = t2

∑
α′α′′β′β′′

gα′g∗β′

〈
B†

β′′Bα′′

〉
B
×

Γαα′′

α′ (t)
(
Γββ′′

β′ (t)
)∗
, α, β ≥ 1 , (54)

where ⟨X⟩B ≡ Tr(ρBX). Let us also define

⟨X⟩j ≡
1

τ

∫ (j+1)τ

jτ

X(t)dt , (55)

where we call τ the coarse-graining timescale. Note that
χαβ(0) = δα0δβ0. Then:

aαβ ≡
〈
χ̇
(1)
αβ

〉
0
=

1

τ
(χ

(1)
αβ(τ)− χαβ(0)) =

χ
(1)
αβ(τ)

τ
(56)

unless α = β = 0, in which case we have ⟨χ̇00⟩0 = 0.
It can be shown [23] (see also [24]) that starting from

Eq. (45), substituting the various expansions above, re-
arranging terms, and assuming that Eq. (56) can be ex-
tended to any interval [t, t+τ ] (essentially an assumption
of Markovianity), that one arrives at the Lindblad equa-
tion in the interaction picture:

˙̃ρ(t) = −i[HLS , ρ̃(t)]

+

M∑
α,β=1

aαβ(Sαρ̃(t)S
†
β − 1

2
{S†

βSα, ρ̃(t)}) , (57)

where the Lamb shift is given by:

HLS =
i

2

∑
α

⟨χ̇α0⟩Sα − ⟨χ̇α0⟩∗ S†
α (58a)

=
1

2

∑
α

ϕαSα + ϕ∗αS
†
α (58b)

with

ϕα ≡
∑
α′α′′

gα′ ⟨Bα′′⟩B Γαα′′

α′ (τ) , (59)

and the decoherence rates are:

aαβ = τ
∑

α′α′′β′β′′

gα′g∗β′

〈
B†

β′′Bα′′

〉
B
Γαα′′

α′ (τ)Γββ′′

β′ (τ)∗ .

(60)

The choice of the coarse-graining timescale τ is crucial.
It can be understood as a free optimization parameter,
constrained by the inequality

τS ≪ τ ≪ 1/ωc , (61)

where τS is the timescale over which ρ̃(t) changes, which
arises from the replacement of

⟨ ˙̃ρ(t)⟩0 ≡ ρ̃(τ)− ρ(0)

τ
(62)

by ˙̃ρ(t) in arriving at Eq. (57).
For the spin-boson model Eq. (10), we have S+ = σ+,

S− = σ−, Bk = bk or b†k. The system-bath interac-
tion Hamiltonian in the interaction picture is given by
Eq. (11). From Eqs. (44b) and (44c), we obtain:

p±±(t) = e±iΩ0t , p±∓(t) = 0 (63a)

q±±
kk′′(t) = δkk′′e∓iωkt , q±∓

kk′′(t) = 0 , (63b)

where the + or − superscripts indicate that the corre-

sponding bath operator is bk or b†k, respectively.
Assuming that the initial state of the bath (cavity) is

the zero-temperature vacuum state ρB(0) = |v⟩⟨v|, we
obtain the standard bosonic expectation values:

⟨b†kbl⟩B = ⟨b†k⟩B = ⟨bk⟩B = ⟨b†kb
†
l ⟩B = ⟨bkbl⟩B = 0

⟨bkb†l ⟩B = δkl. (64)

Then, by utilizing Eq. (49), we obtain a slightly modified
expression for Γ up to first order:

Γ
β,(β′k′′)
α,(α′k) (t) =

1

t

∫ t

0

dt1p
αβ(t1)q

α′β′

kk′′ (t1) , (65)

where α, β, α′, β′ ∈ {+,−}. Using Eq. (63), we have the
following non-zero Γ’s:

Γ
+,(+k)
+,(+k)(t) =

ei(Ω0−ωk)t − 1

i(Ω0 − ωk)t
(66a)

Γ
−,(−k)
−,(−k)(t) =

e−i(Ω0−ωk)t − 1

−i(Ω0 − ωk)t
. (66b)

We also have a slightly modified expression for b by using
Eq. (50):

bµν,α = −it
√
λµ

∑
(α′k′)

gα
′

k′ ⟨µ|Bα′

k′ |ν⟩Γα,(α′k′)
α,(α′k′) , (67)
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where Bα
k represents bk when α = + and b†k when α = −.

The Lamb shift rates are given by Eq. (59), and vanish:

ϕα =
∑
(α′k′)

gα
′

k′

〈
Bα′

k′

〉
B
Γ
α,(α′k′)
α,(α′k′)(τ) = 0 , (68)

since the expectation values of creation and annihilation
operators between vacuum states vanish, as indicated by
Eq. (64). This result will be seen to undermine the qual-
ity of the CG-LE and C-LE when we perform a compar-
ison with the exact results in Section IV.

The decoherence rates are:

aαβ(τ) = τ
∑

(α′k′)(β′l′)

gα
′

k′ g
−β′

l′

〈
B−β′

l′ Bα′

k′

〉
B

× Γ
α,(α′k′)
α,(α′k′)(τ)Γ

β,(β′l′)
β,(β′l′)(τ)

∗ . (69)

Using Eqs. (64) and (66), we obtain:

a++(τ) =
∑
k

|gk|2τ sinc2
(
(Ω0 + ωk)τ

2

)
, (70)

a−−(τ) =
∑
k

|gk|2τ sinc2
(
(Ω0 − ωk)τ

2

)
, (71)

γ(τ) ≡ a−−(τ) =
∑
k

|gk|2τ sinc2
(
(Ω0 − ωk)τ

2

)
, (72)

where sinc(x) ≡ sin(x)/x. Introducing the spectral den-
sity

J(ω) =
∑
k

|gk|2δ(ω − ωk) , (73)

we can write this as

γ(τ) =

∫ ∞

0

dωJ(ω)τ sinc2
(
(Ω0 − ω)τ

2

)
. (74)

Let us now define

δ̄(x, y) ≡ 1

2π
y sinc2

(xy
2

)
, y ≥ 0 . (75)

This function behaves similarly to the Dirac-δ function:∫ ∞

−∞
δ̄(x, y)dx = 1 (76a)

lim
y→∞

δ̄(x, y) = δ(x) , (76b)

i.e., it is sharply peaked at x = 0, and the peak becomes
sharper as y grows. The peak width is ∼ 1/y. We can
thus also write

γ(τ) = 2π

∫ ∞

0

dωJ(ω)δ̄ (Ω0 − ω, τ) . (77)

We will show below that this representation allows us to
express the RWA-LE as the τ → ∞ limit of the CG-LE
and C-LE results, as expected on general grounds [18].

Finally, we obtain the interaction picture Lindblad
equation as:

˙̃ρ(t) = γ(τ)

(
σ−ρ̃(t)σ+ − 1

2
{σ+σ−, ρ̃(t)}

)
. (78)

Taking matrix elements, we find that the populations and
coherences are decoupled. Solving for the excited state
population and coherence, we obtain, respectively:

ρ̃11(t) = ρ11(0)e
−γ(τ)t (79a)

ρ̃01(t) = ρ01(0)e
− 1

2γ(τ)t , (79b)

which is to be contrasted with the exact solution given
in Eq. (30). The coarse-graining time τ can be chosen to
optimize the agreement with the exact solution.

1. J1(ω) = |g|2δ(ω − ωc)

For the impulse spectral density we find, using
Eq. (77):

γ(τ) = |g|2τ sinc2
(
(Ω0 − ωc)τ

2

)
(80a)

= 2π|g|2δ̄ (Ω0 − ω, τ) . (80b)

2. J2(ω) = ηωe−ω/ωc

For the Ohmic spectral density we find, using Eq. (77):

γ(τ) = η

∫ ∞

0

ωe−ω/ωcτ sinc2
(
(Ω0 − ω)τ

2

)
dω (81a)

= 2πη

∫ ∞

0

ωe−ω/ωc δ̄ (Ω0 − ω, τ) dω (81b)

=
η

τ
e−

Ω0
ωc

[(
1− Ω0

ωc
− iΩ0τ

)
Ei

(
Ω0

ωc
+ iΩ0τ

)
+(

1− Ω0

ωc
+ iΩ0τ

)
Ei

(
Ω0

ωc
− iΩ0τ

)
(81c)

+2

(
Ω0

ωc
− 1

)
Ei

(
Ω0

ωc

)]
+

2η

τ
(1− cosΩ0τ) ,

where the last equality is derived in Appendix B 1.

3. J3(ω) = ηωΘ(ωc − ω)

For the triangular spectral density we find, using
Eq. (77):
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γ(τ) = η

∫ ωc

0

ωτ sinc2
(
(Ω0 − ω)τ

2

)
dω (82a)

= 2πη

∫ ωc

0

ωδ̄ (Ω0 − ω, τ) dω (82b)

=
2η

τ

(
ln

(
ωc

Ω0
− 1

)
+Ci (τΩ0)− Ci (τ (ωc − Ω0))

+
ωc (cos (τ (ωc − Ω0))− 1)

ωc − Ω0
− cos (τ (ωc − Ω0))

+ cos (τΩ0)

)
+ 2ηΩ0 (Si (τ (ωc − Ω0)) + Si (τΩ0)) ,

(82c)

where the last equality is derived in Appendix B 2.

B. Cumulant Lindblad Equation C-LE

This section briefly reviews an alternative derivation
of the Lindblad equation, based on a cumulant expan-
sion [18]. Similarly to the CG-LE, the C-LE approach
also uses a coarse-graining time scale that can be opti-
mized to approximate the exact result. Despite using a
rather different approach to deriving the Lindblad equa-
tion, we will show that for the problem we study in this
work, the C-LE ultimately results in identical expressions
for the master equation and its parameters (and hence
also the solution, of course) as the CG-LE.

