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We study the dynamics of a Bose-Hubbard model coupled to an engineered environment which
in the non-interacting limit is described by the celebrated Hatano-Nelson model. At strong inter-
actions, two bosons occupying the same site form a so-called repulsively bound pair, or doublon.
Using tensor-network simulations, we clearly identify a distinct doublon lightcone and show that
the doublon inherits non-reciprocity from that of single particles. Applying the idea of reservoir
engineering at the level of doublons, we introduce a new set of dissipators and we analytically show
that then the doublon dynamics are governed by the Hatano-Nelson model. This brings about an
interaction-induced non-Hermitian skin effect and non-reciprocal doublon motion. Combining fea-
tures of the two models we study, we show that single particles and doublons can be made to spread
with opposite directionality, opening intriguing possibilities for the study of dynamics in interacting
non-reciprocal models.

Introduction – Non-reciprocal systems appear in
physics in many different forms (see e.g. [1] and refer-
ences therein). They have recently received significant
attention for the interesting phenomena they host, often
lacking a counterpart in reciprocal systems. These range
from the dramatic sensitivity of the spectral properties
on the boundary conditions, to novel topological features
in the complex spectrum [2–5]. A paramount example is
the celebrated Hatano-Nelson model [6] where the pres-
ence of non-reciprocal hopping leads to an exponential
localization of all left and right eigenstates on the op-
posite boundaries of an open one-dimensional chain, the
so-called non-Hermitian skin effect (NHSE) [7–11].

One physical implementation of non-reciprocity is
based on reservoir engineering [12, 13] where the sys-
tem is coupled to a non-trivial environment resulting in
an effective non-reciprocal dynamics. These strategies
are widely used in the non-interacting case [14–23] where
the equations of motion close and one can analytically
obtain the non-Hermitian Hamiltonian giving rise to non-
reciprocity.

The rich landscape of novel phenomena emerging in
non-reciprocal systems has further stimulated the ques-
tion of the interplay of non-reciprocity and interactions.
Most of the literature on non-Hermitian interacting sys-
tems focuses on the no-click limit of engineered open
many-body systems [24–42]. This approximation, how-
ever, completely neglects the effect of jump operators and
describes a single trajectory (the one where no photon is
detected, hence the name) out of the exponentially many
possibilities. A different possible step towards interact-
ing systems considers the interaction on the mean-field
level, yielding tractability at the expenses of a correct
quantification of quantum fluctuations [43].

To correctly take fluctuations into account, one can
study the system at the level of the many-body Lind-
blad master equation [44–47]. While in this framework
analytical and exact numerical methods have limited ap-
plication, tensor network techniques allow the study of

Figure 1. (a) Neighboring cavities are coupled with am-
plitude J and bosons on the same site interact via the Kerr
non-linearity with strength U . In addition, the one-particle
nearest-neighbor dissipation Γ1 couples neighboring cavities
with phase θ1 [L̂j in Eq. (2)]. Both single-particle and dou-
blon dynamics are directional, although doublons propagate
more slowly and decay faster. (b) In the strong coupling
limit U ≫ J doublons are stable excitations. Due to the
two-particle nearest-neighbor dissipator with strength Γ2 and
phase θ2 [Eq. (6)], doublons acquire directional dynamics,
whereas single particles spread reciprocally.

dynamics of large interacting systems. The use of these
methods is well established in the context of open quan-
tum dynamics [48–51], and it was recently applied to the
study of universality in a non-reciprocal spin 1/2 XXZ
chain [52].

