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We introduce a new reduction of the motion of three point vortices in a two-dimensional ideal fluid. This proceeds in
two stages: a change of variables to Jacobi coordinates and then a Nambu reduction. The new coordinates demonstrate
that the dynamics evolve on a two-dimensional manifold whose topology depends on the sign of a parameter κ2 that
arises in the reduction. For κ2 > 0, the phase space is spherical, while for κ2 < 0, the dynamics are confined to the upper
sheet of a two-sheeted hyperboloid. We contrast this reduction with earlier reduced systems derived by Gröbli, Aref,
and others in which the dynamics are determined from the pairwise distances between the vortices. The new coordinate
system overcomes two related shortcomings of Gröbli’s reduction that have made understanding the dynamics difficult:
their lack of a standard phase plane and their singularity at all configurations in which the vortices are collinear. We
apply this to two canonical problems. We first discuss the dynamics of three identical vortices and then consider
the scattering of a propagating dipole by a stationary vortex. We show that the points dividing direct and exchange
scattering solutions correspond to the locations of the invariant manifolds of equilibria of the reduced equations and
relate changes in the scattering diagram as the circulation of one vortex is varied to bifurcations of these equilibria.

I. INTRODUCTION

The mutually induced motion of point vortices in a two-
dimensional inviscid incompressible fluid is a classical topic
in fluid mechanics. The positions of the vortices are described
by a Hamiltonian system of ordinary differential equations
that has been well-studied for over 150 years1,2. These ODEs
remain relevant because of their deep connection to turbu-
lence in Bose-Einstein condensates and other quantum fluids,
as summarized, for example, by Lydon3.

The point-vortex model idealizes a near-two-dimensional
inviscid incompressible fluid in which the vorticity is con-
fined to a finite number of discrete points. Each such point
vortices induces a velocity that, in turn, causes the vortices
to move. It is a standard topic in elementary fluid mechanics
textbooks4 and is well covered in Newton’s textbook devoted
to the subject1.

Systems of three vortices are the smallest systems with
time-dependent inter-vortex distances. They are integrable
yet display various behaviors depending on the three circu-
lations. Solutions to system (1) evolve in a 2N-dimensional
phase space, so reducing the dimensionality is necessary to
understand the dynamics. This paper aims to introduce a ge-
ometric reduction to the three-vortex problem that avoids in-
troducing artificial singularities in the dynamics. Previously
used reductions introduce such singularities because they are
incompatible with the topology of the manifold on which the
dynamics occur. This has made reasoning about the dynam-
ics more difficult because the singularities get in the way of
applying standard geometric phase-space arguments.

We apply this reduction to two cases of the three-vortex
problem: the motion of three identical vortices and the scat-
tering of a propagating dipole by a third, initially stationary
vortex. In each case, the new form of the equations dramati-
cally simplifies the application of dynamical systems reason-

ing.
Helmholtz derived the model of point-vortex motion de-

scribing the interaction of N point vortices, defined by the
system of 2N ODEs in 18585:

dxi

dt
=−

N

∑
j ̸=i

Γ j
(yi − y j)∥∥ri − r j

∥∥2 ,
dyi

dt
=

N

∑
j ̸=i

Γ j
(xi − x j)∥∥ri − r j

∥∥2 . (1)

Here ri = ⟨xi,yi⟩ denotes the position of the ith point vortex
and 2πΓi represents its circulation. The equations conserve an
energy

H(r1, . . . ,rN) =−1
2

N

∑
i< j

ΓiΓ j log
∥∥ri − r j

∥∥2
. (2)

In 1876, Kirchhoff noted that system (1) has a Hamiltonian
formulation6,

dxi

dt
=

1
Γi

∂H
∂yi

,
dyi

dt
=− 1

Γi

∂H
∂xi

. (3)

System (1) has three well-known conservation laws, which
we write as

M = ⟨Mx,My⟩=
N

∑
i=1

Γiri, and Θ =
N

∑
i=1

Γi∥ri∥2. (4)

The quantities M and Θ are called the linear impulse and the
angular impulse, respectively. In the case that Γtot =∑

N
i=1 Γi ̸=

0, then

r0 = M/Γtot (5)

defines the location of the conserved center of vorticity. In
this case, taking r0 at the origin is natural.

The paper is organized as follows. In Sec. II, we in-
troduce the reduced equations that Gröbli used to integrate
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the equations of motion and Aref’s interpretation of this
system as trilinear coordinates for R2. This section con-
cludes by discussing other reductions of the three-vortex sys-
tem in the existing literature. In Sec. III, we review some
ideas from Hamiltonian mechanics, including the Poisson
bracket. Sec. IV describes the reduction techniques, introduc-
ing with Jacobi coordinates in Sec. IV A and Nambu brack-
ets in Sec. IV B before applying these two methods to the
three-vortex system in Sec. IV C. After this, we apply the re-
duced system to explore three cases of vortex motion. First, in
Sec. V, we consider the canonical case of three identical vor-
tices. Sec. VI, considers vortices with circulation (1,1,−1) in
which a vortex dipole is scattered by a third, initially station-
ary vortex of the same absolute circulation. This section con-
tains a review of the scattering problem. Using the reduced
equations, we derive an evolution equation for the instanta-
neous scattering angle. This is integrated in Appendix A. We
explain the scattering behavior, including the critical transi-
tion between direct and exchange scattering, entirely in terms
of phase planes of the reduced problems. In Sec. VII, we ex-
tend the analysis to the case where the initially stationary vor-
tex has circulation Γ ̸= 1. We conclude in Sec. VIII with a
discussion of the possible future applications of the coordi-
nate reduction method.

II. GRÖBLI’S REDUCTION AND TRILINEAR
COORDINATES

Gröbli’s 1877 doctoral thesis was the first to explore the
complex dynamics that can arise in systems of three or more
vortices. He simplified the three-vortex problem by deriv-
ing evolution equations for the pairwise distances between
vortices7, finding that these satisfy

d
dt

ℓ2
23
ℓ2

31
ℓ2

12

= 4σA

Γ1
(
ℓ−2

12 − ℓ−2
31

)
;

Γ2
(
ℓ−2

23 − ℓ−2
12

)
;

Γ3
(
ℓ−2

31 − ℓ−2
23

)
,

 (6)

where ℓi j is the distance between vortices i and j, A is the area
of the triangle formed by the vortices, and σ = ±1 gives the
orientation of the triangle spanned by the three vortices vis-
ited in numerical order, taking the value +1 if they appear in
clockwise order and −1 if counterclockwise. Since the area of
a triangle can be obtained from the side lengths using Heron’s
formula,

A =
1
4
(
2ℓ2

12ℓ
2
23 +2ℓ2

23ℓ
2
31 +2ℓ2

31ℓ
2
12 − ℓ4

12 − ℓ4
23 − ℓ4

31
)1/2

,

this is a closed system.
System (6) leads easily to a conservation law

Γ1Γ2ℓ
2
12 +Γ2Γ3ℓ

2
23 +Γ3Γ1ℓ

2
31 = 3LΓ1Γ2Γ3. (7)

The constant L may also be obtained by an appropriate combi-
nation of the constants defined in Eq. (4) and is proportional to
Θ if the center of vorticity r0 is taken at the origin. Depending
on the strengths of the three vortices, this quadratic invari-
ant may or not be positive definite, which has consequences

for the dynamics. Using this conservation law to eliminate
one variable, say ℓ31, Gröbli reduced the system to quadra-
tures. This system and others derived from it are used in most
subsequent studies of the three-vortex problem8–18, a history
that Aref and his collaborators researched extensively2,19. We
have translated Gröbli’s dissertation into English and posted it
on arXiv.org20.

For L ̸= 0, Aref defines new variables

b1 =
l2
23

Γ1L
, b2 =

l2
31

Γ2L
, b3 =

l2
12

Γ3L
, (8)

which must then satisfy, by Eq. (7),

b1 +b2 +b3 = 3.

These may be interpreted as trilinear coordinates for the plane.
That is, given three points p1, p2, and p3 that form an equi-
lateral triangle of height 3, any point in the plane is uniquely
specified by the triplet of signed distances b j from this point
to the lines containing sides j of the triangle, as illustrated in
Fig. 1(a). This has precedent in earlier works of Synge and
Novikov9,10, which use a trilinear coordinate system some-
what different from Aref’s.

For L= 0, we may omit the factor of L−1 from the definition
of the trilinear coordinates in Eq. (8) and find instead

b1 +b2 +b3 = 0.