We start by writing the system-bath interaction Hamil-
tonian of Eq. (1) as:

HSB = λ
∑
α

Sα ⊗Bα (83)

where Sα and Bα are the system and bath operators,
respectively (not necessarily Hermitian), and λ is a di-
mensionless parameter to be used below for a series ex-
pansion, which we eventually set equal to 1. Note that
unlike Eq. (43), the Sα are now not a basis, and the Bα

have dimensions of energy since they include the cou-
pling constants gα. Assuming a factorized initial condi-
tion ρSB(0) = ρ(0) ⊗ ρB(0), we associate a CPTP map
Λλ to the reduced density matrix of Eq. (7):

ρ̃(t) = Λλ(t)ρ(0) . (84)

This CPTP map can be related to Eq. (6) by introducing
superoperators K(n), which collect terms with matching
power of λ:

Λλ(t) = exp

( ∞∑
n=1

λnK(n)(t)

)
(85)

This is known as the cumulant expansion. The first-order
term is then:

K(1)(t)ρ(0) = −i
∫ t

0

dsTrB

(
[H̃(s), ρSB(0)]

)
, (86)

which can be eliminated by shifting the bath operators
Bα, assuming stationarity, i.e., [HB , ρB(0)] = 0 (see be-
low and Appendix C). Moving on to the second order in
λ, we have:

K(2)(t)ρ(0) = −
∫ t

0

ds

∫ s

0

ds′TrB [H̃(s), [H̃(s′), ρSB(0)]] ,

(87)

where the double commutator can be rearranged using:

TrB [Sα(s)⊗Bα(s), [Sβ(s
′)⊗Bβ(s

′), ρ(0)⊗ ρB(0)]]

=[Sα(s), Sβ(s
′)ρ(0)]Tr(Bα(s)Bβ(s

′)ρB)−
[Sα(s), ρ(0)Sβ(s

′)]Tr(Bβ(s
′)Bα(s)ρB) (88)

Introducing the bath correlation function

Bαβ(s, s
′) ≡ Tr[Bα(s)Bβ(s

′)ρB ] , (89)

we have:

Bαβ(s, s
′) = B∗

αβ(s
′, s) . (90)

To obtain a reduced form of the second-order cumulant
in Eq. (87), it is useful to define a new variable that
includes the double integration of the bath correlation
function as follows:

Bαβω(t) ≡
∫ t

0

ds

∫ s

0

ds′eiω(s−s′)Bαβ(s, s
′) (91)

We introduce two more variables that will be associated
with the Lamb shift and the decoherence rate:

Qαβω(t) ≡
1

2i

(
Bαβω(t)− B∗

αβω(t)
)
= Im(Bαβω(t)) ,

(92)

and

bαβω(t) ≡
∫ t

0

ds

∫ t

0

ds′eiω(s−s′)Bαβ(s, s
′) (93a)

= Bαβω(t) + B∗
αβω(t) (93b)

= 2Re(Bαβω(t)) , (93c)

where the equality in the second line is shown in Ap-
pendix D.
Explicitly, in this section, α ∈ {+,−}, and as in

Eq. (11), in the interaction picture the system opera-
tors are S±(t) = σ±e

±iΩ0t and the bath operators are

B+(t) =
∑

k gke
−iωktbk, B−(t) =

∑
k g

∗
ke

iωktb†k. The ini-
tial bath state ρB = |v⟩⟨v| and the commutation rules
Eq. (64) give us just one non-zero bath correlation func-
tion:

B+−(s, s
′) = Tr[ρBB+(s)B−(s

′)] (94a)

=
∑
l,l′

glg
∗
l′e

−i(ωls−ωl′s
′)Tr[ρB(0)blb

†
l′ ] (94b)

B−+(s, s
′) = B++(s, s

′) = B−−(s, s
′) = 0 . (94c)
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The double commutator Eq. (88) can now be simplified
as follows:∑
α,β

TrB [Sα(s)⊗Bα(s), [Sβ(s
′)⊗Bβ(s

′), ρ(0)⊗ ρB(0)]]

= eiΩ0(s−s′)[σ+, σ−ρ(0)]B+−(s, s
′)

− e−iΩ0(s−s′)[σ−, ρ(0)σ+]B+−(s
′, s) . (95)

Using Eq. (90), we have:

K(2)(t)ρ(0) (96a)

= −B+−,Ω0(t)[σ+, σ−ρ(0)] + B∗
+−,Ω0

(t)[σ−, ρ(0)σ+]

= −i Im(B+−,Ω0(t))[σ+σ−, ρ(0)] (96b)

+ 2Re(B+−,Ω0(t))

(
σ−ρ(0)σ+ − 1

2
{σ+σ−, ρ(0)}

)
.

Hence, the second-order cumulant takes the form:

K(2)(t)ρ(0) = −iQ+−,Ω0
(t)[σ+σ−, ρ(0)]

+ b+−,Ω0(t)

(
σ−ρ(0)σ+ − 1

2
{σ+σ−, ρ(0)}

)
. (97)

Hence, the state in the interaction picture after the
CP map in Eq. (84) using a truncation up to the second
order in the cumulant expansion, is:

ρ̃(t) = Λλ(t)ρ(0) ≈ exp
(
λ2K(2)(t)

)
ρ(0) (98a)

= ρ(0)− iλ2Q+−,Ω0(t)[σ+σ−, ρ(t)] (98b)

+ λ2b+−,Ω0(t)

(
σ−ρ(t)σ+ − 1

2
{σ+σ−, ρ(t)}

)
.

Now we use the coarse-graining method by averaging
over the coarse-graining timescale τ as in Eq. (56):

⟨ḃ+−,Ω0
(t)⟩0 =

b+−,Ω0
(τ)

τ
(99a)

⟨Q̇+−,Ω0(t)⟩0 =
Q+−,Ω0

(τ)

τ
, (99b)

which, when applied to Eq. (98b), yields:

⟨ ˙̃ρ(t)⟩0 = −iλ2⟨Q̇+−,Ω0
(t)⟩0[σ+σ−, ρ(0)] (100)

+ λ2⟨ḃ+−,Ω0
(t)⟩0

(
σ−ρ(0)σ+ − 1

2
{σ+σ−, ρ(0)}

)
,

where we also used Eq. (62). Let us now define

S(τ) ≡ 2⟨Q̇+−,Ω0
(t)⟩0 =

2 Im(B+−,Ω0
(τ))

τ
(101a)

γ(τ) ≡ ⟨ḃ+−,Ω0(t)⟩0 =
2Re(B+−,Ω0

(τ))

τ
, (101b)

where we used Eqs. (92) and (93c).
For a general ρB(0) obtained by tracing out the system

from Eq. (14) we find that [ρB(0), HB ] ̸= 0 (as shown
in Appendix E), which means that the bath correlation

function Bαβ(s, s
′) is not stationary. However, it is for

the vacuum bath state ρB(0) = |v⟩⟨v| which we assume
to be the case throughout, so we can write

B+−(s, s
′) = B+−(s− s′) =

∫ ∞

0

dωJ(ω)e−iω(s−s′) .

(102)
We then obtain, using Eq. (92):

S(τ) =
1

τ
Im

∫ τ

0

ds

∫ s

0

ds′eiω(s−s′)

∫ ∞

0

dωJ(ω)e−iω(s−s′)

(103a)

=
τ

2
Im

∫ ∞

0

dωJ(ω) = 0 , (103b)

since the spectral density is real. I.e., just like in the
CG-LE case [Eq. (68)], the Lamb shift vanishes.
For the decay rate we now have, using Eq. (93b):

γ(τ) =
1

τ

∫ ∞

0

dωJ(ω)

∫ τ

0

ds

∫ τ

0

ds′ei(Ω0−ω)(s−s′)

(104a)

=

∫ ∞

0

dωJ(ω)τ sinc2
(
(Ω0 − ω)τ

2

)
, (104b)

which is identical to the CG-LE result, Eq. (74).
Moreover, similar to how we arrived at Eq. (57), as-

suming Markovianity in the sense that Eq. (100) can be
extended to any interval [t, t + τ ] we again arrive at the
Lindblad equation in the interaction picture, after replac-
ing ⟨ ˙̃ρ(t)⟩0 7→ ˙̃ρ(t), and setting λ = 1. The form of this
Lindblad equation is identical to Eq. (78). In particular,
both the excited state population and the coherence are
the same as in Eq. (79). Thus, the end results of the
C-LE and CG-LE are identical for the model considered
in this work.

C. Rotating Wave Approximation Lindblad
Equation (RWA-LE)

The rotating wave approximation (RWA) drops the
non-secular (off-diagonal) frequency terms which appear
in the C-LE [see, e.g., Eq. (94b)]. This approximation is
based on the idea that the terms with ω ̸= ω′ are rapidly
oscillating if t ≫ |ω − ω′|−1, which thus (roughly) aver-
age to zero. Since we will assume that t ≫ τB , where
τB is the bath correlation time (the time over which the
bath correlation function decays), the former assump-
tion is consistent provided we also assume that the Bohr
frequency differences satisfy minω ̸=ω′ |ω − ω′| > 1/τB .
Combining this with the weak coupling assumption, we
obtain:

g ≪ 1

τB
< min

ω ̸=ω′
|ω − ω′| . (105)

By considering the weak coupling limit, taking the
bath correlation timescale as the inverse of the cutoff fre-
quency, and considering the Bohr frequencies {0,±Ω0},



10

Eq. (105) becomes:

η ≪ 1 < Ω0/ωc . (106)

Furthermore, the Born approximation states that for
a sufficiently large bath, the composite state factorizes:

ρ̃SB(t) ≈ ρ̃(t)⊗ ρB . (107)

Thus, up to second order in the Dyson series, the system
state evolves according to:

˙̃ρ = −TrB [H̃(t),

∫ t

0

dτ [H̃(t− τ), ρ̃SB(t− τ)]] (108a)

= −
∑
α,β

TrB [Aα(t)⊗Bα(t),

∫ t

0

dτ [Aβ(t− τ)

⊗Bβ(t− τ), ρ̃(t− τ)⊗ ρB ], (108b)

where in our case α, β ∈ {+,−}. It is useful to define
the stationary (single-variable) bath correlation, a special
case of Eq. (89):

B+−(t, t− τ) =

∫ ∞

0

dωJ(ω)e−iωτ ≡ B+−(τ) . (109)

Now if we assume that t ≫ τB , then ρ̃(t − τ) ≈ ρ̃(t).
We discuss the limitations of this approximation in Ap-
pendix F, where we show that it can lead to an un-
bounded error.

Expanding the double commutator in terms of the bath
correlation function, we obtain:∑
α,β

TrB [Sα(t)⊗Bα, [Sβ(t− τ)⊗Bβ(t− τ), ρ̃(t)⊗ ρB ]]

= [S+(t), S−(t− τ)ρ̃(t)]B+−(τ)

− [S−(t), ρ̃(t)S+(t− τ)]B+−(−τ) . (110)

Consequently, substituting Eq. (110) back into Eq. (108),
we can write:

˙̃ρ(t) = −
∫ t

0

dτB+−(τ)e
iΩ0τ [σ+, σ−ρ̃(t)]

+

∫ t

0

dτB+−(−τ)e−iΩ0τ [σ−, ρ̃(t)σ+] . (111)

To arrive at a Lindblad form, we complete the Markovian
approximation by setting the upper limit of the integral
to be ∞. This is justified since the bath correlation de-
cays rapidly to zero for t≫ 1/ωc. Now, let

Γαβ(ω) ≡
∫ ∞

0

dτBαβ(τ)e
iωτ (112a)

=

∫ ∞

0

dω′J(ω′)

∫ ∞

0

dτei(ω−ω′)τ (112b)

= πJ(ω) + i

∫ ∞

0

dω′ J(ω′)P
(

1

ω − ω′

)
,

(112c)

where we used the identity∫ ∞

0

dτeixτ = πδ(x) + iP
(
1

x

)
, (113)

and where the Cauchy principal value is defined as

P
(
1

x

)
[f ] = lim

ϵ→0

∫ ϵ

−ϵ

f(x)

x
dx , (114)

for smooth functions f with compact support on the real
line R.
We show in Appendix G that taking the complex con-

jugate of Γαβ yields:

Γ∗
±∓(ω) =

∫ ∞

0

dτB±∓(−τ)e−iωτ . (115)

This simplifies Eq. (111) into Lindblad form:

˙̃ρ(t) = −Γ+−(Ω0)[σ+, σ−ρ̃] + Γ∗
+−(Ω0)[σ−, ρ̃σ+] (116a)

= −i Im[Γ+−(Ω0)][σ+σ−, ρ(t)] (116b)

+ 2Re[Γ+−(Ω0)]

(
σ−ρ(t)σ+ − 1

2
{σ+σ−, ρ(t)}

)
.