Here, we study the dynamics of a Bose-Hubbard model
in presence of engineered dissipation. Inspired by the so-
called repulsively bound pairs appearing in isolated op-
tical lattices at strong interactions [53], we focus on the
dynamics of a single doublon, i.e. a composite particle
made of two bosons occupying the same site. Focusing
on dynamics, our work unveils interesting features hidden
in the steady state, which in the strong non-reciprocity
regime is only weakly affected by the presence of inter-
actions [52]. Our numerical simulations show that both
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Figure 2. At Γ1 = 2J (a), dynamics are restricted to the right half of the system and follow the single-particle lightcone
(white dashed line) for all U (U = 0 is shown here). Remarkably, the full non-reciprocity expected in the non-interacting case is
extended to U ̸= 0 substantially unchanged (red and green lines), as shown by the snapshots at different times (b). At smaller
Γ1 = 0.1J (c)-(f) the system is effectively less non-reciprocal, the left half of the system becomes slightly populated, and novel
interaction-driven phenomena emerge. In particular, at U = 2.5J (e)-(f) we observe the appearance of a lightcone corresponding
to stable doublons moving non-reciprocally (black dashed line) and distinct from the single-particle lightcone observed in panels
(c) and (d). This feature is more evident in the doublon density dynamics for U = 2.5J (f). The single-particle lightcone is
highly suppressed, and the density propagation follows the black dashed line corresponding to J2/U . These data were obtained
for a system of L = 60 sites, using an MPDO of bond dimension χ = 128 and θ1 = −π/2.

single particles and doublons can move non-reciprocally,
although with different velocities. The directional dou-
blon lightcone we identify is a clear indication of emergent
non-reciprocity in the interacting regime.

Applying the idea of reservoir engineering [13] to the
effective strong-coupling doublon Hamiltonian, we intro-
duce a new set of dissipators and show that the result-
ing equations of motion within the single-doublon sec-
tor reproduce the Hatano-Nelson model. Our model
is then characterized by an interaction-induced NHSE,
where single-particle dynamics are reciprocal and only
doublons feature directional motion. Their different be-
havior opens several intriguing possibilities for the study
of dynamics, as we show by briefly exploring the case of
opposite directionality for doublons and single particles.

Model – We study bosons in a dissipative cavity array
with on-site Kerr non-linearity of strength U . The coher-
ent part of the dynamics is encoded in the Bose-Hubbard
Hamiltonian

Ĥ = J

L−1∑
j=1

(â†j âj+1 + H.c.) +
L∑

j=1

U(â†j)
2â2j , (1)

where J is the hopping amplitude between neighboring
cavities and â†j(âj) creates(annihilates) a boson on site
j. The action of the environment is represented by a
set of Lindblad operators L̂j which introduce a nearest-
neighbor dissipation L̂j =

√
Γ1(âj + eıθ1 âj+1). The full

quantum dynamics of the system are then described by
the many-body Lindblad master equation

ρ̇ = −ı[Ĥ, ρ] +
L−1∑
j=1

L̂jρL̂
†
j −

1

2
{L̂†

jL̂j , ρ}, (2)

as depicted in Figure 1(a). This model was recently
introduced in Refs. [40, 47] studying the effective non-
Hermitian Hamiltonian arising in its fully non-reciprocal
no-click limit.

Previous studies in the non-interacting case, U = 0,
have shown how the dynamics of the first moments
⟨âj⟩ [17] and the second moments ⟨â†j âi⟩ [19] are de-
scribed by a non-Hermitian dynamical matrix corre-
sponding to the celebrated Hatano-Nelson model [6].
Consequences of this effective non-reciprocity include di-
rectional exponential amplification of the cavity ampli-
tude [16, 17, 54] and non-reciprocal dynamics of the bo-
son densities [20].

Non-reciprocity and dynamics – To avoid the exponen-
tial growth of the Hilbert space (D ≈ 106 in the case
we study), we use tensor-network methods which allow
to obtain accurate results at a cost scaling only linearly
with system size. In particular, we use the well-known
time-evolving block decimation (TEBD) algorithm [55]
adapted to the description of Lindblad dynamics, as de-
tailed in the Supplementary Material [56].