The dynamics of the trilinear coordinates b j describe the
motion of a point in the plane. Since coordinates ℓi j represent
the sides of a triangle, they must satisfy the triangle inequal-
ity, and not all triples represent physical configurations that
satisfy this constraint. Let Dphys ⊂ R3 denote the domain of
physical configurations. Each point on its interior represents
two distinct phase points related by mirror symmetry. The
boundary ∂Dphys consists of collinear configurations of the
three vortices, and Aref showed it describes a conic section
in the plane. It is an ellipse for certain sets of circulations;
for others, it is a hyperbola. Fig. 1 shows three such images.
Panel (a) is the phase diagram for circulation values (1,1,1),
the trajectories (level sets of a rescaled Hamiltonian denoted
by θ ) are confined to lie inside the circle, which is interior
and tangent to the triangle formed by the three axes of the
trilinear coordinate system. The phase diagram for circula-
tions (1,1,−1) is shown in the phase diagram for circulations
(1,1,−1) for L ̸= 0 in panel (b) and for L = 0 in panel (c). In
the first, Dphys is bounded by a circle; in the second, a hyper-
bola; and in the third, the b1 and b2 axes. These correspond to
Figures 2, 4, and 5 in Ref. 8.

We briefly summarize the reasoning Aref uses to inter-
pret these figures. The evolving vortex configurations move
along level sets of the Hamiltonian in the shaded Dphys re-
gions. Components of these level sets outside Dphys have
no physical meaning. When a trajectory reaches ∂Dphys, the
three vortices are collinear. The motion passes through the
collinear configuration and continues on the phase diagram
by reversing direction and retracing its path. Thus, each point
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b1

b2

b3

p1 p2

p3(a)

b1 b2b3

(c)

FIG. 1. Phase diagrams in trilinear coordinates. Solid black lines are level sets of the Hamiltonian, but only the portions of these curves in
Dphys, shown here as shaded regions, are meaningful. Portions of the level sets lying outside them have no physical meaning. Collinear relative
equilibria are marked ◦ and equilateral triangle relative equilibria •. Heavier curves are separatrices. (a) Vortices of circulations (1,1,1). (b)
Vortices of circulation (1,1,−1) with L ̸= 0. (c) Vortices of circulation (1,1,−1) with L = 0.

in Dphys corresponds to two configurations of opposite orien-
tation. Points where trajectories are tangent to ∂Dphys corre-
spond to collinear relative equilibria, and the orbits connected
to them are their stable and unstable manifolds.

Panel (b) shows the phase diagram for circulations
(1,1,−1) and L ̸= 0, for which ∂Dphys is a hyperbola. The
dotted portions of curves lying outside the boundary are non-
physical. Trajectories that cross ∂Dphys transversely immedi-
ately reverse direction and retrace the same path. Trajectories
tangent to ∂Dphys from the interior are invariant manifolds,
and their points of tangency are hyperbolic fixed points. When
L = 0, the triangle in panel (b) shrinks to a point, and the two
regions bounded by hyperbolas become wedges. The dynam-
ics on the upper wedge of Dphys is shown in panel (c).

Points on ∂Dphys in Fig. 1 correspond to collinear arrange-
ments. Such arrangements are common: many families of pe-
riodic orbits pass through such states twice per period, and
three of the five possible rigidly rotating configurations of
three vortices are collinear. The evolution equations are sin-
gular on ∂Dphys due to the square root that appears in Heron’s
formula. Thus, linearization fails, and even finding the lin-
ear stability of the collinear states is difficult. The singularity
of the reduced ODE system is an artifact of the reduced co-
ordinate system. It is not present in the vortex motion equa-
tions (1), which are singular only at singularities of the Hamil-
tonian (2), i.e., when two or more vortices occupy the same
location.

The images in Figure 1 are phase planes. Still, the above
considerations show that reading the dynamics from this
phase plane takes more effort than from a standard one. Cer-
tain information, like the stability of collinear fixed points, is
not obtainable in this representation. Previous studies have
approached different aspects of three-vortex dynamics using

various reduction approaches. The first is Conte’s 1979 Thèse
d’État, which appeared only as a technical report until its 2015
publication21. This reduces the system to an evolution equa-
tion for a single complex parameter ζ , which, according to
the authors, describes the shape of the triangle formed by the
three vortices. The authors study many aspects of the dynam-
ics using this reduction, but we have found the change of vari-
ables difficult to interpret. Tavantzis and Ting used Synge’s
trilinear coordinates to make a detailed study of the dynam-
ics dependence on the circulation of the three vortices11, but
this has similar problems to Aref’s trilinear formulation. Aref
returned to the stability of collinear arrangements and intro-
duced yet another reduction22. This algebraic approach de-
scribes only the relative equilibria and does not apply to the
dynamics more broadly.

Other reductions have included the angles between the tri-
angle’s edges. For example, Krishnamurthy derived a system
for the three angles plus the radius of the circle circumscribing
the triangle23, and Makarov derived a phase-plane representa-
tion for one side-length and one angle24. Stremler derived an
especially useful system of equations, noting that since the in-
terior angles of a triangle must sum to 2π , they can be used
as a trilinear coordinate system25. Since all interior angles
must be positive, the physical domain coincides with the tri-
angle’s interior, and collinear states occur at the triangle’s ver-
tices. The vertices are singular since all collinear configura-
tions with the same central vortex degenerate to a single point,
including any collinear relative equilibria. Thus, this coordi-
nate system runs into difficulties near collinear arrangements,
mirroring the weakness of trilinear coordinates.
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III. FURTHER MATHEMATICAL PRELIMINARIES

The Poisson bracket used to describe the dynamics of N
point vortices is defined by

{F(r),G(r)}=
N

∑
i=1

1
Γi

(
∂F
∂xi

∂G
∂yi

− ∂F
∂yi

∂G
∂xi

)
, (9)

where

r =
(

x
y

)
, and x,y ∈ RN .

Together with the chain rule, this implies that if r evolves ac-
cording to Eq. (3), any function F(r) evolves according to

dF
dt

= {F,H}. (10)

Due to the factor of 1
Γi

in these equations, Hamiltonian sys-
tem (3) is not in canonical form. It may be canonically nor-
malized by introducing variables

qi =
√
|Γi|xi and pi =

√
|Γi|sign(Γi)yi, (11)

which renders both the equations and the Poisson brackets into
the standard forms

dqi

dt
=

∂H
∂ pi

,
dpi

dt
=−∂H

∂qi
. (12)

and

{F,G}=
N

∑
i=1

(
∂F
∂qi

∂G
∂ pi

− ∂F
∂ pi

∂G
∂qi

)
.

A. The three-vortex system

In this paper, we confine our attention to a system of three
vortices with non-vanishing total circulation. The dynamics
conserve the Hamiltonian

H =−Γ1Γ2

2
log∥r1 − r2∥2 − Γ1Γ3

2
log∥r1 − r3∥2

− Γ2Γ3

2
log∥r2 − r3∥2,

the center of vorticity

r0 =
Γ1r1 +Γ2r2 +Γ3r3

Γ1 +Γ2 +Γ3
,

and the angular impulse

Θ = Γ1∥r1∥2 +Γ2∥r2∥2 +Γ3∥r3∥2.

Without loss of generality, we can assume that

Γ1 ≥ Γ2 ≥ Γ3 and Γ2 > 0. (13)

IV. REDUCTION BY STAGES

Choosing the proper coordinate system may significantly
clarify the study of a particular phenomenon, but how to con-
struct such a coordinate system may not be obvious. In the
ideal case, any such coordinates should be easy to interpret,
which implies, among other things, that they should have a
clear meaning and be invertible so that we may reconstruct the
original motion from the transformed motion. We insist on us-
ing canonical changes of variables, those which preserve the
Hamiltonian form of the evolution equations. The reduction
proceeds in two steps. The first change of variables to Jacobi
coordinates is canonical, while the second change, a Nambu
reduction, requires us to generalize the framework of Hamil-
tonian systems. In between, we apply a normalization of the
form (11).

A. Jacobi coordinate reductions

Jacobi coordinates are a standard tool for reducing n-body
problems, especially in celestial mechanics, and are discussed
at length in Jacobi’s 1866 Lectures on Dynamics26. The
method is straightforward and underlies the reductions used
in many studies of vortex interactions27. Still, the only point-
vortex paper we have found that references the method by
name is a recent one by Luo et al.28.

The Jacobi coordinate transformation consists of iteratively
applying the change of variables

r̃1 = r1 − r2; Γ̃1 =
Γ1Γ2

Γ1 +Γ2
;

r̃2 =
Γ1r1 +Γ2r2

Γ1 +Γ2
; Γ̃2 = Γ1 +Γ2,

(14)

where Γ1 +Γ2 ̸= 0.
The variables Γ̃1 and Γ̃2, are known, respectively, as the

reduced circulation and total circulation of the pair.
Solving for r1 and r2 and substituting these values

back into the Hamiltonian (2) yields a new Hamiltonian
H(r̃1, r̃2,r3, . . . ,rN) and evolution equations of the form (3)
with circulations Γ̃1, Γ̃2,Γ3, . . . ,ΓN . We then apply a similar
transform to Eq. (14) to r̃2, r3, Γ̃2 and Γ3, repeating the pro-
cess for each pair until rN has been transformed. The trans-
formed circulations redefine the Poisson bracket (9) and thus
the evolution equations (10).