This result has the same form as the exact Eq. (28), but
with a time-independent Lamb shift and decay rate:

S = 2 Im[Γ+−(Ω0)] = 2

∫ ∞

0

dω′ J(ω′)P
(

1

Ω0 − ω′

)
(117a)

γ = 2Re[Γ+−(Ω0)] = 2πJ(Ω0) . (117b)

This last result is consistent with the finding that the
RWA-LE is the τ → ∞ limit of the C-LE [18], since it
follows from Eqs. (76b) and (77) that

lim
τ→∞

γ(τ) = 2π

∫ ∞

0

dωJ(ω)δ(Ω0 − ω) = 2πJ(Ω0) .

(118)
The population and coherence are given by the τ → ∞

limit of Eq. (79), i.e.,

ρ̃11(t) = ρ11(0)e
−γt (119a)

ρ̃01(t) = ρ01(0)e
− 1

2γt , (119b)

We are now ready to present the results for the three
spectral densities.

1. J1(ω) = |g|2δ(ω − ωc)

For the impulse spectral density we find, using
Eq. (117):

S = 2|g|2P
(

1

Ω0 − ωc

)
(120a)

γ = 2π|g|2δ(Ω0 − ωc) . (120b)

This means that the decay rate either vanishes or is sin-
gular at Ω0 = ωc. Hence, the RWA-LE is unsuitable for
describing the model with this spectral density.



11

2. J2(ω) = ηωe−ω/ωc

We can immediately write down the decay rate as
γ = 2πJ2(Ω0). However, the Cauchy principal value
complicates the calculation of the Lamb shift, so we use
a direct method instead.

For the Ohmic spectral density, the bath correlation in
Eq. (109) takes the form:

B+−(τ) = η

∫ ∞

0

ωe−ω/ωce−iωτdω =
ηω2

c

(1 + iωcτ)2
.

(121)

The one-sided Fourier integral in Eq. (112a) becomes:

Γ+−(Ω0) = ηωc

∫ ∞

0

d(ωcτ)
eiΩ0τ

(1 + iωcτ)2
(122a)

= −iηωc + ηΩ0e
−Ω0/ωc(π + iEi (Ω0/ωc)) , (122b)

where we derive the second equality in Appendix H 1.
Thus, the Lamb shift and the decay rate are:

S = 2J2(Ω0) Ei

(
Ω0

ωc

)
− 2ηωc (123a)

γ = 2πJ2(Ω0) . (123b)

3. J3(ω) = ηωΘ(ωc − ω)

We can once more immediately write down the decay
rate as γ = 2πJ3(Ω0), but a direct calculation is again
advantageous for arriving at the form of the Lamb shift.

For the triangular spectral density, the bath correlation
in Eq. (109) takes the form:

B+−(τ) = η

∫ ωc

0

ωe−iωτdω = η
e−iωcτ (1 + iωcτ)− 1

τ2

(124)

The one-sided Fourier integral in Eq. (112a) becomes:

Γ+−(Ω0) = ηωc

∫ ∞

0

d(ωcτ)
e−iωcτ (1 + iωcτ)− 1

(ωcτ)2
eiΩ0τ

(125)

Thus, as we derive in Appendix H 2, the Lamb shift
and the decay rate are:

S = −2Ω0 ln

∣∣∣∣ ωc

Ω0
− 1

∣∣∣∣− 2ηωc (126a)

γ = 2πJ3(Ω0) . (126b)

Note that Eq. (106) requires Ω0 > ωc, but in this case it
follows from Eq. (126b) that γ vanishes. This breakdown
of the validity conditions of the Markov approximation,
along with the issue of the potentially unbounded ap-
proximation error discussed in Appendix F, highlights
that the RWA-LE has limited validity for the model we
study here. Our simulation results reinforce these con-
clusions, as shown in Section IV.

D. TCL

In this section we briefly review the time-
convolutionless formalism, closely following the
presentation of [2] while adding a few pertinent
details.
We can rewrite the Liouville equation in Eq. (3) as:

dρ̃SB

dt
≡ λLρ̃SB , L ≡ [H̃SB , ·] , (127)

where we introduce the Feshbach projection superopera-
tor P via

PρSB ≡ TrB(ρ)SB ⊗ ρB , (128)

and its orthogonal complement Q = I − P. For an arbi-
trary operator A, we define:

Â ≡ PA , Ā ≡ QA , (129)

which leads via Eq. (127) to:

∂tρ̂SB = λL̂ρ̂SB + λL̂ρ̄SB (130a)

∂tρ̄SB = λL̄ρ̂SB + λL̄ρ̄SB . (130b)

The second equation has a solution given by:

ρ̄SB(t) = G(t, 0)ρ̄SB(0) + λ

∫ t

0

G(t, t′)L̄(t′)ρ̄SB(t
′)dt′ ,

(131)

where:

G(t, 0) ≡ T+e
λ
∫ t
0
L̄(t′)dt′ . (132)

From Eq. (127), we obtain:

ρ̃SB(t) = U+(t, t
′)ρ̃SB(t

′) , (133)

where

U+(t, t
′) = T+e

λ
∫ t
t′ L̄(s)ds . (134)

We can back-propagate the system state as:

ρ̃SB(t
′) = U−(t

′, t)ρ̃SB(t
′) , (135)

where U−(t
′, t) = [U+(t, t

′)]−1. When we substitute
Eq. (135) back into Eq. (131), it yields:

ρ̄SB(t) = G(t, 0)ρ̄SB(0) + Σ(t)ρSB(t) (136a)

Σ(t) ≡ λ

∫ t

0

G(t, t′)L̄(t′)Û−(t
′, t)dt′ . (136b)

Assuming that I − Σ is invertible and using Eq. (130),
we arrive at:

∂tρ̂SB(t) = J (t)ρ̄SB(0) +K(t)ρ̂SB(t) (137a)

J (t) ≡ λL̂(t)[I − Σ]−1G(t, 0)Q (137b)

K(t) ≡ λL̂[I − Σ]−1P . (137c)



12

If the inhomogeneity J (t) vanishes (as is the case for a
factorized initial system-bath state), then the resulting
master equation is time-local and known as the time-
convolutionless (TCL) master equation. By expressing
I − Σ as a geometric series, we obtain:

[I − Σ]−1 =

∞∑
n=0

Σn(t) . (138)

This allows us to write the TCL generator as an expan-
sion in powers of λ:

K(t) = λL̂(t)

( ∞∑
n=0

Σn(t)

)
P =

∞∑
n=1

λnKn(t) . (139)

For Gaussian baths, like the one considered here, the
odd-order terms vanish, i.e., K2n+1 = 0, which follows
from the vanishing multi-time bath correlation function
utilizing Wick’s theorem [25, 26]. In general, the n’th
order term is given by [27, 28]:

Kn(t) =

∫ t

0

dt1

∫ t

0

dt2 · · ·
∫ tn−2

0

dtn−1⟨L(t)L(t1)...L(tn−1)⟩oc ,

(140)

where the ordered cumulants are defined as:

⟨L(t)L(t1)...L(tn−1)⟩oc =∑
(−1)qPL(t) · · · L(ti)PL(tj) · · · L(tm)P , (141)

where the sum is over all possible arrangements of q P’s
and n L’s such that there is at least one L between P’s
and there is a time ordering t ≥ ... ≥ ti ≥ tj ... ≥ tm.
Since Eq. (27) is already time-local, we can relate it to

the TCL generator K(t) via [16]:

KS(t)ρ(t) = TrB [K(t)(ρ(t)⊗ ρB)] . (142)

This leads exactly to the ansatz given in Eq. (28), i.e.,
the TCL master equation is given by

˙̃ρ = KS(t)ρ̃ = − i

2
S(t)[σ+σ−, ρ̃(t)]

+ γ(t)

(
σ−ρ̃(t)σ+ − 1

2
{σ+σ−, ρ̃(t)}

)
. (143)

The solution is given by Eq. (30), to the desired order in
perturbation theory, i.e.:

ρ̃11(t) = ρ11(0) exp

{
−
∫ t

0

γ(n)(t′)dt′
}

(144a)

ρ̃01(t) = ρ01(0) exp

{
1

2

∫ t

0

(
iS(n)(t′)− γ(n)(t′)

)
dt′
}
,

(144b)

where n = 2 for TCL2, n = 4 for TCL4, etc.

To find the perturbative expansion of the Lamb shift
and the decay rate, we observe that σ+ is an eigenoper-
ator of the generator:

KS(t)σ+ = −1

2
(γ(t) + iS(t))σ+ . (145)

Using the superoperator L(t) = −i[HSB(t), ·], we can
verify [29] that σ+ ⊗ ρB is an eigenoperator of L(t)L(t1)
with eigenvalue −f(t − t1), where f(t) is defined in
Eq. (22). Substituting Eq. (139) into Eq. (145), we ob-
tain:

KS(t)σ+ =

∞∑
n=1

(−λ2)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ t2n−2

t0

dt2n−1

⟨f(t− t1)f(t2 − t3) · · · f(t2n−2 − t2n−1)⟩ocσ+ . (146)

Here, the terms in the summation follow the rule of con-
sidering all possible arrangements of the memory kernel
f(ti − tj). It is important to ensure that the times are
properly ordered as tm ≤ ... ≤ ti ≤ tj ≤ ... ≤ t. Conse-
quently, we can expand γ(t) and S(t) as:

γ(t) =

∞∑
n=1

λ2nγ2n(t) , S(t) =
∞∑

n=1

λ2nS2n(t) . (147)

In particular, if we define the function

Z(t, t′) ≡
∫ t

0

dt1f(t
′ − t1)

we obtain, as shown in Ref. [16], the following expressions

γ2(t) + iS2(t) = 2

∫ t

0

dt1f(t− t1) = 2 lim
t′→t

Z(t, t′)

(148a)

γ4(t) + iS4(t) = 2

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 (148b)

[f(t− t2)f(t1 − t3) + f(t− t3)f(t1 − t2)] .