Throughout this work, we study the dynamics of the
single-doublon initial state

|ψ0⟩ =
1√
2
(â†L/2)

2|vac⟩, (3)

which in the isolated scenario can form a repulsively
bound pair [53] when strong interactions make single-
particle hopping energetically unfavorable. The behav-
ior of this composite particle at U ≫ J is accurately
captured by the following effective Hamiltonian [57, 58]
which can be obtained through a Schrieffer-Wolff trans-
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Figure 3. In absence of interactions, U = 0 (a), dynamics are reciprocal, irrespective of dissipation rate Γ2. Both single-particle
(solid lines) and doublon (dashed lines) population profiles at time JT = 15 are equally spread in the two halves of the system.
As expected, the value of Γ2 affects significantly the doublon density only. As interactions are turned on U ≫ J (b)-(e) the
system shows clear signatures of directional motion. Due to the destructive interference induced by the quadratic dissipator,
a highly non-reciprocal doublon lightcone x̃ ∝ J2/U (black dashed line) appears, affecting the doublon density (c) and (e).
The single-particle population (b) and (d), however, spreads reciprocally and is only slightly affected by the doublon lightcone
due to its decay into single-particle states. As the interaction strength is increased (e), the non-reciprocal doublon spreading
becomes slower, in agreement with the smaller effective hopping amplitude. Additionally, we notice a smaller population of
single-particle states due to the increased stability of the doublon (d). These data were obtained for a system of L = 60 sites,
using an MPDO of bond dimension χ = 128 and θ2 = −π/2.

formation [59, 60]

Ĥeff =
1

2

J2

U

L−1∑
j=1

[
(â†j)

2(âj+1)
2 + H.c.

]
, (4)

where doublons move coherently with a reduced hopping
amplitude. The presence of engineered dissipation makes
the dynamics richer as it enables non-reciprocal hopping
in the non-interacting case JR(L) = J − ıe±ıθ1Γ1/2, tun-
ing the model from reciprocal at Γ1 = 0 to fully non-
reciprocal at Γ1 = 2J (for θ1 = ±π/2) [13].

Considering second-order processes in the equations of
motion of doublon states, one can show that doublons
inherit non-reciprocity and move with an effective non-
reciprocal hopping amplitude J (d)

R(L) ≈ J 2
R(L)/(U + ıΓ1).

We confirm this prediction numerically in Figure 2.
At strong non-reciprocity Γ1 = 2J and θ1 = −π/2 (a)-

(b), particles move only to the right following the single-
particle lightcone x(t) ∝ Jt, irrespective of interaction
strength U . This is a consequence of the large dissipation
rate Γ1, which quickly depletes the system thus making
the effect of interactions weak [52].

In Figure 2 (c)-(f) we decrease the dissipation rate to
Γ1 = 0.1J , hence the degree of non-reciprocity is ex-
pected to be weaker. Nevertheless, dynamics still show
clear signatures of non-reciprocity in both the interacting
and non-interacting cases. Importantly, the presence of
interactions leads to the emergence of a second lightcone
x̃(t) ∝ (J2/U)t [black dashed line in panels (e) and (f)].
This doublon lightcone is related, to leading order, to the
effective non-reciprocal doublon hopping amplitude, and
it clearly highlights the slower doublon dynamics due to
strong non-linearity. We further observe a slightly larger

population on the right branch of the doublon lightcone,
suggesting the extension of non-reciprocity also to the
interacting level. In passing, comparing panels (c) and
(e) we notice that the interference pattern at long times
Jt≫ L/2 is washed out in the interacting case, reminis-
cent of many-body dephasing in isolated systems, where
dynamics relax to the thermal average due to interactions
and ergodicity [61–64].

To obtain a clearer picture of the doublon dynamics
and distinguish it from that of single particles it is useful
to define a doublon density

n̂dj =
1

2
(â†j)

2â2j (5)

which is identically zero for all single-particle states and
in the single-doublon sector corresponds to the doublon
population on site j. In Figure 2 (d) and (f) we show the
dynamics of ⟨n̂dj ⟩ for a small dissipation rate Γ1 = 0.1J
and for U = 0 and U = 2.5J , respectively. In the non-
interacting case, the doublon density follows the single-
particle lightcone, indicating the absence of coherent dou-
blon motion. On the other hand, at U = 2.5J , the
single-particle lightcone is strongly suppressed and the
dominant contribution comes from the slower and non-
reciprocal doublon motion. Hence, the interacting sys-
tem inherits the non-reciprocity characterizing single-
particle dynamics. The emergence of metastable non-
reciprocal doublons provides a genuine interaction effect
in the system, clearly distinguishable from the single-
particle case, and is one of the main results of this letter.