To prevent division by zero in the reduction procedure, we
assume that

k

∑
j=1

Γ j ̸= 0, for all k ≤ N. (15)

For k = N, this represents an assumption about the set of
vortices, while for k < N, it is merely an assumption about
their labels’ ordering and is consistent with assumption (13)
and (14). Because the mass of the jth body, which serves
as the analog to the circulation Γ j, must be positive, condi-
tion (15) is never an issue in the gravitational problem.
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We assign the names R j to the final transformed variables
and κ j to the transformed circulations. Then R1 is the dis-
placement from r2 to r1 and, similarly, R2 is the displace-
ment from r3 to the center of vorticity of the r1, r2 subsystem.
A similar definition holds for the remaining R j with j < N,
whereas RN coincides with our previously defined r0, the cen-
ter of vorticity defined in Eq. (5). Since this quantity is con-
served, we have reduced the dimension of the phase space by
two.

B. Nambu brackets

The reduced equations of motion we derive will make use
of a Nambu bracket, which takes the form

{F,G}C =−∇C · (∇F ×∇G) ,

where C,F,G : R3 → R, and C is a distinguished function or
Casimir. The Nambu bracket obeys all the defining properties
of a Poisson bracket. Namely, it is a skew-symmetric bilinear
operator that obeys the Leibnitz rule and the Jacobi identity.
Yoichiro Nambu introduced it in 197329 to generalize Hamil-
tonian mechanics to systems with three-dimensional phase
space. Holm et al.’s textbooks provide an excellent overview
of the mathematical theory and many applications to problems
in optics, classical mechanics, and fluid dynamics30–32.

For a system with coordinates (X ,Y,Z), the system evolu-
tion equations analogous to system (12) is

d
dt

X
Y
Z

= ∇C×∇H, (16)

under which any function F(X ,Y,Z) evolves according to

dF(X ,Y,Z)
dt

= {F,H}C,

in analogy with Eq. (10).
Müller and Névir showed that Gröbli’s reduced equations

could be reinterpreted as Nambu dynamics13, but their con-
struction does not solve the problem of those coordinates’ sin-
gularity. This formulation was subsequently applied to study
self-similar collapse in a generalized point-vortex problem33.

The Nambu formulation of mechanics is often used in situa-
tions for which polar coordinates or their Hamiltonian equiv-
alents may be applied. For example Luo et al. arrive at an
equation equivalent to Eq. (18) below and then introduce po-
lar coordinates. Polar coordinates introduce a singularity at
the origin, similar to the singularity of the trilinear coordinate
system. The more modern formulation avoids this. This point
of view is well articulated in the aptly named lecture notes in
Ref. 34.

C. Application to the three-vortex system

The Jacobi coordinates and the virtual circulations for the
three-vortex problem under assumptions (13) and (15) are

R1 = r1 − r2; κ1 =
Γ1Γ2

Γ1 +Γ2
;

R2 =
Γ1r1 +Γ2r2

Γ1 +Γ2
− r3; κ2 =

(Γ1 +Γ2)Γ3

Γ1 +Γ2 +Γ3
;

R3 =
Γ1r1 +Γ2r2 +Γ3r3

Γ1 +Γ2 +Γ3
; κ3 = Γ1 +Γ2 +Γ3.

(17)

Choosing the center of vorticity R3 as the origin, we may in-
vert these equations to find

r1 =
Γ2

Γ1 +Γ2
R1 +

Γ3

Γ1 +Γ2 +Γ3
R2;

r2 =
Γ3

Γ1 +Γ2 +Γ3
R2 −

Γ1

Γ1 +Γ2
R1;

r3 =−
(

Γ1 +Γ2

Γ1 +Γ2 +Γ3

)
R2.

In these coordinates, the Hamiltonian and angular impulses
are then

H =−Γ1Γ2

2
log∥R1∥2 − Γ2Γ3

2
log
∥∥∥∥R2 −

κ1

Γ2
R1

∥∥∥∥2

− Γ1Γ3

2
log
∥∥∥∥R2 +

κ1

Γ1
R1

∥∥∥∥2

, (18)

and

Θ = κ1∥R1∥2 +κ2∥R2∥2.

For the remainder of the paper, we assume that

Γ1 ≥ Γ2 > 0.

This is generic as two of the vortices must have circulations
of matching signs, and we may assume they are positive by
reversing the direction of time if necessary. Under this as-
sumption, κ1 > 0, but κ2 may take either sign, which plays an
essential role in the following analysis.

1. The case κ2 > 0

Under assumptions (13) and (15), the virtual circulation κ2
is positive if Γ3 > 0 or Γ3 < −Γ1 −Γ2. In both these cases,
Aref finds that the physical domain Dphys in the trilinear coor-
dinate system is the interior of an ellipse8. In the first case, the
ellipse lies inside the central triangular region as in Fig. 1(a);
in the second, it lies in one of the unbounded regions of the
figure.

We normalize the system using Eq. (11) and the values of
κ j from Eq. (17), which gives

Q1 =
√

κ1X1, P1 =
√

κ1Y1, Q2 =
√

κ2X2, P2 =
√

κ2Y2.
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Defining Ri = ⟨Qi,Pi⟩ and R̄i = ⟨Qi,−Pi⟩, which we can treat
as complex variables, the Hamiltonian becomes

H =−Γ1Γ2

2
log∥R1∥2 − Γ2Γ3

2
log
∥∥∥∥R2 −

√
κ1κ2

Γ2
R1

∥∥∥∥2

− Γ1Γ3

2
log
∥∥∥∥R2 +

√
κ1κ2

Γ1
R1

∥∥∥∥2

,

and the angular impulse becomes

Θ = ∥R1∥2 +∥R2∥2.

Both H and Θ are invariant under the S1 transformation
(R1,R2)→ (eiϕR1,eiϕR2) for arbitrary phase ϕ and depend
only on quadratic monomials. Holm suggests the following
coordinates for such dynamics30,

Z = ∥R1∥2 −∥R2∥2,

X + iY = 2R1R̄2.
(19)

These new coordinates satisfy:

Θ
2 = Z2 +X2 +Y 2, (20)

and give a Hamiltonian

H(X ,Y,Z,Θ) =− Γ1Γ2

2
log
(

Z +Θ

2κ1

)
− Γ2Γ3

2
log
(

Θ−Z
2κ2

+
κ1(Z +Θ)

2Γ2
2

− kX
Γ2

)
− Γ1Γ3

2
log
(

Θ−Z
2κ2

+
κ1(Z +Θ)

2Γ2
1

+
kX
Γ1

)
,

where k2 = κ1
κ2

.
The conservation law (20) provides a geometric interpreta-

tion of Aref’s observation that the physical domain Dphys is
bounded by an ellipse: the natural phase space of the system
is the sphere S2. A simple calculation shows that

Y =−2
√

κ1κ2 R1 ×R2 = (r2 − r1)× (r3 − r1),

so that the great circle Y = 0, which we will call the equa-
tor, corresponds to the set of collinear configurations, i.e., to
∂Dphys in the trilinear coordinates. In the present coordinate
system, the dynamics are regular along this curve.

It is then an exercise in the chain rule to show that the sys-
tem evolves under system (16) with C = 2Θ2 in the coordi-
nates defined by (19). Since ∂H

∂Y = 0, this yields

dX
dt

= 4Y
∂H
∂Z

;

dY
dt

= 4Z
∂H
∂X

−4X
∂H
∂Z

;

dZ
dt

=−4Y
∂H
∂X

.

(21)

2. The case κ2 < 0

The virtual circulation κ2 is negative if −Γ1 −Γ2 < Γ3 <
0. In this, Aref finds that the physical domain Dphys in the
trilinear coordinate system is bounded by a hyperbola8.

We normalize the system using Eq. (11) and the values of
κ j from Eq. (17), which gives

Q1 =
√

κ1X1, P1 =
√

κ1Y1, Q2 =−
√
−κ2X2, P2 =−

√
−κ2Y2.

(22)
Defining R j and R̄ j as in the previous section, we find

Hamiltonian

H =−Γ1Γ2

2
log∥R1∥2 − Γ2Γ3

2
log
∥∥∥∥R̄2 −

√
−κ1κ2

Γ2
R1

∥∥∥∥2

− Γ1Γ3

2
log
∥∥∥∥R̄2 +

√
−κ1κ2

Γ1
R1

∥∥∥∥2

, (23)

and angular impulse

Θ = ∥R1∥2 −∥R2∥2.