Thus,

S2(t)[γ2(t)] = 2 Im[Re] lim
t′→t

Z(t, t′) (149a)

S4(t)[γ4(t)] = 2 Im[Re]

∫ t

0

dt1

∫ t1

0

dt2 (f(t− t2)Z(t1, t2)

+f(t1 − t2)Z(t, t2)) , (149b)

where the imaginary and real parts are taken for S and
γ, respectively. The TCL2 and TCL4 cases correspond,
respectively, to the following substitutions into Eq. (144):

TCL2:

{
S(2)(t) = S2(t)

γ(2)(t) = γ2(t)
(150a)

TCL4:

{
S(4)(t) = S2(t) + S4(t)

g(4)(t) = γ2(t) + γ4(t)
(150b)

This follows from Eq. (147) with λ = 1 (recall that λ is
a formal expansion parameter).

Next, we consider our three spectral densities.
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(a) (b)

FIG. 1: (a) Integrated trace-norm distance D[0,100] between the exact solution and the Markovian approximations: CG-LE
and RWA-LE, as a function of the dimensionless coarse-graining time ωcτ for the Ohmic bath spectral density J2 with η = 1
and Ω0/ωc = 1. The minimum is obtained for a coarse-graining time τ = 0.501939/ωc. (b) The coarse-graining at which
D[0,100] is minimized as a function of the qubit frequency Ω0/ωc for η = 1 for the three different spectral densities. The
labeled red dots indicate the values of Ω0/ωc shown in each of the corresponding figures.

1. J1 = |g|2δ(ω − ωc)

We use the integral of the shifted memory kernel from
Eq. (31):

Z(t, t1) =
2|g|2 sin (Ω0−ωc)t1

2

Ω0 − ωc
ei

(Ω0−ωc)(2t−t1)
2 . (151)

The second-order Lamb shift and decay rate are, using
Eq. (149a):

S2(t) = 2|g|2 1− cos((Ω0 − ωc)t)

Ω0 − ωc
(152a)

γ2(t) = 2|g|2t sinc[(Ω0 − ωc)t)] . (152b)

The fourth-order Lamb shift and decay rate are, using
Eq. (149b):

S4(t) = 4|g|4− sin2(Ω0 − ωc)t+ (Ω0 − ωc)t sin(Ω0 − ωc)t

(Ω0 − ωc)3

(153a)

γ4(t) = 2|g|4 2(Ω0 − ωc)t cos(Ω0 − ωc)t− sin 2(Ω0 − ωc)t

(Ω0 − ωc)3

(153b)

2. J2(ω) = ηωe−ω/ωc

Again we use the integral of the shifted memory kernel
from Eq. (37):

Z(t, t1) =
iηωce

iΩ0t

1 + iωct
− iηωce

iΩ0(t−t1)

1 + iωc(t− t1)

+ iJ(Ω0)
(
Ei

(
Ω0

ωc
(1 + iωc(t− t1))

)
− Ei

(
Ω0

ωc
(1 + iωct)

))
. (154)

The second-order Lamb shift and decay rate are, using
Eq. (149a):

S2(t) = −2ηωc + 2ηωc
cos(Ω0t) + ωct sin(Ω0t)

1 + (ωct)2

− 2J2(Ω0)

(
Re

[
Ei

(
Ω0

ωc
(1 + iωct)

)]
− Ei

(
Ω0

ωc

))
(155a)

γ2(t) = 2ηωc
ωct cos(Ω0t)− sin(Ω0t)

1 + (ωct)2

+ 2J2(Ω0) Im

[
Ei

(
Ω0

ωc
(1 + iωct)

)]
. (155b)

The Markovian decay rate is obtained in the long time
limit. Using limx→∞ Ei(ix+ 1) = iπ, we obtain:

γM = lim
t→∞

γ2(t) = 2πηΩ0e
−Ω0

ωc = 2πJ(Ω0) , (156)

in agreement with Eq. (123b).
For the fourth-order decay rate, Eq. (149b) does not

admit a closed-form solution and needs to be evaluated
numerically.

3. J3(ω) = ηωΘ(ωc − ω)

We use the shifted integral of the memory kernel in
Eq. (40):

Z(t, t1) =
η

t(t− t1)

(
ei(Ω0−ωc)(t−t1)t− eiΩ0(t−t1)t

+(eiΩ0t − ei(Ω0−ωc)t)(t− t1)
)

(157)

+ iηΩ0 [Ei(i(Ω0 − ωc)t)− Ei(iΩ0t)

−Ei(i(Ω0 − ωc)(t− t1)) + Ei(iΩ0(t− t1))] .
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Thus:

S2(t) = −2iη
( sin(Ω0t)− sin((Ω0 − ωc)t)

t

− Ω0 ln |1−
ωc

Ω0
| − ωc

+Re(Ω0 (Ei(i(Ω0 − ωc)t)− Ei(iΩ0t)))
)

(158a)

γ2(t) = 2η
(cos(Ω0t)− cos((Ω0 − ωc)t)

t
− πΩ0Θ(ωc − Ω0)

+ Ω0 Im [Ei(iΩ0t)− Ei(i(Ω0 − ωc)t)]
)
. (158b)

We recover the Markov approximation in the large t limit:

lim
t→∞

γ2(t) = 2πηJ3(Ω0) . (159)

While the TCL result Eq. (158b) does not entirely match
the exact result, it does describe an oscillatory behavior
similar to the exact solution, which is entirely absent in
the Markovian limit. A similar phenomenon has been
described in the context of non-equilibrium dynamics in
Ref. [30].

Moreover, recall that the Markovian rate vanishes
when Ω0 > ωc [Eq. (126b)], resulting in the absence of
decay. In contrast, when Ω0 > ωc we find:∫ ∞

0

γ2(t
′)dt′ = 2η

(
ωc

Ω0 − ωc
+ ln

(
Ω0 − ωc

Ω0

))
,

(160)

so that the asymptotic limit for the population in the
TCL2 approximation (which coincides with the Redfield

equation), e−
∫ ∞
0

γ2(t
′)dt′ , is non-zero. This qualitatively

recovers the non-zero decay property of the exact solu-
tion.

For the fourth-order decay rate, Eq. (149b) again does
not admit a closed-form solution and needs to be evalu-
ated numerically.

IV. ANALYSIS

In this section, we compare the exact solution for
the excited state population ρ11(t) and the coherence to
the results of the various approximation schemes we de-
scribed above. We also compare the exact Lamb shift and
decay rate γ(t) to the corresponding quantities predicted
by these approximation schemes. We do this for all three
spectral densities where possible, for the CG-LE/C-LE,
RWA-LE, TCL2 (Redfield), and TCL4. These results
are summarized with corresponding equation references
in Table I.

A. Computation of the optimal coarse graining
time in CG-LE

Before presenting the comparison to the exact re-
sults, we first explain our methodology for optimizing

the coarse-graining time τ within the framework of the
CG-LE, since in the ensuing comparison we use the opti-
mal τ values. Recall that the coarse-graining time needs
to satisfy the condition ωcτ ≪ 1 [Eq. (61)].
To determine the appropriate coarse-graining

timescale τ , we minimize a metric that quantifies
the deviation from the exact solution. We employ the
integrated trace-norm distance norm [18] as our chosen
metric, defined as:

D[0,T ] ≡
1

2T

∫ T

0

dt∥ρexact(t)− ρapprox(t)∥1 , (161)

where ∥M∥1 ≡ Tr
√
M†M . Since M = ρexact − ρapprox is

Hermitian and traceless, it can be written as

(
a b
b∗ −a

)
in the qubit case, so that Tr

√
M2 = 2

√
a2 + |b|2, and we

can simplify the integrand as follows:

∥ρexact − ρapprox∥1 (162)

= 2
√
(ρ11,exact − ρ11,approx)2 + |ρ01,exact − ρ01,approx|2 .

In Fig. 1a, we illustrate the distance D between the
exact solution and both the CG-LE and the RWA-LE as
a function of the dimensionless quantity ωcτ , where we
vary the coarse-graining time τ . In this example, we use
the parameters η = 1 and Ω0/ωc = 1, and the numerical
integration is performed up to a total time of ωcT = 100.
This upper limit is justified by the observation that the
distance is minimized at relatively short times. For ex-
ample, in Fig. 1a the minimum occurs at ωcτ = 0.50139,
thus satisfying Eq. (61). Notably, the coarse-graining so-
lution outperforms the RWA-LE solution, consistent with
the findings reported in [18].
In Fig. 1b, we present the minimum coarse-graining

time as a function of the qubit frequency Ω0/ωc for η = 1
across the three different spectral models. The coarse-
graining times used in the later figures are indicated by
the red dots in the plot. We selected Ω0/ωc ∈ [0.15, 2] to
account for a range of small to large qubit frequencies.

The most notable conclusion from Fig. 1b is that con-
dition ωcτ ≪ 1 cannot be satisfied for the impulse (J1)
and triangular (J3) spectral densities within the range
of Ω0/ωc values shown. However, it is satisfied for the
Ohmic spectral density (J2), the most physically rele-
vant of the three. We thus expect the CG-LE to perform
poorly for J1 and J3, but to perform relatively well for J2.
These expectations are borne out in our results below.

Note further that for the Ohmic spectral density, the
coarse-graining timescale increases as the qubit frequency
decreases, tending to the RWA-LE solution in line with
Eq. (117). Conversely, for the spectral density J1 =
|g|2δ(ω − ωc), characterized by strong non-Markovian
behavior and oscillations that prevent the fitting of a
Markovian exponential decay, the coarse-graining time
diverges at ω − ωc to attempt to fit the exact solution.

We remark that to ensure the validity of RWA-LE, the
weak coupling limit Eq. (106) needs to be satisfied, a
point we comment on in more detail below.
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J2(ω) = ηωe−ω/ωc η = 1 Ω0/ωc = 1

(a) Trace-norm distance (b) Decay rate (c) Lamb shift

(d) Population (e) Coherence – real part (f) Coherence – imaginary part

FIG. 2: The trace-norm distance ∥ρexact − ρapprox∥1 (a), decay rate ratio γ/γRWA (b), Lamb shift ratio S/SRWA (c),
population ρ11 (d) and coherence in its real part Re(ρ01) (e) and imaginary part Im(ρ01) (f) with an initial state

ρ(0) = |+⟩⟨+| for Ohmic spectral density J2(ω) = ηωe−ω/ωc as a function of dimensionless time ωct for coupling η = 1 and
qubit frequency ratio Ω0/ωc = 1. Five different approaches are depicted in the plots: the exact solution (Exact), TCL2
(Redfield), TCL4, CG-LE and RWA-LE (Markov). The CG-LE coarse graining time is τ = 0.501939/ωc.