Stabilizing doublon directional motion – Inspired by
the structure of the effective Hamiltonian Eq. (4), we in-
troduce a different set of dissipators which stabilize dou-



4

blon non-reciprocity. Following the approach of Ref. [13],
we replace the one-particle nearest-neighbor dissipator
with its doublon version

Γ2D[â2j + eıθ2 â2j+1], (6)

where only pairs of bosons (i.e. doublons) are lost to the
environment, as sketched in Figure 1 (b).

Using the effective Hamiltonian (4) and the dissipator
above we obtain the equation of motion for the doublon
amplitudes ⟨â2ℓ⟩ and correlations ⟨(â†ℓ)2â2m⟩ [56]. In the
single-doublon sector these simplify and can be written
in terms of a non-Hermitian dynamical matrix H acting
non-trivially on the single-doublon space only

ı
∂⟨(â†ℓ)2â2m⟩

∂t
=

∑
j

Hm,j⟨(â†ℓ)2â2j ⟩ − H†
j,ℓ⟨(â

†
j)

2â2m⟩, (7)

with H the Hatano-Nelson matrix

H =
∑
j

JR|j+1⟩2⟨j|2+JL|j−1⟩2⟨j|2−2ıΓ2|j⟩2⟨j|2. (8)

Similarly to the non-interacting case [17, 19], the interfer-
ence of the coherent nearest-neighbor coupling with the
doublon dissipation causes the emergence of different left
and right hopping amplitudes JL = J2

U − ıe−ıθ2Γ2 and
JR = J2

U − ıeıθ2Γ2. The dissipation rate required for full
non-reciprocity is then Γ2 = J2/U and is of the same or-
der of the doublon motion timescale. This results in more
stable non-reciprocal doublon dynamics, as compared to
the one-particle dissipator case where full non-reciprocity
is achieved at Γ1 = 2J ≫ J2/U .

Remarkably, the non-Hermitian skin effect arising from
the Hatano-Nelson matrix (8) affects only doublon states
|j⟩2 = |0 . . . 2j . . . 0⟩. Binding particles together, interac-
tions have a dramatic effect and enable the exponential
localization of doublons at the boundaries of the sys-
tem, whereas single-particle behave reciprocally. The
interaction-induced non-reciprocity and non-Hermitian
skin effect resulting from the quadratic dissipator (6) rep-
resent the second central result of our work.

In our numerical analysis, we go beyond the approxi-
mate picture of the effective Hamiltonian and simulate
the full dynamics of the system using the interacting
Hamiltonian (1) and the quadratic dissipator (6). As
we want to separate single-particle from doublon contri-
butions to the dynamics, the density n̂j = â†j âj is not a
convenient quantity, as it is affected by both. We then de-
fine the single-particle population P̂ (1)

j = n̂j − 2n̂dj which
accounts for the weight of single-particle states, when the
total number of bosons is N = 2.

In Figure 3 (a), we show the single-particle and dou-
blon profiles at time JT = 15 in the non-interacting case.
Due to the absence of stable doublons at U = 0, dynam-
ics are reciprocal and particles spread in both directions
equally, irrespective of the value of Γ2.

Figure 4. (a) Combining the one- and two-particle nearest-
neighbor dissipators gives rise to fascinating effects on particle
dynamics. At θ1 = −π/2 and Γ1 = 0.1J the single-particle
density is slightly non-reciprocal towards the right (b). How-
ever, choosing θ2 = +π/2 and Γ2 = J2/U leads to almost full
non-reciprocity of doublons to the left (c). These data were
obtained for a system of L = 60 sites, using an MPDO of
bond dimension χ = 128 and U = 2J .

A dramatic difference is observed when U ≫ J [Fig-
ure 3(b)-(e)], where the doublon forms a stable excita-
tion and the quadratic dissipative coupling (6) leads to
strong non-reciprocity. In particular, at Γ2 = J2/U and
θ2 = −π/2, where JL = 0, the doublon density propa-
gates exclusively towards the right boundary as predicted
by the equations of motion (7). As a consequence of the
finite interaction U , single-particle hopping processes are
allowed, and the initial doublon can decay into single-
particle states. These are free to propagate in both di-
rections, as they are not affected by the dissipator (6).