Both H and Θ are invariant under the S1 transformation
(R1,R2) → (eiϕR1,e−iϕR2) for arbitrary phase ϕ and de-
pend only on quadratic monomials. Holm suggests the fol-
lowing coordinates for such dynamics30,

Z = ∥R1∥2 +∥R2∥2,

X + iY = 2R1R2.
(24)

These coordinates satisfy

Θ
2 = Z2 −X2 −Y 2, (25)

which we know to be conserved. Thus, the trajectory
(X(t),Y (t),Z(t)) is confined to the upper sheet of a hyper-
bola of two sheets, which degenerates to a cone when Θ = 0.
Because Z ≥ 0 by definition, the trajectories lie on the up-
per sheet. As in the κ2 > 0 case, Y = 0 when the vortices
are collinear, so that Eq. (25) is a the hyperbola that formed
∂Dphys in the trilinear coordinates.

The Hamiltonian becomes

H(X ,Y,Z,Θ) =− Γ1Γ2

2
log
(

Z +Θ

2κ1

)
− Γ2Γ3

2
log
(

Z −Θ

2κ2
+

κ1(Z +Θ)

2Γ2
2

− lX
Γ2

)
− Γ1Γ3

2
log
(

Z −Θ

2κ2
+

κ1(Z +Θ)

2Γ2
1

+
lX
Γ1

)
,

(26)

where l2 = −κ1
κ2

.
The system evolves under equation (16) with C = 2Θ2.

Since ∂H
∂Y = 0, this yields

dX
dt

= 4Y
∂H
∂Z

;

dY
dt

=−4Z
∂H
∂X

−4X
∂H
∂Z

;

dZ
dt

=−4Y
∂H
∂X

.
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V. THE SYSTEM OF THREE IDENTICAL VORTICES

We illustrate the reduction for the case of three equal circu-
lations Γ1 = Γ2 = Γ3 = 1. In this case κ1 =

1
2 and κ2 =

2
3 > 0,

so the reduction follows Sec. IV C 1 and

H =−1
2

log(Θ+Z)− 1
2

log

(
Θ− Z

2
−

√
3X
2

)

− 1
2

log

(
Θ− Z

2
+

√
3X
2

)
.

This Hamiltonian is unchanged under rotations of the XZ
plane by ± 2π

3 , which correspond to permutations of the vortex
labels. The dynamics are equivariant under a rescaling of Θ,
so we may take Θ = 1 without loss of generality.

The dynamics are singular at the points on the sphere where
the arguments of the logarithms defining H vanish, which oc-
cur at three points evenly spaced around the equator, here
given by Y = 0,

(X ,Y,Z) = (0,0,−1) and (X ,Y,Z) =

(
±
√

3
2

,0,
1
2

)
.

These are points where two of the three vortices coincide,
and the rotational frequencies of the closed orbits surround-
ing these points diverge as they approach the singular points.
Each point on the three meridians running from the north to
the south pole through a singularity corresponds to a “tall”
isosceles triangle with legs longer than its base.

The system has five equilibria. Three of them lie on the
equator,

(X ,Y,Z) = (0,0,1) and (X ,Y,Z) =

(
±
√

3
2

,0,−1
2

)
.

These alternate with the three singular points as one moves
around the equator. They correspond to collinear relative equi-
libria, each with one of the three vortices at the midpoint of a
line segment connecting the other two. The other two, which
lie at the poles

(X ,Y,Z) = (0,±1,0),

correspond to rigidly rotating equilateral triangular arrange-
ments. Each point on the three meridians running from the
north to the south pole through a saddle point on the equa-
tor corresponds to a “wide” isosceles triangle whose base is
longer than its legs.

Because the dynamics defined by system (21) are regular,
the linear stability of all relative equilibria is determined by
the eigenvalues of the Jacobian. We include the following ele-
mentary calculations to demonstrate their straightforwardness
compared to previous formulations of the problem. The Jaco-
bian matrices at, respectively, a triangular relative equilibrium
and a collinear one are

J(0,1,0) =

 0 0 3
0 0 0
−3 0 0

 , and J(1,0,0) =

0 3 0
9 0 0
0 0 0

 .

Each has a null eigenvector corresponding to a perturbation in
the radial direction, i.e., to a change to the conserved angu-
lar impulse Θ. The first has eigenvalues ±3i and is neutrally
stable. The second has eigenvalues ±3

√
3 and is a saddle.

The global phase space for three identical vortices is shown
in Fig. 2. When this sphere is viewed from above the north
pole, it reduces to Aref’s phase plane shown in Fig 1(a). The
three collinear states are saddle points, and their invariant
manifolds coincide in six heteroclinic orbits. The periodic
orbits can be classified into two types: two families of or-
bits that encircle the triangular configurations at the poles and
three families that surround the singular points on the equator.

FIG. 2. The phase-sphere of the three-vortex system with identical
circulations, plotted with transparency so trajectories on the rear are
visible. The equator Y = 0, where the vortices are collinear, and the
meridians, where they form an isosceles triangle, are indicated.

Fig. 3(a) shows a periodic orbit from the family surrounding
the north pole with an initial point on the meridian between the
Y axis and the Z axis in Fig 2 close to the saddle point. In lab-
oratory coordinates, it is a relative periodic orbit whose initial
condition is a “wide” isosceles triangle in which the vortices
are nearly collinear. The figure shows one period of motion
on the sphere, which crosses all six isosceles meridians but
remains in the upper hemisphere.

Fig. 3(b) shows a periodic orbit from the family surround-
ing a singular point on the equator. The initial condition is
collinear, with the points nearly equally spaced, correspond-
ing to a point on the equator near a saddle point. Two of the
vortices alternate, moving to the center as the orbit approaches
two of the saddle points in turn.

VI. THREE VORTICES WITH CIRCULATIONS (1,1,−1)

We let Γ1 = Γ2 = −Γ3 = 1, in which case the transformed
circulations are

κ1 =
1
2
, κ2 =−2, κ3 = 1.

Because κ2 < 0, this system is reduced to Nambu form using
equations (22)–(24). The Hamiltonian reduces to

H =−1
2

log(Z +Θ)+
1
2

log
(
Z2 −X2). (27)
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FIG. 3. Periodic orbits near separatrices (relative periodic orbits
in physical coordinates). (a) A periodic orbit in the upper hemi-
sphere that makes close approaches to all three saddle points but
never crosses the equator. At all the numbered times, corresponding
to sixths of a period, the vortices form an isosceles triangle, the first
two of which are drawn. (b) A periodic orbit crosses the equator and
closely approaches saddle points. At numbered times, corresponding
to quarter-periods, the points alternate between collinear and isosce-
les arrangements.

and the angular impulse is given by Eq. (25).

The evolution equations are

dX
dt

=
−2Y
Z +Θ

+
4ZY

Z2 −X2 ; (28a)

dY
dt

=
2X

Z +Θ
; (28b)

dZ
dt

=
4XY

Z2 −X2 . (28c)

It is worth relating the (X ,Y,Z,Θ) coordinate system for
this problem to the physical coordinates, and we find a
straightforward geometric interpretation. Consider Figure 4.
By assumption (5), the center of vorticity lies at the origin,
and we let v j denote the vector from the origin to vortex j.
Relation (5) implies that v3 = v1 +v2 so that the positions of
the three vortices and the origin form a parallelogram, a fact
mentioned by Gröbli in [7,§3]. We let φ be the angle from
v1 to v2. We then find by following through the sequence of

changes of variables that

X =−∥v1∥2 +∥v2∥2;
Y = 2(v1 ×v2) ·k = 2∥v1∥∥v2∥sinφ ;

Z = ∥v1∥2 +∥v2∥2;
Θ =−2v1 ·v2 =−2∥v1∥∥v2∥cosφ .

(29)

V2

(0, 0)
V1

V3 = V1 + V2

FIG. 4. Diagram used to interpret the (X ,Y,Z,Θ) coordinates. See
the text for an explanation.

We few observations on these coordinates:

• X is the signed difference between the lengths of v1 and
v2, so vanishes when the triangle of vortices is isosceles.

• Y vanishes when the three vortices are collinear, which
is not a singularity of the coordinate system.

• For Θ = 0, cosφ = 0, so at all times, the three vortices
form a right triangle, with vortex 2 at the right angle.
Then, trivially, they cannot be collinear, so Y ̸= 0, which
can also be deduced from the singularity of the Hamil-
tonian (27) when Θ = 0.