J2(ω) = ηωe−ω/ωc η = 1/2 Ω0/ωc = 1

(a) Trace-norm distance (b) Decay rate (c) Lamb shift

(d) Population (e) Coherence – real part (f) Coherence – imaginary part

FIG. 3: Same as Fig. 2 with weak coupling η = 1/2 and a qubit frequency equal to the cutoff: Ω0/ωc = 1. The CG-LE coarse
graining time is τ = 0.659732/ωc.



16

J2(ω) = ηωe−ω/ωc η = 1 Ω0/ωc = 1/2

(a) Trace-norm distance (b) Decay rate (c) Lamb shift

(d) Population (e) Coherence – real part (f) Coherence – imaginary part

FIG. 4: Same as Fig. 2 with an Ohmic spectral density J2(ω) and the same coupling η = 1, but with a lower qubit frequency:
Ω0/ωc = 1/2. The CG-LE coarse graining time is τ = 0.999876/ωc.

J2(ω) = ηωe−ω/ωc η = 1 Ω0/ωc = 4

(a) Trace-norm distance (b) Decay rate (c) Lamb shift

(d) Population (e) Coherence – real part (f) Coherence – imaginary part

FIG. 5: Same as Fig. 2 with an Ohmic spectral density J2(ω) and the same coupling η = 1, but with a larger qubit
frequency: Ω0/ωc = 4. The CG-LE coarse graining time is τ = 0.025953/ωc.
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exact C-LE/CG-LE RWA-LE TCL2 TCL4
population ρ11 Eq. (30a) Eq. (79a) Eq. (119a) Eqs. (144a) and (150a) Eqs. (144a) and (150b)
coherence ρ01 Eq. (30b) Eq. (79b) Eq. (119b) Eqs. (144b) and (150a) Eqs. (144b) and (150b)

Lamb shift S
J1 Eq. (36a) 0 Eq. (120a) Eq. (152a) Eq. (153a)
J2 0 Eq. (123a) Eq. (155a)
J3 0 Eq. (126a) Eq. (158a)

decay rate γ
J1 Eq. (36b) Eq. (80) Eq. (120b) Eq. (152b) Eq. (153b)
J2 Eq. (81) Eq. (123b) Eq. (155b)
J3 Eq. (82) Eq. (126b) Eq. (158b)

TABLE I: Analytical results. The equations listed in the table are explicit analytical results. The results for empty
cells are obtained numerically.

B. Exact solution vs TCL and Markov
approximations for the Ohmic spectral density

We now present the results of a comparison between
the exact solution and the different master equations for
the Ohmic spectral density, the most physically interest-
ing of the three densities. Our general expectations are
that the TCL approximations will capture some of the as-
pects of the non-Markovian dynamics and will thus out-
perform the two Markovian master equations, and that
the CG-LE will outperform the RWA-LE due to the abil-
ity to optimize the coarse-graining timescale τ in the for-
mer. This expectation depends on the validity condition
ωcτ ≪ 1 not being violated, as explained in the previous
section. Indeed, we find that this holds for all the exam-
ples we consider in this section, at least in the sense that
we find ωcτ < 1 in all cases.
For the initial condition, we consider a simple scenario

where c1(0) = c0(0) =
1
2 and ck(0) = 0. In this setup, the

system is initially in the state |+⟩ = 1√
2
(|0⟩+ |1⟩), while

the bath is initially in the vacuum state |v⟩ of the cav-
ity. To determine the amplitude for the exact solution,
from which we obtain the population ρ11(t) = |c11(t)|2
of the excited state |1⟩, we need to apply a numerical
inverse Laplace transform to Eq. (24), where the Laplace

transform of the memory kernel f̂(s) is given by Eq. (38).
Irrespective of the specific positive values of η, ωc, and
Ω0, the roots of Eq. (24) are found to be complex. This
means that the amplitude c1(t) is oscillatory. This trend
persists even in cases of weak coupling, resulting in a
damped oscillation of the amplitude.

1. General observations

Figs. 2 to 5 offer a comparison of the temporal dy-
namics against the exact solution across four distinct
approximations: TCL2, TCL4, CG-LE (=C-LE), and
RWA-LE. The comparison metrics comprise the trace-
norm distance ∥ρexact − ρapprox∥1, decay rate γ, Lamb
shift S, population ρ11, and coherence ρ01, all with the
Ohmic spectral density J2, but with different values of
the coupling η and qubit frequency ratio Ω0/ωc. The
equations plotted for each curve are listed in Table I.

During the initial time intervals (ωct ≈ 1), the TCL2
and TCL4 solutions generally exhibit much closer agree-
ment with the exact solution than the Markovian CG-
LE and RWA-LE, as evidenced especially by the trace-
norm distance curves. The plots representing population
and the real part of the coherence reveal that the TCL
approximations aptly capture the Zeno effect observed
in the exact solution – characterized by a gradual con-
cave decay at short times. This stands in contrast to the
monotonic exponential decay exhibited by the Markovian
approaches.
Note that, as mentioned above in the discussion of

Eq. (117), the TCL2 decay rate γ gradually approaches
the asymptotic behavior of the RWA-LE decay rate. Con-
cerning the CG-LE, we note that it exhibits a smaller
trace-norm distance from the exact solution compared
to the RWA-LE, as anticipated in Ref. [18]. This is
due to the aforementioned ability to optimize the coarse-
graining time. Both Markovian approximations exhibit
a constant decay rate and Lamb shift, but in the case
of the CG-LE, the Lamb shift S is zero, resulting in the
coherence being purely real.

2. Weak and strong coupling

Recall that the RWA-LE needs to satisfy Eq. (106),
in particular η ≪ 1. In practice, we will use both weak
(η = 0.5) and strong (η = 1) coupling. We thus expect
the RWA-LE to be a relatively poor approximation in the
later case, at least for relatively short evolutions.
Figs. 2 and 3 compare the results for weak and strong

coupling. Using a qubit frequency equal to the cutoff
frequency Ω0/ωc = 1, Fig. 2 shows the strong coupling
results, while Fig. 3 shows the weak coupling results.
After rising first, the exact decay rate [Eq. (29b)] for

strong coupling (η = 1) in Fig. 2b exhibits a negative
trend and continues to exhibit non-monotonic behavior
for even longer evolution times. Intervals during which
γ turns negative correspond to non-Markovian dynam-
ics, leading to an increase in population, as evidenced
in Fig. 2d. Consequently, during intermediate times, the
approximation methods struggle to accurately match the
exact solution, which displays a remarkably slow popu-
lation decay.
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In contrast, for weak coupling (η = 1/2), the decay
rate in Fig. 3b remains positive, causing the population
and coherence to approach zero more rapidly. This aligns
closely with the behavior exhibited by the approxima-
tion methods, as demonstrated in Figs. 3d to 3f. This
trend is also affirmed by the trace-norm distance plots
in Figs. 2a and 3a, where weaker coupling results in a
smaller trace-norm distance difference between the ap-
proximation methods and the exact solution.

3. Weak and strong qubit frequency

Fixing the coupling at η = 1 [technically at the upper
limit of Eq. (106)], we compare the cases where the qubit
frequency Ω0 is either less than or greater than the cut-
off frequency ωc, as shown in Figs. 4 and 5, respectively.
Recall that Eq. (106) also imposes the validity condition
Ω0/ωc > 1 on the RWA-LE, so we expect better agree-
ment in Fig. 5, as in indeed the case.

In more detail, from the trace-norm distance plots
in Figs. 4a and 5a, we observe that all the approxi-
mations exhibit closer agreement with the exact result
when the qubit frequency is relatively high, especially
at longer evolution times. This trend is also noticeable
in the population (Figs. 4d and 5d) and coherence de-
cay (Figs. 4e, 4f, 5e and 5f). For low qubit frequen-
cies, as in Fig. 4b, the exact decay rate γ exhibits non-
Markovian negative phases. Correspondingly, the pop-
ulation in Fig. 4d increases initially and then stabilizes
at a non-zero value. The approximations fail to match
the exact solution’s behavior for extended periods, with
the TCL approximation being effective primarily during
short times (ωct < 1.5). This behavior is characteristic
of strong non-Markovian behavior, which is expected in
models with non-flat spectral densities such as the ones
considered here.

Conversely, for higher qubit frequencies in Fig. 5b, the
behavior of the TCL decay rate resembles that of the ex-
act solution. Even the exact Lamb shift in Fig. 5c closely
aligns with the approximation methods, with the notable
exception of CG-LE (where the Lamb shift is zero). Con-
sequently, in this scenario, the approximations reason-
ably reproduce the exact behavior, as demonstrated in
Figs. 5d to 5f. The TCL4 approximation is particularly
good according to all six of our metrics.

C. Exact solution vs TCL and Markov
approximations for the impulse spectral density

For the impulse spectral density J1(ω) = |g|2δ(ω−ωc),
the exact solution for the population |c1(t)|2 of the ex-
cited population [see Eq. (34)] is purely periodic. Conse-
quently, no Markovian approximation with exponential
decay can accurately capture the exact solution. This
renders the RWA-LE inadequate for the description, as
remarked in the discussion of Eq. (120b). However, since

the CG-LE retains the coarse-graining time-scale as an
optimization parameter, we use it to understand how
close a Markovian approximation can still be to the ex-
act solution in this rather extreme non-Markovian case,
even though we have already concluded that the valid-
ity condition of the CG-LE cannot be satisfied [recall the
discussion in Section IVA].
Figs. 6 and 7 depict the time evolution of the same

metrics as in the previous section but for the impulse
spectral density J1 with two different qubit frequencies:
Ω0/ωc = 1/2 and Ω0/ωc = 2. For this spectral density,
we have closed analytical expressions for the TCL Lamb
shift [see Eqs. (152a) and (153a)] and decay rate [see
Eqs. (152b) and (153b)]. In general, we observe that
as expected, the CG-LE is a poor approximation to both
the short-time and longer-time oscillatory behavior of the
decay rate, population, and coherence.
In contrast, the TCL2 and TCL4 approximations in

Eqs. (152b) and (153b) are fairly accurate for short-time
dynamics. However, the populations and coherences un-
der TCL4 deviate rapidly from the exact solution for
longer times, as demonstrated in Figs. 6d to 6f and 7d
to 7f. The deviation is accentuated by the recurrent in-
tervals of negative decay rates in the exact solution and
TCL approximations. This is especially noticeable in
TCL4, where the oscillations of the decay rates increase
with time, taking on higher negative values, as seen in
Figs. 6b and 7b. Consequently, TCL4 develops an insta-
bility reflected in the diverging oscillation frequency of
the coherence seen in Figs. 6e and 6f. An explanation
of the breakdown of the TCL approximation is given in
Appendix I.
When comparing the low qubit frequency case

(Ω0/ωc = 1/2) in Figs. 6d to 6f with the high qubit fre-
quency case (Ω0/ωc = 2) in Figs. 7d to 7f, a distinction
emerges. In the former, TCL2 exhibits a decay to zero
similar to CG-LE, while in the latter, TCL2 mirrors the
oscillatory behavior of the exact solution. This observa-
tion underscores the higher accuracy of the TCL approx-
imation as the qubit frequency increases. However, while
TCL4 is a better approximation at short times ωct < 1.5,
it is worse than TCL2 at long times for the impulse spec-
tral density.