Opposite directionality – Combining the one-particle
and doublon nearest-neighbor dissipators as in Figure 4
(a), one can separately control doublons and single par-
ticles. In Figure 4, we show dynamics of both single-
particle population (b) and doublon density (c). Choos-
ing θ1 = −θ2 generates opposite interference of the
nearest-neighbor hopping with the two dissipators and
results in the different directionality of single particles
(b) and doublons (c). This simple example points out
how introducing the dissipator (6) causing doublon non-
reciprocity opens several interesting directions for the in-
vestigation of interacting non-reciprocal dynamics.

Conclusions – In this work, we investigated the dy-
namics of a Bose-Hubbard model coupled to engineered
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dissipators. Showing the emergence of a non-reciprocal
doublon lightcone, we highlighted how the study of time
evolution can unveil genuinely interacting effects, which
would be hidden in the study of steady-states alone [52].

We introduced a novel type of dissipator, based on
the structure of the strongly-interacting effective Hamil-
tonian, and showed how it gives rise to a doublon non-
Hermitian skin effect. This arises at the level of the Lind-
blad master equation, going beyond the no-click limit
studied in previous works [41, 42]. The quadratic dis-
sipator leads to the interaction-induced non-reciprocal
dynamics observed in our numerical simulations, and
opens new possibilities for the study of dynamics in non-
reciprocal systems.

Strictly related to the study of dynamics we presented
is the issue of how relaxation and thermalization are af-
fected by interactions in non-reciprocal models [20, 45].
Our approach can be easily generalized to other systems
such as one-dimensional spin 1/2 chains. This setup al-
lows for the study of strongly-correlated systems, rais-
ing some intriguing questions regarding non-Hermitian
topology of many-body systems [28] as well as the na-
ture of transport in non-reciprocal bosonic and fermionic
models [22, 23].
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Details on numerical methods

In order to solve numerically the Lindblad master equation Eq. (2), one needs to vectorize the density matrix ρ,
replacing the density operator with a vector in a larger Hilbert space ρ =

∑
i,j ρij |i⟩⟨j| →

∑
i,j ρij |j⟩ ⊗ |i⟩. This

convention allows to write the Liouvillian L as a N 2 ×N 2 matrix, where N is the dimension of the original Hilbert
space. Once the problem is cast in terms of matrices and vectors, it is then straightforward to use conventional linear
algebra numerical methods to obtain dynamics and steady state. Due to the exponential growth of the Hilbert space,
however, the exact numerical solution of the Lindblad master equation is a formidable task [66]. Therefore, in our
work we used tensor-network methods, which allow an accurate approximation of the dynamics of the system.

In the vectorized Hilbert space, the Liouvillian matrix describing the first model we introduce takes the following
form

L = −ı(1 ⊗ Ĥ − ĤT ⊗ 1) + Γ1

L−1∑
j=1

(â†j + e−ıθ1 â†j+1)
T ⊗ (âj + eıθ1 âj+1)

− 1

2
Γ1

L−1∑
j=1

{
1 ⊗ (â†j + e−ıθ1 â†j+1)(âj + eıθ1 âj+1) +

[
(â†j + e−ıθ1 â†j+1)(âj + eıθ1 âj+1)

]T
⊗ 1

}
.

(S1)

Locality of both the Hamiltonian and the dissipators allows to efficiently write the Liouvillian as a low bond dimension
matrix-prouct operator (MPO). The vectorized density matrix can be similarly written in a matrix-product state
(MPS) form. To perform time evolution we use the well-known time evolving block decimation (TEBD) algorithm [55]
with local gates corresponding to local elements of the Liouvillian of Eq. (S1).

Throughout this work we used a 4-th order Suzuki-Trotter decomposition with time-step Jδt = 0.05. First the
Liouvillian is divided into its even and odd contributions

L =
∑

i∈even

Li,i+1 +
∑
i∈odd

Li,i+1.