A. Scattering

The most noteworthy behavior for this set of circulations is
scattering: two vortices with circulations of identical magni-
tude but opposite orientation form a dipole that propagates
at constant velocity perpendicular to the line joining them.
The presence of a third vortex deflects or scatters this motion.
Three such scattering solutions are shown in Fig. 5. While
these three solutions obey very similar conditions before the
interaction (as the time t →−∞), their behavior as t → ∞ are
quite different. Subfigures (a) and (b) show exchange scat-
tering events: the dipole that exits the collision region is not
composed of the same two vortices as the dipole that entered.
By contrast, subfigure (c) displays direct scattering; the same
two vortices form the dipole before and after the interaction.

A fundamental question about this scattering is whether a
given initial condition leads to direct or exchange scattering.
The second question is the change in angle ∆α between the in-
coming dipole and the exiting dipole. Aref derived a formula
that answers both questions about scattering, but this is based
entirely on integrating the ordinary differential equations and
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(a) (b) (c)

FIG. 5. Three solutions of the scattering problem showing (a) Exchange scattering for ρ = −0.999. (b) Exchange scattering for ρ = 2.5. (c)
Direct Scattering for ρ = 3.8. The vortex dipole arrives from −∞ traveling parallel to the x axis, and vortex 3 sits at rest at the marked point as
t →−∞.

not on the interpretation of the phase diagram in Fig. 1(b)8.
Aref’s plot of the dependence of ∆α on initial contains a sign
error that was fixed by Lydon et al.3.

The reduced system of equations allows us to apply phase
space reasoning directly to the scattering problem, so we re-
view it here. A schematic of the scattering experiment is
shown in Fig. 6. A dipole consisting of a positive-circulation
vortex at position r1 = ⟨−L,ρ + d

2 ⟩, where L ≫ 1, and a
negative-circulation vortex at position r3 = ⟨−L,ρ − d

2 ⟩ prop-
agates to the right toward a positive-circulation vortex at po-
sition r2 = ⟨0,−d⟩. These are chosen to set r0 = 0. Without
loss of generality, we take d = 1.

Eventually, vortex 3 escapes to infinity as part of a dipole.
We call the case when the escaping dipole comprises vortices
1 and 3 a direct scattering event and the case when it com-
prises vortices 2 and 3 an exchange scattering event.

1

2

3

d

d
L

;

(x1; y1)

(x2; y2)

(x3; y3)

(x0; y0) = (0; 0)

FIG. 6. Setup of the scattering problem. The dipole formed by vor-
tices 1 and 3 propagates toward the target, vortex 2.

Examples are shown in Fig. 5. The initial conditions are
posed as in the schematic, showing exchange scattering in
panels (a) and (b) and direct scattering in panel (c). Since
vortex 3 has opposite circulation to the two others, it must be
part of both the entering and exiting dipoles. We define the
scattering angle ∆α as its change of heading; see Eq. (30).
Figure 7 shows the scattering angle as a function of the offset
ρ , with the scattering angles of the three solutions shown in
Fig. 5 marked.

If |ρ| ≫ 1, the isolated vortex will scarcely deflect the
dipole, so direct scattering will occur. Previous authors have
determined, via fairly involved calculations, that exchange
scattering occurs for −1 < ρ < 7

2 , and direct scattering out-

side this interval3,8. The points ρ = −1 and ρ = 7
2 separate

distinct behavior domains in this system, and the scattering
angle diverges as ρ approaches these values.

B. Recovering some angles

Eq. (29) shows that the (X ,Y,Z,Θ) variables are insensi-
tive to a rigid rotation of the parallelogram in Fig. 4 about the
origin and will not allow us to compute the scattering angle.
Therefore, we introduce a canonical form of polar coordinates
(the action-angle variables of a harmonic oscillator) to recover
this angle.

Returning to the coordinates R1 and R2 used in Eq. (23),
we let

R1 = ⟨
√

2I1 sinθ1,
√

2I1 cosθ1⟩;

R2 = ⟨
√

2I2 sinθ2,
√

2I2 cosθ2⟩.

Two observations are important here. First, the Hamil-
tonian depends on the angles only through the combination
θ1 + θ2. Second, the vector v3 in the figure has argument
θ2 − π

2 . Therefore, we make one additional canonical trans-
formation

ψ1 = θ1 +θ2, ψ2 = θ2, J1 = I1, J2 = I2 − I1.

In these variables, the Hamiltonian takes the form (again ig-
noring additive constants)

H =
1
2

log
(
4J2

1 sin2
ψ1 +4J1J2 sin2

ψ1 + J2
2
)
− 1

2
log(J1).

Since the equation is cyclic in ψ2, the action J2 = −Θ/2 is
conserved. The dynamics of J1 and ψ1 are equivalent to sys-
tem (28). We may recover the evolution of θ2 = ψ2 by inte-
grating

ψ̇2 =
2J1 sin2

ψ1 + J2

4J2
1 sin2

ψ1 +4J1J2 sin2
ψ1 + J2

2

along a scattering trajectory. In terms of the Nambu variables,
this becomes

θ̇2 =
2Y 2

√
Θ2 +X2 +Y 2 −2ΘX2

(X2 +Y 2)(Θ2 +Y 2)
.
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FIG. 7. The deflection of the angle of vortex 3 plotted as a function as the distance ρ , showing singularities at ρ =−1 and ρ = 7
2 as expected.

The solid line is the result of direct simulation, and the red dots are the formulas derived in Appendix A. The points marked (a)–(c) correspond
to the three simulations shown in Fig. 5.

The angle just calculated describes the argument of v3 in
Fig. 4, which is distinct from the scattering angle α = arg dz3

dt
plotted in Fig 7. In terms of the reduced coordinates, we find
that

dα

dt
=− 8ΘY 2

(X2 +Y 2)(Θ2 +Y 2)
. (30)

Integrating this over a trajectory then gives ∆α . This calcula-
tion is described in Appendix A. It is equivalent to a calcula-
tion by Lydon and is included for completeness3.

C. Phase space of the (1,1,−1) system

We first derive the fixed points and singularities of sys-
tem (28) before visualizing the system’s phase space. We set
the right-hand sides of system (28) to zero while enforcing
the constraints (25) and Z ≥ 0. Similarly, we find singularities
where the argument of either logarithmic term in the Hamilto-
nian (27) vanishes, enforcing the same two constraints. Which
equilibria and singularities exist depends on Θ.

When Θ < 0, the system has two equilibria E ±
tri and a

singularity S11 found by setting Z +Θ = 0, which requires
X = Y = 0. These are

E ±
tri =

 0
±
√

3Θ

−2Θ

 and S11 =

 0
0

−Θ

 .

When Θ = 0, there are no equilibria, but the system is sin-
gular when Z = |X |, which requires Y = 0.

When Θ > 0, the system has a single equilibrium

E−1 ≡

X0
Y0
Z0

=

0
0
Θ


and no singularities.

The fixed points E ±
tri and E−1 are relative equilibria in the

laboratory coordinates, i.e., they are equilibria when viewed
in an appropriate rotating reference frame. We may inter-
pret them using Eq. (29). For both equilibria X = 0 implies

∥v1∥ = ∥v2∥. The equilibrium E ±
tri exists for Θ < 0. For the

equilibrium E ±
tri , the value of the component Z = −2Θ im-

plies that φ = ±π

3 and the three vortices lie at the vertices
of an equilateral triangle, motivating the naming convention.
The equilibrium E−1 exists for Θ > 0. This implies φ = π

so that the three vortices are collinear with the two positive
vortices equally spaced from the negative vortex at the center.
The subscript −1 indicates that the vortex with circulation −1
sits at the center. By similar reasoning, we find that at the sin-
gularity S11, the two vortices with circulation +1 coincide,
again motivating the notation.

By the conservation law (25), the phase space of sys-
tem (28) is the upper sheet of a two-sheeted hyperbola. We
visualize the dynamics by projecting this surface into the XY
plane in Fig. 8. The conserved angular impulse Θ is a bifur-
cation parameter, but up to scaling when Θ ̸= 0, there are only
three possible phase planes.

For Θ< 0 in panel (a), the point at the origin is the singular-
ity S11. The two equilibria E ±

tri sit on the Y axis and are saddle
points connected by a pair of homoclinic orbits. The two ho-
moclines surround a family of periodic orbits, which shrink
to a point at S11. Each corresponds to a hierarchical orbit in
which the two positive vortices orbit about each other rapidly
while their mutual center of vorticity and the third vortex or-
bit each other; Gröbli computed this orbit in closed form and
plotted it in Ref. [7, Fig. 1]. As the diameter of these closed
orbits goes to zero, the rotation rate of this tightly bound pair
diverges, and the orbits approach the singularity S11. The
unbounded portions of the stable and unstable manifolds sep-
arate the remainder of the phase plane into four unbounded
quadrants. This will be important for the scattering problem.

When Θ = 0 in panel (b), the entire X axis is singular, and
all solutions are confined to the upper or lower half-planes.
For Θ > 0 in panel (c), the collinear equilibrium E−1 at the
origin is a saddle point. Its invariant manifolds also separate
the plane into four unbounded quadrants.