D. Exact solution vs TCL and Markov
approximations for the triangular spectral density

The triangular spectral density J3(ω) = ηωΘ(ωc−ω) is
intermediate between the impulse density J1(ω) and the
Ohmic density J2(ω) because it matches J2(ω) for low
frequencies and drops to zero for frequencies exceeding
the cutoff. In Figs. 8 and 9, we perform a comparison
for Ω0/ωc = 1/2 and Ω0/ωc = 1.8. Recall that here too,
the validity condition of the CG-LE cannot be satisfied,
as discussed in Section IVA.
Similar to the impulse case J1, for J3, we observe a

strong non-Markovian oscillatory behavior in the exact
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J1(ω) = |g|2δ(ω − ωc) |g| = 1 Ω0/ωc = 1/2

(a) Trace-norm distance (b) Decay rate (c) Lamb shift

(d) Population (e) Coherence – real part (f) Coherence – imaginary part

FIG. 6: Same as Fig. 2 but with an impulse bath spectral density J1(ω) = |g|2δ(ω − ωc) with coupling |g| = 1 and a low
qubit frequency: Ω0/ωc = 1/2. The CG-LE coarse graining time is τ = 7.197305/ωc.

J1(ω) = |g|2δ(ω − ωc) |g| = 1 Ω0/ωc = 2

(a) Trace-norm distance (b) Decay rate (c) Lamb shift

(d) Population (e) Coherence – real part (f) Coherence – imaginary part

FIG. 7: Same as Fig. 2 but with an impulse bath spectral density J1(ω) with coupling |g| = 1 and a high qubit frequency:
Ω0/ωc = 2. The CG-LE coarse graining time is τ = 3.609881/ωc.
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J3(ω) = ηΘ(ωc − ω) η = 1 Ω0/ωc = 1/2

(a) Trace-norm distance (b) Decay rate (c) Lamb shift

(d) Population (e) Coherence – real part (f) Coherence – imaginary part

FIG. 8: Same as Fig. 2 but with a triangular bath spectral density J3(ω) = ηωΘ(ωc − ω) with coupling η = 1 and a low qubit
frequency: Ω0/ωc = 1/2. The CG-LE coarse graining time is τ = 2.631777/ωc.

J3(ω) = ηΘ(ωc − ω) η = 1 Ω0/ωc = 1.8

(a) Trace-norm distance (b) Decay rate (c) Lamb shift

(d) Population (e) Coherence – real part (f) Coherence – imaginary part

FIG. 9: Same as Fig. 2 but with a triangular bath spectral density J3(ω) = ηωΘ(ωc − ω) with coupling η = 1 and a high
qubit frequency: Ω0/ωc = 1.8. The CG-LE coarse graining time is τ = 1.8629886/ωc. Note that in panel (b), the RWA-LE
decay rate is zero due to Eq. (126b).
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solution’s population and coherence, in Figs. 8d to 8f
and 9d to 9f, respectively. The decay rate (as seen in
Figs. 8b and 9b) oscillates between positive and negative
values.

As previously discussed, the TCL approximation is ca-
pable of capturing the quantum Zeno effect, which leads
to a better agreement with the exact solution than the
Markovian approximation does for short evolution times.
However, a significant difference emerges in the exact
decay rate between low and high qubit frequencies, as
shown in Figs. 8b and 9b. In the latter case, the decay
rate oscillates and converges to zero (equivalent to the
rate of the Markov approximations). Conversely, in the
former case, the decay rate exhibits discontinuous behav-
ior, rendering the approximation methods unsuitable for
fitting the exact solution. In general, when Ω0 < ωc, the
discontinuous behavior of the decay rate leads to oscil-
latory population dynamics, where the population first
decays to zero, then revives, and subsequently decays
again. However, for Ω0 > ωc, the decay rate converges
to zero, resulting in non-decaying population dynamics,
similar to what was observed for J1 in Fig. 7d.

Furthermore, as depicted in Fig. 8c, the exact Lamb
shift S diverges when Ω0 < ωc in contrast to the zero
Lamb shift in the CG-LE, the constant non-zero S in the
RWA-LE, and TCL2 (which converges to RWA). How-
ever, TCL4 diverges in an attempt to match the exact
S. In contrast, for the Lamb shift S when Ω0 > ωc (as
shown in Fig. 9c), the TCL approximations align with
the oscillatory behavior of the exact solution. Even the
constant RWA-LE approximation closely resembles the
asymptotic behavior. However, the CG solution main-
tains a zero Lamb shift.

Moving on to the population and coherence in Ω0 < ωc,
as illustrated in Figs. 8d to 8f, we observe that the ap-
proximations rapidly decay to zero, matching the exact
solution at short times. However, the oscillatory behavior
at later times remains beyond the reach of the approxi-
mations, similar to what was observed for J1 in Fig. 6d.

In contrast, for the population and coherence at Ω0 >
ωc, as depicted in Figs. 9d to 9f, the TCL approximation
exhibits an oscillatory and non-decaying behavior, akin
to the exact solution, matching the Zeno effect at short
times. TCL4, in particular, matches the exact solution
well up to ωct ≈ 2. The CG-LE approximation performs
much better than RWA-LE for short times in describing
the excited state population, which remains constant in
the latter due to its zero decay rate [as can be seen from
Eq. (126b)]. The two are comparable in describing the
coherence. For long times, the Markov approximations,
which display monotonic decay, fail to capture the exact
behavior. CG-LE, which aims to minimize the trace-
norm distance with the exact solution, decays slowly to
achieve its objective.

In summary, for the triangular spectral density, when
Ω0 > ωc, the non-Markovian oscillatory behavior is cap-
tured qualitatively by the TCL approximation, as op-
posed to CG or RWA. In contrast, when Ω0 < ωc, all ap-

proximations exhibit rapid decay and fail to accurately
capture the exact solution.

V. SUMMARY AND CONCLUSIONS

In this work, we studied the dynamics of a qubit in a
cavity interacting with bosonic baths described by three
different spectral densities: impulse, Ohmic, and trian-
gular. The model is exactly solvable within the single-
excitation subspace, and this allowed us to perform a
comprehensive comparison to a number of different mas-
ter equations, both Markovian (CG-LE, C-LE, and RWA-
LE) and non-Markovian (TCL2 and TCL4). Of the three
spectral densities, the Ohmic model is the most physi-
cally relevant, and the other two were introduced primar-
ily to allow us to reach closed-form analytical results, as
well as to study extreme non-Markovian dynamics.
For weak coupling and a large qubit frequency, the

Ohmic case leads to a quasi-exponential decay, charac-
teristic of the Markovian limit. In this regime, therefore,
we found that the purely Markovian master equations are
able to approximate the exact solution rather well. Out-
side of this regime, in particular also for the impulse and
triangular spectral densities, the Markovian master equa-
tions perform poorly, but we found that TCL is still rel-
atively accurate, in particular for short evolution times.
The TCL is also able to capture distinctly non-Markovian
features such as bath-induced population and coherence
oscillations.
Within the regime of validity of the Markovian master

equations, we found the CG-LE and C-LE to be better
approximations than the standard RWA-LE. This was
achieved by optimizing the coarse-graining time to min-
imize the difference between the CG-LE and the exact
solution.
Overall, this work shows that low-order quantum mas-

ter equations can be accurate when operated in their
guaranteed regime of validity (short evolution times, in
particular), but significant caution must be exercised in
trusting their predictions outside of these regimes, as
they can dramatically deviate from the exact dynamics.
The TCL approach stands out as significantly more ac-
curate than the Markovian master equations, even when
the latter are fine-tuned via the optimization of a free pa-
rameter such as the coarse-graining time. The standard
Lindblad equation based on the rotating wave approxi-
mation is particularly suspect.
Future research may wish to address—within the con-

text of the same analytically solvable model as stud-
ied here, or similar analytically solvable models—the
accuracy of TCL at higher orders, as well as a va-
riety of other master equations, such as the phe-
nomenological post-Markovian master equation [31, 32],
Floquet-based master equations for periodic driving [33,
34], time-dependent Markovian quantum master equa-
tions [6, 35–38], the universal Lindblad equation [39],
the geometric-arithmetic master equation [40, 41], reg-
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ularized cumulant-based master equations [42], as well
as various adiabatic master equations [43–45]. Another
interesting direction worth considering is to incorporate
more general initial states, such as a hermal Gibbs state,
a coherent state [20] or a squeezed initial bath state.
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Appendix A: Detailed exact solution

Considering the Hamiltonian in Eq. (1), the general so-
lution for the 1-excitation subspace is given by Eq. (14).
This solution can be expressed as a linear combination
of the basis eigenvectors {|ψ⟩0 , |ψ⟩1 , |φk⟩}, which are
tensor products of the qubit system basis {|0⟩ , |1⟩} and
the 1-excitation bath basis {|v⟩ , |k⟩}k∈1,2,.., as shown in
Eq. (13). Here, |v⟩ denotes the vacuum state with no pho-

tons, and |k⟩ = b†k |v⟩ represents the state with one pho-
ton in mode k. The coefficients of the linear combination
satisfy the normalization condition given in Eq. (15). For
the evolution of the closed system within the 1-excitation
subspace, we utilize the Schrödinger equation with the
interaction Hamiltonian in Eq. (11). Using

σ−(t) |0⟩ = σ+(t) |1⟩ = B(t) |v⟩ = 0 (A1a)

σ+(t) |0⟩ = eiΩ0t |1⟩ , σ−(t) |1⟩ = e−iΩ0t |0⟩ (A1b)

B(t) |k⟩ = gke
−iωkt |v⟩ , B†(t) |v⟩ =

∑
k

g∗ke
iωkt |k⟩ ,

(A1c)

this leads to Eq. (19):

i ˙|ϕ⟩ = ċ0(t) |ψ0⟩+ ċ1(t) |ψ1⟩+
∑
k

ċk(t) |φk⟩ (A2a)

= λH̃SB |ϕ(t)⟩ (A2b)

= λ[σ+(t)⊗B(t) + σ−(t)⊗B†(t)]×(
c0(t) |ψ0⟩+ c1(t) |ψ1⟩+

∑
k

ċk(t) |φk⟩
)