As even and odd terms do not commute, the propagator eLδt cannot be written as a product of an even and an
odd layer exactly. One can however approximately do so, by applying a series of correcting layers which sum up to
the correct time-step δt. The error accumulated during this process is proportional to the order of the expansion
O(δt4) [67]. In our simulations, we take advantage of the fact that even and odd gates do commute among themselves
(even with even and odd with odd) to perform a parallel evaluation of all the gates composing one layer. Comparison
with the exact dynamics on small systems L = 4 and N = 2 confirms the accuracy of TEBD, the only source of errors
coming from trotterization.
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Figure S1. The maximum error for all dissipators used in the main text remains very small, confirming the accuracy of the
results presented. For the single-particle dissipator (a) we show Γ1 = 0.1J and θ1 = −π/2 as it represents the worse case for
entanglement growth. In panel (b), instead, we show Γ2 = J2/U and θ2 = −π/2, the values used in the main text. Finally, in
panel (c) we show the error for the combined dissipators with (Γ1 = 0.1J, θ1 = −π/2) , (Γ2 = J2/U, θ2 = π/2) and U = 2J . In
all cases the error is obtained comparing χ1 = 64 and χ2 = 128.
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Convergence analysis

The time evolution will in general increase the bond dimension needed to accurately describe the full state. The
details on how fast and how much does entanglement grow, and therefore for how long is the simulation accurate,
strongly depend on the initial state and on the amount of correlations developed during the dynamics. As these are
not known a priori, any simulation requires a convergence benchmark against different bond dimensions.

Therefore, we compare the expectation value of relevant observables obtained with different bond dimensions and
define the maximum error in the array ϵn(χ)

ϵn(χ, t) = max
j

|⟨n̂χ1

j (t)⟩ − ⟨n̂χ2

j (t)⟩|

where χ1 and χ2 are two different bond dimensions.
In Figure S1 we report the results of our convergence analysis for the different dissipators studied in the main text.

The maximum error at each time is calculated using χ1 = 64 and χ2 = 128. The data confirm the accuracy of our
simulations, as the maximum error is extremely small at all times. This is not surprising, as the system is very dilute
since only two particles are present at time t = 0 and the environment does not add particles to the system.

In particular, in panel (a) we notice how for the non-interacting case the error is particularly small, as the two
particles are weakly correlated. In the quadratic dissipator case (b) this trend is inverted, as at U = 0 particles are
only weakly dissipated to the environment, thus effectively increasing correlations with respect to the interacting case.

Equations of motion for the quadratic dissipator

In the main text we report the equations of motion (EOM) for the doublon density in the single-doublon case and
in absence of loss and gain. Here, we provide details on the derivation and on the regime it is valid in.

The equation of motion of the expectation value of an operator Ô in the open setting is given by

∂⟨Ô⟩
∂t

= ı⟨[Ĥ, Ô] +
∑
α,j

(L̂
(α)
j )†ÔL̂

(α)
j − 1

2
{(L̂(α)

j )†L̂
(α)
j , Ô}⟩. (S2)

In the case studied in the main text, we assume to be in the strong coupling regime U ≫ J , where the effective
Hamiltonian Eq. (4) accurately describes the closed system. We can then use Ĥeff in Eq. (S2) together with the
two-particle dissipator Eq. (6). For the doublon amplitude ⟨â2ℓ⟩, then

∂⟨â2ℓ⟩
∂t

= ı
J2

2U

L−1∑
j=1

〈
[(â†j)

2â2j+1, â
2
ℓ ] + ⟨[(â†j+1)

2â2j , â
2
ℓ ]
〉
+ Γ2

L−1∑
j=1

〈[
(â†j)

2 + e−ıθ2(â†j+1)
2
]
â2ℓ

[
â2j + eıθ2 â2j+1

]〉

− 1

2
Γ2

L−1∑
j=1

〈{[
(â†j)

2 + e−ıθ2(â†j+1)
2
] [
â2j + eıθ2 â2j+1

]
, â2ℓ

}〉
= −ı

(
J2

U
− ıΓ2e

ıθ2

)〈
2â†ℓ âℓâ

2
ℓ+1 + â2ℓ+1

〉
− ı

(
J2

U
− ıΓ2e

−ıθ2

)〈
2â†ℓ âℓâ

2
ℓ−1 + â2ℓ−1

〉
+ 2Γ2

〈
â†ℓ â

3
ℓ + â2ℓ

〉
.