The phase plane for Θ < 0 in panel (a) corresponds to the
upper disconnected component of Dphys in Fig. 1(b), the phase
plane for Θ = 0 in panel (b) to Fig. 1(c), and phase plane for
Θ > 0 in panel (c) to the lower disconnected component of
Dphys in Fig. 1(b).
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FIG. 8. The XY phase planes of system (28). (a) The case Θ < 0 with singularity S11 (point) and triangular configurations at the intersections
of the thick curves. (b) The case Θ = 0. The gray line Y = 0 is singular. (c) the case Θ > 0 with collinear equilibrium E−1. Note that the
contours are not evenly-spaced level sets of the energy (27) but were chosen to illustrate the topology clearly.

Finally, note that rescaling X and Y by |Θ| and t by |Θ|−1

(when Θ ̸= 0) shows that the dynamics for any negative (re-
spectively, positive) value of Θ has a phase plane equivalent
to that shown in panel (a) (respectively, panel (c)).

D. Explaining the scattering

The analysis of the previous section enumerated the ingre-
dients needed to explain the behavior of the three-vortex scat-
tering problem set up in Fig. 6. The most important features
of a phase plane in organizing the dynamics are the invariant
sets: equilibria, periodic orbits, and their stable and unstable
manifolds which form separatrices between regions of this be-
havior. The goal of this section is to show that the transitions
between direct and exchange scattering at ρ =−1 and ρ = 7

2
in Fig. 7 are due to these features.

The separatrices shown in Fig. 8 divide the phase plane into
families of trajectories with identical topology, and the topol-
ogy of the phase plane is determined, in turn, by the conserved
parameter Θ. Panel (a) depicts the case Θ < 0, where the en-
ergy level of the separatrices equals that of the rotating trian-
gular configurations E ±

tri , given by

E(E ±
tri ) =

1
2

log(−4Θ). (31)

The energy in the two regions to the left and right of E ±
tri

(those containing the X-axis) is lower than E(E ±
tri ), while the

energy in the regions above and below the separatrices is
higher than E(E ±

tri ).
Panel (c) shows the case Θ > 0, where the energy level on

the separatrices equals that of the collinear equilibrium E−1,
which we compute to be

E(E−1) =
1
2

log
Θ

2
. (32)

The energy in the two regions to the left and right of E−1
(those containing the X-axis) is lower than E(E−1), while
the energy in the regions above and below the separatrices is
higher than E(E−1).

We must compare these energies with those of the pre-
scattering condition depicted in Fig. 6. In this arrangement,
the center of vorticity is at the origin, so we may compute the
limiting behavior of X and Y using the equations in (29). We
directly compute that, independent of L,

Θ = 1+2ρ. (33)

We assume that as t → −∞, L → ∞, thus ∥v1∥ → ∞ while
∥v2∥ is finite, so that X →−∞, this also implies that Y → ∞.
Thus, for the situation depicted in Fig. 6, trajectories in the
phase planes depicted in Fig. 8 arrive from infinity from the
northwest direction heading southeast.

Then, suppose the initial energy exceeds the separatrix en-
ergy. In that case, the trajectory begins above the separatrix
and crosses the line X = 0, where dY

dt = 0 before escaping to
infinity in the northeast direction. Because X →+∞ as t → ∞,
∥v2∥ must diverge, and this is an exchange scattering event.
At the instant the solution crosses X = 0, then ∥v1∥= ∥v2∥ at
which point the vectors v1 and v2 form the legs of an isosceles
triangle.

If the initial energy lies below the separatrix energy, then
the trajectory begins below the separatrix. It will cross Y = 0
at which point dX

dt =0. When Y = 0, sinφ = 0, and the three
vortices are collinear. Because X < 0 along the entire trajec-
tory and X →−∞ as t → ∞, then ∥v1∥ → ∞ and this solution
represents a direct scattering event.

For Θ < 0, that is, for ρ < − 1
2 , the critical energy is given

by Eq. (31), which, combined with Eq. (33) gives a critical
energy

ρ
−
crit =−1. (34)

For Θ > 0, that is, for ρ > − 1
2 , the critical energy is given

by Eq. (32), which, combined with Eq. (33) gives a critical
energy

ρ
+
crit =

7
2
. (35)

Fig. 7 shows the deflection in the angle of vortex two follow-
ing the interaction is singular as ρ → −1 and ρ → 7

2 as ex-
pected.
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To calculate the scattering angle, we must integrate Eq. (30)
over each scattering trajectory. This is equivalent to a calcu-
lation by Lydon et al.3, and we present it for completeness in
Appendix A.

We end this section by remarking that the values ρ = 1
(Θ = −1), ρ = − 1

2 (Θ = 0), and ρ = 7
2 (Θ = 8) divide the

space of initial conditions into four intervals on which the be-
havior is qualitatively distinct. Gröbli made the same obser-
vation (using a constant λ = Θ/2) as did Lydon et al.3,7, but
without referencing a phase plane to organize the orbits. Be-
cause both prior works focus on integrating the ODE system
via quadrature, these intervals are distinguished mainly by the
change in the algebraic forms of those integrals rather than the
phase space topology.

E. The borderline case Θ = 0

The approach taken here is especially illuminating for the
transition at Θ = 0 where Lydon noticed an algebraic change
in the form of the integrals but found no visible discontinuity
in the scattering angle in Fig. 73.

As ρ increases from −∞ to ∞, it crosses the two critical
values found above and, in between them, crosses ρ = − 1

2
at which point Θ = 0. In this case, the conservation law (29)
confines the dynamics to a cone, whose projection into the XY
plane is shown in Fig. 8(b)

The critical values of ρ separating exchange scattering from
direct scattering are those for which the energy of the initial
condition as L → ∞ equals that of the separatrices, i.e., the
energy of the hyperbolic fixed points. The singular case Θ =
0, when the conservation law (29) confines the dynamics to a
cone, therefore corresponds to ρ =− 1

2 .
The schematic in Fig. 6, which is defined for finite L, is

somewhat misleading, as the trajectories of all three vortices
lie along straight lines parallel to the line connecting vortices
1 and 3 in the figure and are not horizontal. Rotating the co-
ordinate system so that the trajectories are horizontal, we find
that

x1 =
t −

√
t2 +4
2

, x2 =
t +

√
t2 +4
2

, x3 = t;

y1 =−1, y2 =−1, y3 =−2.

The dynamics of this case are shown in Fig. 9 and were known
to Gröbli7 (§4). Vortex 1 slows down and comes to rest at
x = 0, transferring its energy to vortex 2.

-6 -4 -2 0 2 4 6

t

-5

0

5

x

FIG. 9. The x-component of the solution for ρ = 0, corresponding to
a trajectory in the middle phase plane of Fig. 8.

VII. GENERALIZATION TO Γ2 ̸= 1

In this section, we will generalize to the case in which Γ1 =
−Γ3 = 1 but 0< Γ2 = Γ ̸= 1, i.e., the case when the remaining
vortex has a distinct positive circulation. Exchange scattering
is no longer possible since vortices 2 and 3 can no longer form
a dipole and escape. Consequently, some bifurcation must
reconfigure the phase plane dynamics depicted in Fig. 8.

The Jacobi coordinate reduction yields transformed circu-
lations

κ1 =
Γ

Γ+1
, κ2 =−1+Γ

Γ
, κ3 = Γ.

As in the previous case κ2 < 0, so change of variables and
Hamiltonian structure of Sec. IV C 2 apply, and the Hamilto-
nian (26) reads

H(X ,Y,Z,Θ) =
Γ

2
log
(
Z(Γ2 +1)+(1−Γ

2)Θ−2ΓX
)

− Γ

2
log(Z +Θ)+

1
2

log(Z +X).

While we were unable to find as useful a geometric inter-
pretation of the coordinates as in Eq. (29), we still have that
Y = 0 whenever the three vortices are collinear. Moreover
X → −∞ as ∥r2 − r3∥ → ∞ and X → +∞ as ∥r1 − r2∥ → ∞.
This last observation allows us to discriminate between direct
and exchange scattering.

The system evolves according to

dX
dt

=
2ΓY

Z +Θ
− 2Y

X +Z
− 2Γ(1+Γ2)Y

(Γ2 +1)Z +(1−Γ2)Θ−2ΓX
;

dY
dt

= 2− 2ΓX
Z +Θ

+
2Γ(1+Γ2)X −4Γ2Z

Z(Γ2 +1)+(1−Γ2)Θ−2ΓX
;

dZ
dt

=
2Y

Z +X
− 4Γ2Y

Z(Γ2 +1)+(1−Γ2)Θ−2ΓX
.