(A2c)

= λ
(
σ+(t) |0⟩ ⊗B(t)

∑
k

ck(t) |k⟩+

c1(t)σ−(t) |1⟩ ⊗B†(t) |v⟩
)

(A2d)

= λ
(∑

k

gkck(t)e
i(Ω0−ωk)t |ψ1⟩+∑

k

g∗kc1(t)e
−i(Ω0−ωk)t |φk⟩

)
(A2e)

We can obtain the joint system-bath density matrix using
Eq. (14):

ρSB(t) =
(
|c0|2|0⟩⟨0|+ c0c

∗
1|0⟩⟨1|+ c1c

∗
0|1⟩⟨0|

+|c1|2|1⟩⟨1|
)
⊗ |v⟩⟨v|+ |0⟩⟨0| ⊗

∑
j,k

cjc
∗
k|j⟩⟨k|

+
∑
k

(c0c
∗
k|v⟩⟨k|+ c∗0ck|k⟩⟨v|)

)
+
∑
k

c1c
∗
k|1⟩⟨0|

⊗ |v⟩⟨k|+
∑
k

ckc
∗
1|0⟩⟨1| ⊗ |k⟩⟨v| . (A3)

Taking the partial trace over the bath, we obtain the
system state in the matrix form shown in Eq. (25). Its
time derivative is given in Eq. (26). If we write the system
density matrix in terms of the populations ρ00, ρ11 and
its coherences ρ01, ρ10, we have:

ρ11(t) = |c1(t)|2 = 1− ρ00(t) (A4a)

ρ01(t) = c0ċ
∗
1(t) = ρ∗10(t) . (A4b)

Explicitly substituting the system density matrix into the
ansatz Eq. (28) along with Eq. (27), we obtain:

KS(t)ρ =

(
γ(t)ρ11

1
2 (iS(t)− γ(t))ρ01

1
2 (−iS(t)− γ(t))ρ10 −γ(t)ρ11

)
(A5)

Comparing this with Eq. (26) gives us the following dif-
ferential equations:

∂t|c1(t)|2 = −γ(t)|c1(t)|2 (A6a)

c∗0ċ1(t) = −1

2
(iS(t) + γ(t)) c∗0c1(t) . (A6b)

From the first equation, we obtain the population evo-
lution Eq. (30a), and from the second one, we can take
its real and imaginary parts to obtain Eq. (29).
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Appendix B: Simplification of the decay rate
expressions for the CG-LE

1. Ohmic spectral density

Starting from Eq. (81) we have:

γ(τ) =

∫ ∞

0

ηωe−ω/ωcτ sinc2
(
(Ω0 − ω)τ

2

)
dω (B1a)

=
2

τ
η

∫ ∞

−Ω0

dν
(ν +Ω0)e

−(ν+Ω0)/ωc

ν2
(1− cos ντ) ,

(B1b)

where we used the change of variables ν = ω − Ω0. This
integral can be split into two parts. By using the expo-
nential integral function Eq. (39c) we have:∫ ∞

−Ω0

dν
e−ν/ωc

ν
(1− cos ντ) = −Ei

(
Ω0

ωc

)
+

1

2

[
Ei

(
Ω0

ωc
+ iΩ0τ

)
+ Ei

(
Ω0

ωc
− iΩ0τ

)]
. (B2)

For the second integral, we can utilize integration by
parts. Setting u = e−ν/ωc(1 − cos ντ) and dv = ν−2dν,
we have:∫ ∞

−Ω0

udv = −e
Ω0/ωc

Ω0
(1− cosΩ0τ)

+

∫ ∞

−Ω0

dν
e−ν/ωc

ν

(
τ sin ντ − 1

ωc
(1− cos ντ)

)
. (B3)

Since∫ ∞

−Ω0

dν
e−ν/ωc

ν
τ sin ντ = (B4)

− i

2
τ

[
Ei

(
Ω0

ωc
+ iΩ0τ

)
− Ei

(
Ω0

ωc
− iΩ0τ

)]
,

we can combine all the terms, and arrive at the final
expression for γ(τ) given in Eq. (81c).

2. Triangular spectral density

Starting from Eq. (82) we have:

γ(τ) =

∫ ωc

0

ηωτ sinc2
(
(Ω0 − ω)τ

2

)
dω (B5a)

=
2

τ

∫ ωc−Ω0

−Ω0

dν
η(ν +Ω0)

ν2
(1− cos ντ) . (B5b)

where we again used the change of variables ν = ω−Ω0.
Now for Ω0 < ωc, we have:∫ ωc−Ω0

−Ω0

dν
1− cos ντ

ν
=

ln

(
ωc − Ω0

Ω0

)
− Ci((ωc − Ω0)τ) + Ci(Ω0τ) , (B6)

where the sine and cosine integral functions are given in
Eqs. (39a) and (39b), respectively. The second term can
be obtained by using integration by parts:∫ ωc−Ω0

−Ω0

dν
1− cos ντ

ν2
= −1− cos ντ

ν

∣∣∣∣ωc−Ω0

−Ω0

+ τ

∫ ωc−Ω0

−Ω0

sin(ντ)

ν
. (B7)

The last term is the sine integral function. Combining,
we arrive at the total rate as given by Eq. (82c).

Appendix C: Why the first order cumulant K(1) in
the C-LE can be made to vanish

Let ⟨B⟩ = Tr(ρBB) and define a new, shifted bath
operator:

B′ ≡ B − ⟨B⟩IB . (C1)

Its expectation value vanishes:

⟨B′⟩ = ⟨B⟩ − ⟨B⟩⟨IB⟩ = 0 . (C2)

The corresponding bath interaction picture operator is:

B′(t) = U†
B(t)B

′UB(t) = U†
B(t)(B − ⟨B⟩IB)UB(t)

= B(t)− ⟨B⟩IB , (C3)

where, as before, UB(t) = e−iHBt. Assuming stationarity
[HB , ρB(0)] = 0 immediately implies [UB(t), ρB ] = 0. In
this case also ⟨B′(t)⟩ = 0, since then:

⟨B′(t)⟩ = Tr[U†
B(t)B

′UB(t)ρB ] (C4a)

= Tr[B′UB(t)ρBU
†
B(t)] = ⟨B′⟩ = 0 . (C4b)

Let

H ′
SB ≡ A⊗B′ , ∆H ′

S ≡ ⟨B⟩A , H ′
S ≡ HS +∆H ′

S .
(C5)

Correspondingly, the system-bath interaction can be
written as

HSB = H ′
SB +A⊗ (B−B′) = H ′

SB +∆H ′
S ⊗ IB . (C6)

Thus, we can write the full Hamiltonian as:

H = HS ⊗ IB +HSB + IS ⊗HB (C7a)

= H ′
0 +H ′

SB , H ′
0 ≡ H ′

S ⊗ IB + IS ⊗HB , (C7b)

where H ′
0 defines a new, shifted interaction picture

Hamiltonian.
Correspondingly, in this new interaction picture

H̃ ′(t) = U ′†
0 (t)H ′

SBU
′
0(t) = A(t) ⊗ B′(t), and we find,

using Eq. (C4):

TrB [H̃
′(t), ρSB(0)] = TrB [A(t)⊗B′(t), ρS(0)⊗ ρB(0)]

= ⟨B′(t)⟩[A(t), ρS(0)] = 0 . (C8)
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Therefore,K ′(1)(t)ρ(0) = 0, withK ′(1) defined within the
shifted interaction picture and with the modified system-
bath interaction H ′

SB .

The extension to the case when HSB has the general
form HSB =

∑
αAα ⊗ Bα is immediate; in this case

B′
α = Bα − ⟨Bα⟩IB and:

H ′
S =

∑
α

⟨Bα⟩Aα , H ′
SB =

∑
α

Aα ⊗B′
α . (C9)

Now, for our bath operators B+(t) =
∑

k gke
iωktbk and

B− = B∗
+ and the bath state ρB = |v⟩⟨v| we have that

⟨B+(t)⟩ = Tr[ρBB+(t)] =
∑
k

gke
iωkt⟨bk⟩ = 0 , (C10)

and analogously ⟨B−(t)⟩ = 0, both arising from the fact
that the annihilation and creation operators average to
zero [Eq. (64)]. As a result, in our case, in fact B′(t) =
B(t).

Appendix D: Proof of Eq. (93b)

It is useful to relate Bαβω(t) with bαβω(t):

Bαβω(t) =

∫ t

0

ds

∫ s

0

ds′ei(ω(s−s′)Bαβ(s, s
′) (D1)

=

[∫ t

0

ds

∫ t

0

ds′ −
∫ t

0

ds

∫ t

s

ds′
]
ei(ω

′s−ωs′)Bαβ(s, s
′)

=

[∫ t

0

ds

∫ t

0

ds′ −
∫ t

0

ds′
∫ s′

0

ds

]
eiω(s−s′)Bαβ(s, s

′)

= bαβω(t)−
∫ t

0

ds

∫ s

0

ds′e−iω(s′−s)Bαβ(s
′, s)

= bαβω(t)− B∗
αβω(t) , (D2)

where in the last line we used Eq. (90).

Appendix E: [HB , ρB ] ̸= 0

The bath state can be obtained via a partial trace of
the system from the state Eq. (14), whose explicit pure
density matrix is given in Eq. (A3):

ρB(t) = TrS |ϕ(t)⟩⟨ϕ(t)| = (|c0|2 + |c1|2)|v⟩⟨v| (E1)

+
∑
k

ck(t)c
∗
0|k⟩⟨v|+

∑
k

c∗k(t)c0|v⟩⟨k|+
∑
k,k′

ckc
∗
k′ |k⟩⟨k′| .

Now using the bath Hamiltonian in Eq. (9) and using the
identities nj |v⟩ = 0 and nj |k⟩ = δjk |j⟩, we have:

HBρB =
∑
j,k

ωjcj(t)c
∗
k(t)|j⟩⟨k|+

∑
j

ωjc
∗
0cj(t)|j⟩⟨v|

(E2a)

= (ρBHB)
† ̸= ρBHB (E2b)

=
∑
j,k

ωjck(t)c
∗
j (t)|k⟩⟨j|+

∑
j

ωjc0c
∗
j (t)|v⟩⟨j|.

(E2c)

In the particular case where ρB(0) = |v⟩⟨v|, or c0 = 0 and
ck(0) = 0, it trivially follows that [HB , ρB(0)] = 0.

Appendix F: Inadequacy of the Markov
approximation

In the main text, we showed that we can reduce
Eq. (108) to Eq. (116). However, this may lead to an
unbounded approximation error, as we now show in de-
tail.