(S3)

The equation above simplifies in the particular case of a single doublon. In fact, as the three-particle sector is never
populated, the terms ⟨â†ℓ âℓâ2ℓ+1⟩ and similar exactly vanish. Therefore the simpler expression

ı
∂⟨â2ℓ⟩
∂t

= JR⟨â2ℓ+1⟩+ JL⟨â2ℓ−1⟩ − 2ıΓ2⟨â2ℓ⟩ (S4)

follows, where JR =
(

J2

U − ıeıθ2 Γ2

2

)
and JL =

(
J2

U − ıe−ıθ2 Γ2

2

)
. The dynamics of the doublon amplitude in the strong

coupling limit is hence determined by a non-Hermitian matrix identical to that of the Hatano-Nelson model.
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Similarly, we obtain the equations of motion for the doublon correlations

∂⟨(â†ℓ)2â2m⟩
∂t

= ı
J2

2U

L−1∑
j=1

〈
[(â†j)

2â2j+1, (â
†
ℓ)

2â2m] + [(â†j+1)
2â2j , (â

†
ℓ)

2â2m]
〉

+ Γ2

L−1∑
j=1

〈[
(â†j)

2 + e−ıθ2(â†j+1)
2
]
(â†ℓ)

2â2m
[
â2j + eıθ2 â2j+1

]〉
− 1

2

〈{[
(â†j)

2 + e−ıθ2(â†j+1)
2
] [
â2j + eıθ2 â2j+1

]
, (â†ℓ)

2â2m

}〉
= −ıJR

〈
2(â†ℓ)

2â†mâmâ
2
m+1 + (â†ℓ)

2â2m+1

〉
− ıJL

〈
2(â†ℓ)

2â†mâmâ
2
m−1 + (â†ℓ)

2â2m−1

〉
+ ıJ∗

R

〈
2(â†ℓ+1)

2â†ℓ âℓâ
2
m + (â†ℓ+1)

2â2m

〉
+ ıJ∗

L

〈
2(â†ℓ−1)

2â†ℓ âℓâ
2
m + (â†ℓ−1)

2â2m

〉
− 2Γ2

〈
2(â†ℓ)

2â†ℓ âℓâ
2
m + (â†ℓ)

2â2m + 2(â†ℓ)
2â†mâmâ

2
m

〉
(S5)

Again the equations of motion simplify once the single-doublon sector is considered. Removing the vanishing terms,
then, we obtain the following equation

ı
∂⟨(â†ℓ)2â2ℓ⟩

∂t
= JR⟨(â†ℓ)2â2m+1⟩+ JL⟨(â†ℓ)2â2m−1⟩ − J∗

L⟨(â†ℓ−1)
2â2m⟩ − J∗

R⟨(â†ℓ+1)
2â2m⟩ − 4ıΓ2⟨(â†ℓ)2â2m⟩. (S6)

These equations of motion can be conveniently expressed as the matrix-vector multiplication used in Eq. (7) in the
main text.

Physical implementation of the two-particle dissipator

The quadratic dissipator in the main text Eq. (6) can be obtained through the adiabatic elimination of an auxiliary
strongly damped cavity mode ĉ. The auxiliary cavity is coupled to the main array via the Hamiltonian

Ĥc = J ′ĉ†(â2j + â2j+1) + H.c (S7)

and it is strongly damped with a dissipation rate γc ≫ J, J ′.
As the dissipation rate γc is the shortest timescale in the problem, the fast motion of the modes in the auxiliary

cavity can be neglected, ∂t⟨ĉ⟩ = 0 [68]. This procedure allows the replacement of the auxiliary cavity amplitude in
the equations of motion of the main system. Upon the correct choice of J ′ and γc, the adiabatic elimination of the
auxiliary cavity yields the same equations of motion as the two-particle dissipator (6) [13].
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