(36)

A. The phase space for Γ2 ̸= 1

The equilibria of (36), which must satisfy both Z > 0
by (24) and satisfy the constraint (25) are:

E ±
tri = Θ

(
Γ(Γ−1)

Γ+1
±
√

3Γ

)
,Θ < 0;

E−1 =
ΓΘ

Γ2 −1

(
1−2Γ2 +

√
4Γ2 −3

0

)
,Θ > 0,Γ >

√
3

2
;

EΓ =
ΓΘ

Γ2 −1

(
1−2Γ2 −

√
4Γ2 −3

0

)
,Θ > 0,

√
3

2
< Γ < 1;

E1 =
ΓΘ

Γ2 −1

(
1−2Γ2 −

√
4Γ2 −3

0

)
,Θ < 0,Γ > 1.

(37)
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The same formula describes these last two, but they rep-
resent different vortex configurations and are defined for dif-
ferent parameter values. Only the X and Y coordinates are
displayed; the Z coordinate is the positive solution to (25).

The system also has singularities at

S1Γ =

(
0
0

)
,Θ < 0,Γ > 0;

S−1Γ =

( 2ΓΘ

Γ2−1
0

)
,Θ(Γ−1)> 0.

(38)

The dependence of the equilibria and singularities on Γ and
Θ are most easily understood graphically using a bifurcation
diagram, as shown in Fig. 10. Only the equilibria E ±

tri and E−1
and the singularity S1Γ exist for Γ= 1 and satisfy S1Γ →S11
as Γ → 1. The other equilibria and singularities all satisfy
Y = 0 and diverge with X →+∞ as Γ→±1. The points S−1Γ,
E1, and EΓ all diverge to ∞ as Γ → 1±. The equilibria E−1 and
EΓ merge in a saddle-node bifurcation at Γ =

√
3

2 ≈ 0.866.
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FIG. 10. The X component of the equilibria (solid lines) and singu-
larities (dashed lines) given in Eqs. (37) and (38) for (a) Θ =−1 and
(b) Θ = 1. Figs. 8, 11, 13, and 14 show phase plane diagrams at the
Γ values indicated by the vertical lines.

The equilibria EΓ and E1 correspond to collinear arrange-
ments with the vortices of strength Γ and 1 in the middle, re-
spectively. The singularity S−1Γ corresponds to the limit of
a family of hierarchical orbits in which vortices 2 and 3, with
circulations Γ and −1, form a tight pair orbiting vortex 1 some
distance away.

We now consider the phase space as Γ varies, again plotting
the projection of the upper sheet of the hyperboloid onto the
XY plane. First, we show the case Γ > 1 as shown in Fig. 11.
For Θ < 0, a collinear state E1 appears on the X-axis to the
right of the region of closed orbits seen in Fig. 8, while for
Θ > 0 a new singular state S−1Γ appears on the positive X-
axis. Each of these is surrounded by a family of periodic orbits
that limit to a separatrix. In contrast with Fig. 8, all orbits in
the right half plane cross the X-axis and do not extend to ∞.

The family of unbounded orbits corresponding to exchange
scattering has been replaced by a family of orbits that cross
the X-axis and approach infinity heading southwest. We call
these extended direct scattering orbits. One such orbit with
Γ = 2 is shown in Fig. 12. Remarkably, The coordinates
of this trajectory, but not its time-parameterization, are given
by Gröbli and displayed in his dissertation [20, Eqns (7.17),
(7.19), and (7.20), and Fig. 5]. As t → ±∞, vortices 1 and
3 form a dipole that moves along a nearly straight, while at
intermediate times, vortex 3 has changed partners and forms a
dipole with vortex 2 that along a roughly circular orbit.

FIG. 11. The phase planes for Γ = 1.7 > 1. (a) Θ < 0, showing the
equilibria E ±

tri at the separatrix intersections, the singular point S1Γ

(point) and the collinear state E1 (+). (b) Θ > 0, with singular point
S−1Γ (point) and collinear state E−1 at the separatrix intersection.

FIG. 12. An extended direct scattering solution with Γ = 2 and ρ =
− 9

2 . This is a direct simulation of a solution whose trajectory Gröbli
computed in closed form.

Fig. 13 shows representative phase planes with
√

3
2 < Γ< 1.

While the topology in Figs. 11 and 13 looks the same, they dif-
fer in the kinds of singularities and fixed points. For Θ< 0, the
singularity S1Γ remains unchanged from Fig. 11, while the
equilibrium E1 to the right of the origin is replaced by a sin-
gularity S−1Γ. For Θ > 0, the equilibrium E−1 is unchanged
from Fig. 11, while the singular point S−1Γ is replaced by the



14

equilibrium EΓ.

FIG. 13. The phase planes for Γ = 0.9 ∈
(√

3
2 ,1

)
. (a) Θ < 0, with

two singular points, S1Γ and S−1Γ (points), and two equilibria E ±
tri

at the separatrix intersections. (b) Θ > 0, with collinear equilibria EΓ

(+) and E−1 at the separatrix intersection.

Fig. 14 shows phase planes for Γ <
√

3
2 . The phase plane

for Θ < 0 is equivalent to that in Fig. 13. However, the Θ > 0
phase plane has changed significantly. At Γ =

√
3

2 , the equilib-
ria EΓ and E−1 collide and annihilate in a saddle-node bifurca-
tion, so the phase plane contains no equilibria or singularities.
All the orbits for Θ > 0 are of the (non-extended) direct scat-
tering type.

FIG. 14. The phase planes for Γ = 0.4 ∈
(

0,
√

3
2

)
. (a) The case

Θ < 0 with singular points S1Γ (left) and S−1Γ (right). (b) The case
Θ > 0, which has no fixed points or singular points.

B. Explaining the scattering for Γ ̸= 1

The setup of the three-vortex scattering phenomenon in
the generalized system remains as shown in Figure 6, except
that Γ2 = Γ ̸= 1 and the two points forming the dipole are
separated by a distance d

Γ
with positions r1 = ⟨−L,ρ + Γd

2 ⟩,
r2 = ⟨0,−d⟩, and r3 = ⟨−L,ρ− Γd

2 ⟩. We will again take d = 1.
The generalized Hamiltonian and angular momentum in the
new coordinates, H → log(Γ) as L →+∞, and,

Θ = Γ(1+2ρ).

We follow the process described in Section VI D to calcu-
late the critical energy. For Θ < 0, that is, for ρ < − 1

2 , the

critical energy level remains the energy of the equilibria E ±
tri .

This again leads to the value ρ
−
crit = −1 given by Eq. (34).

For Θ > 0 and Γ >
√

3
2 , the critical energy is again that of the

collinear equilibrium E−1

ρ
+
crit =

(Γ+1)2 (Γ−1)
(

(B+1)(Γ+1)2(Γ2−1)
−2AΓ2+B(Γ4−1)−(1−Γ2)

2

)Γ

2(AΓ+B)
− 1

2
,

where

A = 1−2Γ
2 +
√

4Γ2 −3 and B =

√
(Γ2 −1)2 +Γ2A2.

This matches the value 7
2 given by (35) for Γ = 1. Since there

is no hyperbolic fixed point when Θ > 0 and Γ <
√

3
2 , there

should be only one singular point in the scattering diagram.
Two such diagrams are shown in Fig. 15, demonstrating the
disappearance of the second singularity for small Γ. For Γ =
0.4, the curve jumps by 2π at ρ ≈−0.88. This is explained by
the disappearance of a loop in the path of vortex 3; see Fig. 16.

FIG. 15. (a) The scattering angle as a function of ρ for Γ = 0.4.
(b) The case Γ = 1.7.

FIG. 16. (a) The vortex trajectories with Γ = 0.4 and ρ =−0.9. (b)
The trajectories with ρ = −0.85. The insets show a small loop on
the trajectory of vortex 3 in the left image that has disappeared in
the right image, explaining the 2π jump in the dependence of the
scattering angle shown in Fig. 15.

VIII. CONCLUSION

In this paper, we have introduced a coordinate system for
the three-vortex system that, in contrast with previously used
reduction methods, avoids introducing artificial singularities
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into the equations of motion by preserving the topology of the
dynamics. They maintain the problem’s Hamiltonian structure
by introducing Nambu brackets. These coordinates simplify
phase-space reasoning and shed new insight into the scattering
between a vortex dipole and an isolated vortex. The singular
dynamics in trilinear coordinates are equivalent to projecting
the dynamics described here into the plane Y = 0, with the
singular curve ∂Dphys equivalent to the symmetry line Y = 0
of the spherical or hyperboloidal phase surface.

This reduction should help analyze additional problems in
point-vortex dynamics. We mention several such problems.
First, the trilinear coordinate system has been applied to re-
lated systems of point vortices, and the reduction developed
in this paper should simplify their analysis. A simple ex-
ample is quasigeostrophic vortices in which a Bessel func-
tion replaces the logarithmic potential, but the dynamics is
essentially equivalent35. More interestingly, the four-vortex
problem in the integrable case where the total circulation
and linear impulse both vanish, has been reduced to trilinear
coordinates36, and here the dynamics become more compli-
cated.