Before the Markov approximation, Eq. (108) contains
terms of the following form:∫ t

0

dτBαβ(±τ)e±iΩ0τσασβ ρ̃(t− τ) , (F1)

where α, β ∈ {+,−}. The Markov approximation re-
places the latter with∫ ∞

0

dτBαβ(±τ)e±iΩ0τσασβ ρ̃(t) . (F2)

Therefore the approximation error is the difference be-
tween these two quantities, which we write as

δ = ∥∆1 +∆2∥ ≤ ∥∆1∥+ ∥∆2∥ , (F3)

where ∥ · ∥ represents the operator norm and

∆1 ≡
∫ ∞

0

dτBαβ(±τ)e±iΩ0τσασβ(ρ̃(t)− ρ̃(t− τ))

(F4a)

∆2 ≡
∫ ∞

t

dτBαβ(±τ)e±iΩ0τσασβ ρ̃(t− τ) . (F4b)

Let ∥·∥1 denote the trace norm and observe that ∥AB∥ ≤
∥A∥∥B∥1 for any pair of operators A and B.

For the Ohmic spectral density J2(ω) we have, using
Eq. (121):

∥∆2∥ ≤
∫ ∞

t

dτ |Bαβ(±τ)| ∥σα∥ ∥σβ∥ ∥ρ̃(t− τ)∥1 (F5a)

≤
∫ ∞

t

dτ |B+−(±τ)| = ηωc

∫ ∞

t

d(ωcτ)

1 + (ωcτ)2

(F5b)

=
(π
2
− arctan(ωcτ)

)
ηωc . (F5c)
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This quantity goes to zero for ωcτ ≫ 1 as required. On
the other hand, the error term ∆1 is unbounded. First,
by the mean value theorem, there is a point t′ ∈ [t− τ, t]
such that:

∥ρ̃(t)− ρ̃(t− τ)∥ ≤ τ sup
t′∈[t−τ,t]

∥ ˙̃ρ(t′)∥ , (F6)

so that:

∥∆1∥ ≤
∫ ∞

0

dτ τ |Bαβ | sup
t′∈[t−τ,t]

∥ ˙̃ρ(t′)∥ . (F7)

We can bound ∥ ˙̃ρ(t′)∥ using the state evolution in
Eq. (111), where we undo the Markovian approxima-
tion by replacing ρ̃(t) with ρ̃(t − τ) [i.e., returning to
Eq. (108)]:

∥ ˙̃ρ(t)∥ ≤
∫ t

0

dτ |B+−(τ)| ∥[σ+, σ−ρ̃(t− τ)]∥

+

∫ t

0

dτ |B−+(−τ)| ∥[σ+, ρ̃(t− τ)σ−]∥ (F8a)

≤ 4

∫ t

0

dτ |B+−(τ)| ∥σ+∥ ∥σ−∥∥ρ̃(t− τ)∥1 (F8b)

≤ 4

∫ t

0

dτ |B+−(τ)| ≤ 4

∫ ∞

0

dτ |B+−(τ)| (F8c)

= 2πηωc , (F8d)

where in the last line we used Eq. (F5c) evaluated at
t = 0.
While the integral∫ ∞

0

τn|B+−(τ)|dτ =
π

2
ηω1−n

c sec(nπ/2) (F9)

converges for |n| < 1, it does not for |n| ≥ 1. Indeed, for
the Ohmic spectral density we have:∫ ∞

0

τ |B+−(τ)|dτ = lim
τ→∞

η

2
ln[1 + (ωcτ)

2] , (F10)

which diverges. While this diverging upper bound does
not prove that the error δ itself diverges, it does suggest
that this is indeed the case and that hence the approxi-
mation of replacing ρ(t−τ) by ρ(t) is inaccurate. Indeed,
the exact solution exhibits excited state population os-
cillations instead of purely Markovian exponential decay
for all values of the parameters of the Ohmic density.

A similar situation arises for the triangular spectral
density J3(ω). We find, numerically, that the integral∫∞
0
τn|B+−(τ)|dτ [recall Eq. (124)] diverges for n > 0,

and therefore the Markov approximation is inadequate.
For a rigorous error bound, see Ref. [6].

Appendix G: Proof of Eq. (115)

Recall that Γαβ(ω) ≡
∫∞
0
dτBαβ(τ)e

iωτ and HSB =

σ+ ⊗ B+ + σ− ⊗ B− and B†
+ = B−. Thus, if α ̸= β,

Bα = B†
β . It follows that

B∗
βα(τ) = Tr

[
(ρBBβ(τ)Bα)

†
]

(G1a)

= Tr
[
ρBUB(τ)B

†
αU

†
B(τ)B

†
β

]
(G1b)

= Tr
[
ρBUB(τ)BβU

†
B(τ)Bα

]
= Bβα(−τ) .

(G1c)

Hence, B∗
±∓(τ) = B±∓(−τ) [as well as B∗

±±(τ) =
B∓∓(−τ), though we don’t use this result], which yields
Γ∗
±∓(ω) =

∫∞
0
dτB±∓(−τ)e−iωτ .

Appendix H: Simplification of the Lamb shift
expressions for the RWA-LE

1. J2(ω) = ηωe−ω/ωc

Here we derive Eq. (122b). Our starting point is
Eq. (122a), which we write as

Γ+−(Ω0)/(ηωc) =

∫ ∞

0

d(ωcτ)
eiΩ0τ

(1 + iωcτ)2
(H1a)

=

∫ ∞

0

eiαxdx

(1 + ix)2
(H1b)

=

∫ ∞

−∞

eiαxdx

(1 + ix)2
−
∫ 0

−∞

eiαxdx

(1 + ix)2
, (H1c)

where α = Ω0/ωc and x = ωcτ .
The complex exponential integral is defined as follows

[46]:

E1(z) ≡
∫ ∞

z

e−u

u
du = −

∫ −z

−∞

eu

u
du , (H2)

where z = x + iy and | arg(z)| ≤ π/2. The following
property holds for y > 0:

−E1(−y) = Ei(y) + iπ , (H3)

where the real exponential integral Ei was defined in
Eq. (39c).
The first integral on the right hand side of Eq. (H1c)

can be computed via the residue theorem:∫ ∞

−∞

eiαxdx

(1 + ix)2
= −

∫ ∞

−∞

eiαxdx

(x− i)2
= −2πi(iαe−α) ,

(H4)

since the second order pole of the analytic function is at
x = i, so that the residue is:

Res =
d

dx
eiαx

∣∣∣∣
x=i

= iαe−α . (H5)
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For the second integral on the right side of Eq. (H1c)
we use a change of variable z = x − i and integrate by
parts:∫ 0

−∞

eiαxdx

(1 + ix)2
= −

∫ 0

−∞

eiαxdx

(x− i)2
= −e−α

∫ −i

−∞

eiαzdz

z2

(H6a)

= −e−α

[
−e

iαz

z

∣∣∣∣−i

−∞
+ iα

∫ −i

−∞

eiαz

z
dz

]
(H6b)

= i− iαe−α

∫ −i

−∞

eiαz

z
dz = i− iαe−α

∫ α

−∞

eu

u
du .

(H6c)

Using the complex exponential integral Eq. (H2) along-
side Eq. (H3), we have:∫ 0

−∞

eiαxdx

(1 + ix)2
= i− iαe−α(−E1(−α)) (H7a)

= παe−α + i− iαe−α Ei(α) . (H7b)

Hence, the integral of interest, Eq. (H1b), becomes∫ ∞

0

eiαxdx

(1 + ix)2
= παe−α − i+ iαe−α Ei(α)

= −i+ αe−α(π + iEi(α)) . (H8)

Collecting these results we obtain Eq. (122b).

2. J3(ω) = ηωΘ(ωc − ω)

Here we derive Eq. (126). Our starting point is
Eq. (125), which we write as

Γ+−(Ω0)/(ηωc) =

∫ ∞

0

dx
e−ix(1 + ix)− 1

x2
eiαx , (H9)

where, again, α = Ω0/ωc and x = ωcτ .
We start from the following indefinite integral, solved

via integration by parts:∫
eiux

x2
dx = −e

iux

x
+ iu

∫
eiux

x
dx . (H10)

Hence the integral in Eq. (H9) is:

=

∫ ∞

0

ei(α−1)x

x2
dx−

∫ ∞

0

eiαx

x2
dx+ i

∫ ∞

0

ei(α−1)x

x
dx

(H11a)

=
eiαx(1− e−ix)

x

∣∣∣∣∞
0

− iα

∫ ∞

0

eiαx(1− e−ix)

x
dx

(H11b)

= −i+ 2α

∫ ∞

0

ei(2α−1)u sinc(u)du (H11c)

To compute the last integral, we consider the real and
imaginary parts separately. The real part is:∫ ∞

0

cos(2α− 1)u
sinu

u
du (H12a)

=

{∫∞
0

sin 2αu+sin(2−2α)u
2u du = π

2 0 < α < 1∫∞
0

sin 2αu−sin(2α−2)u
2u du = 0 α > 1

(H12b)

The imaginary part is:∫ ∞

0

sin(2α− 1)u
sinu

u
du (H13a)

=

∫ ∞

0

cos(2α− 2)u− cos 2αu

2u
du (H13b)

=

{
− 1

2 ln
(
1
α − 1

)
0 < α < 1

− 1
2 ln

(
1− 1

α

)
α > 1

. (H13c)

Therefore the integral in Eq. (H9) is

Γ+−(Ω0)

ηωc
=

{
πα− i

(
1 + α ln

(
1
α − 1

))
0 < α < 1

−i
(
1 + α ln

(
1− 1

α

))
α > 1

.

(H14)

Collecting these results and using Eq. (117) we obtain
Eq. (126).

Appendix I: Breakdown of the TCL approximation

For strong coupling or a small gap Ω0 < ωc, as in
Figs. 6 and 8, we observe that the TCL approximation
is accurate for short times but fails to capture the sub-
sequent oscillatory behavior. For these cases the oper-
ator I − Σ in Eq. (137) is not invertible. For example,
in the case of the impulse spectral density J1, there is
a common time t0 where the excited state population
ρ11(t0) = |c1(t0)|2 = 0 independently from the initial
condition. This can be seen directly from Eq. (34) or
from Eq. (36b) when γ diverges. The time t0 is the min-
imum time tn such that

tn =
2

|δ|

(
arctan

|δ|
|Ω0 − ωc|

+ nπ

)
, (I1)

where n is and integer and δ is given in Eq. (35). Since
TCL is a time-local master equation, it is impossible to
invert the evolution for t ≥ t0 back to its initial condition.
This implies that the TCL gives inconsistent result when
the exact solution for the population vanishes.
A similar argument can be given for the triangular

spectral density J3 as shown in Fig. 8. In contrast, this
argument is not valid for the infinite range Ohmic spec-
tral density J2, where the population decreases but only
vanishes as t→ ∞.
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