Second, classifying all the changes to the dynamics as the
circulations change is surprisingly complicated. Many pa-
pers get partway to this goal. Aref first attempted this in
the 1979 paper introducing the trilinear coordinate system8,
but the singularity of collinear relative equilibria in these co-
ordinates hampered this effort. Conte classified the bifurca-
tions of the relative equilibria and performed a partial stability
analysis21 using a reduction that is very difficult to interpret.
Tavantzis and Ting made another study using Synge’s trilin-
ear formulation11. Aref, citing his difficulty in following this
analysis, returned to the problem in 200922. That approach
finds the bifurcations of relative equilibria and their stability
but does not describe the dynamics beyond this. The analy-
sis of other phenomena such as the self-similar collapse of the
vortex triple has required yet other coordinate systems23,33.
By contrast, the coordinate system introduced here describes
the global dynamics in the simplest form possible while yield-
ing equations that can be analyzed using standard methods,
even near collapsing states and collinear relative equilibria.

Finally, we mention the motion of four vortices. It is well
known that the interaction of two dipoles leads to chaotic
scattering37–39, but the analysis in previous results is some-
what cursory and makes few quantitative predictions. The
motion is non-integrable, so Nambu bracket reductions do not

apply. However, Ref. 38 demonstrates a chaotic scattering
process consisting of a sequence of three-vortex interactions
in which the fourth vortex remains far from the three strongly
interacting vortices during each interaction. Thus, our analy-
sis of the three-vortex problem will serve as the leading-order
part of an asymptotic analysis of the problem in this limit.
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Appendix A: Detailed calculation of scattering angles

In this appendix, we calculate the change in angle ∆α on
trajectories with initial conditions as t →−∞ given in Fig. 6.
The result is equivalent to one calculated in the supplementary
material to3. We include it for completeness and to highlight
the connection with the phase planes of Fig. 8.

To obtain an explicit integral form, we divide dα

dt from
Eq. (30) by dY

dt , given by Eq. (28b), yielding dα

dY . We remove
the dependence on X and Z using the conservation laws (27)
and (25), and then replace H by its value given the initial con-
dition in Fig. 6. We will use Θ instead of ρ as the parameter
in what follows because it gives somewhat simpler formulas
and can use Eq. (33) to rewrite this in terms of the parameter
ρ defining the initial conditions. Integrating this, we find

∆α =
∫

∞

Ymin

−8Θ2dY

(Y 2 +Θ2)
√

p4(Y 2;Θ)
+
∫

∞

Ymin

8(Θ2 −8Θ)dY

(Y 2 +Θ2 −8Θ)
√

p4(Y 2;Θ)
,

(A1)
where

p4(Y 2;Θ) = Y 4 +2
(
Θ

2 −4Θ−8
)

Y 2 +(Θ−8)Θ3.

These are complete elliptic integrals40. To place them in stan-
dard form, we must first factor p4(Y 2;Θ). We plot its zero
locus in Fig. 17 as a function of Θ and Y 2. From this image, it
is clear that p4 can be factored as follows

p4(Y 2,Θ) =


(Y 2 − (a+ ib)2)(Y 2 − (a− ib)2), a > 0,b > 0, if Θ <−1;
(Y 2 −a2)(Y 2 −b2), a > b > 0, if −1 < Θ < 0;
(Y 2 −a2)(Y 2 +b2), a > 0,b > 0, if 0 < Θ < 8;
(Y 2 +a2)(Y 2 +b2), a > b > 0, if 8 < Θ.

(A2)

The first two cases correspond to the left phase plane of
Fig. 8, the last two to the right phase plane; the first and
last cases correspond to direct scattering, and the second and

third to exchange scattering. The lower limit of integration is
Ymin = 0 in the first and fourth cases, while in the second and
third Ymin = a. Both integrals in Eq. (A1) can be evaluated
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with the help of references such as Gradshteyn/Ryzhik and
Byrd/Friedman40,41. It is quite possible that these expressions
can be simplified further. For example, Lydon derived formu-
las in which α is the sum of one complete elliptic integral of
the first kind and one of the third kind.

In the four regions, the constants evaluate to the following

(
a2

b2

)
=



1
2

(√
Θ−8Θ3/2 −Θ2 +4Θ+8√
Θ−8Θ3/2 +Θ2 −4Θ−8

)
if Θ <−1;(

−Θ2 +4Θ+8
√

Θ+1+8
−Θ2 +4Θ−8

√
Θ+1+8

)
if −1 < Θ < 0;(

−Θ2 +4Θ+8
√

Θ+1+8
Θ2 −4Θ+8

√
Θ+1−8

)
if 0 < Θ < 8;(

Θ2 −4Θ+8
√

Θ+1−8
Θ2 −4Θ−8

√
Θ+1−8

)
if 8 < Θ.

In each of the four ρ intervals, the scattering angle can be
written as a linear combination of complete elliptic integrals
of the first kind

K(m) =
∫ 1

0

dx√
(1− x2)(1−mx2)

=
∫ π

2

0

dθ√
1−msin2

θ

.

and the third kind

Π(n,m) =
∫ 1

0

dx

(1−nx2)
√
(1− x2)(1−mx2)

=
∫ π

2

0

dθ(
1−nsin2

θ
)√

1−msin2
θ

.

The convention is to define these functions for 0 < m < 1,
though they are analytic for all m except for a branch cut from
m = 1 to m = ∞.

We report the values found in each of the cases.

DIRECT SCATTERING WITH ρ <−1

Here Θ <−1, and

∆α =
64 4

√
Θ−8(−K(m)+Π(n,m))

4√
Θ

(
Θ−8+

√
Θ2 −8Θ

)(
Θ+

√
Θ2 −8Θ

)

with

m =
1
2
+

4−Θ

2
√

Θ2 −8Θ
and n =

1
2
− Θ2 −4Θ−8

2Θ
√

Θ2 −8Θ
.

EXCHANGE SCATTERING WITH −1 < ρ <− 1
2

In this case −1 < Θ < 0, and

∆α =
4ΘK(m)+8

√
1+Θ

(
Π(n1,m)−Π(n2,m)

)
√

−Θ2 +4Θ+8
√

Θ+1+8
,

where

m =
8+4Θ−Θ2 −8

√
Θ+1

8+4Θ−Θ2 +8
√

Θ+1
,

n1 =
Θ−2+2

√
Θ+1

Θ+2−2
√

Θ+1
,

and n2 =
Θ+2−2

√
Θ+1

Θ+2+2
√

Θ+1
.

THE BORDERLINE CASE ρ =− 1
2

This is the case Θ = 0 discussed in Fig. 9. Vortex 2 travels
along a straight line with no deflection, so the scattering angle
is α = 0.

EXCHANGE SCATTERING WITH − 1
2 < ρ < 7

2

Here 0 < Θ < 8, and

∆α =
−Θ2 +4Θ+8

√
Θ+1+8

2 4
√

Θ+1
(
Θ+2

√
Θ+1+2

)(Π(n1,m)−Π(n2,m)
)
,

where

m =
1
2
+

Θ2 −4Θ−8
16

√
1−Θ

;

n1 =
2−Θ−2

√
1+Θ

4
;

and n2 =
2+Θ−2

√
1+Θ

4
.

DIRECT SCATTERING WITH 7
2 < ρ

In this last case, Θ > 8 and

∆α = cKK(m)+ cΠ,1Π1(n1,m)+ cΠ,2Π(n2,m),

where



17

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

;

-2 -1 0 1 2 3 4 5 6 7 8 9

#

-60

-40

-20

0

20

Y
2

FIG. 17. The solutions to p4(Y 2,Θ) = 0, with the transitions between the factored form in Eq. (A2) marked be vertical lines.

m =
16
√

Θ+1
Θ2 −4Θ−8+8

√
Θ+1

, n1 =− 4
Θ+2

√
Θ+1−2

, n2 =
4
(
Θ+2

√
Θ+1+2

)
Θ2 ,

cK =− 4Θ√
Θ2 −4Θ+8

√
Θ+1−8

,

cΠ,1 =
−2Θ3 +4Θ2 +64Θ+64−4

√
Θ+1

(
Θ2 −8Θ−16

)√
(Θ−8)Θ3

(
(Θ−4)Θ−8

(√
Θ+1+1

)) ,

and cΠ,2 =
−2Θ3 +12Θ2 −32Θ−64+4

(
Θ2 −16

)√
Θ+1√

(Θ−8)Θ3
(
(Θ−4)Θ−8

(√
Θ+1+1

)) .
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