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ABSTRACT

The utilization of personal sensitive data in training face recognition (FR) mod-
els poses significant privacy concerns, as adversaries can employ model inver-
sion attacks (MIA) to infer the original training data. Existing defense methods,
such as data augmentation and differential privacy, have been employed to mit-
igate this issue. However, these methods often fail to strike an optimal balance
between privacy and accuracy. To address this limitation, this paper introduces
an adaptive hybrid masking algorithm against MIA. Specifically, face images are
masked in the frequency domain using an adaptive MixUp strategy. Unlike the
traditional MixUp algorithm, which is predominantly used for data augmentation,
our modified approach incorporates frequency domain mixing. Previous studies
have shown that increasing the number of images mixed in MixUp can enhance
privacy preservation but at the expense of reduced face recognition accuracy. To
overcome this trade-off, we develop an enhanced adaptive MixUp strategy based
on reinforcement learning, which enables us to mix a larger number of images
while maintaining satisfactory recognition accuracy. To optimize privacy protec-
tion, we propose maximizing the reward function (i.e., the loss function of the FR
system) during the training of the strategy network. While the loss function of the
FR network is minimized in the phase of training the FR network. The strategy
network and the face recognition network can be viewed as antagonistic entities in
the training process, ultimately reaching a more balanced trade-off. Experimental
results demonstrate that our proposed hybrid masking scheme outperforms exist-
ing defense algorithms in terms of privacy preservation and recognition accuracy
against MIA.

1 INTRODUCTION

Face recognition (FR) has found wide applications in various practical systems, as face images
provide unique identity information. If the face information is maliciously stolen, personal privacy
will be compromised. Two privacy protection scenarios are listed here. The first is that private data
needs to be provided to untrusted third parties for model training. To protect the privacy of data
(face visualization information), data needs to be masked. The second is that the private data owner
also carries out model training. The trained model will be provided to an untrusted third party for
use. It is necessary to avoid inferring the original training data from the model.

For the first scenario, commonly used privacy protection techniques include differential privacy (DP)
Zhao et al. (2020b); Girgis et al. (2021) and data masking Huang et al. (2020); Wang et al. (2022b).
DP protects privacy by adding noise to input data, gradients, and labels, which normally leads to
a significant decline in task performance. Compared to DP, the masking method has no significant
impact on the performance of the task Wang et al. (2022b). Typical data masking methods include
MixUp Zhang et al. (2017), Instahide Huang et al. (2020) and PPFR-FD Wang et al. (2022b). Note
that MixUp can also be used for data enhancement. In this case, the mixed data is utilized together
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(a) Original image (b) 99.23 (c) 98.76 (d) 82.93 (e) 72.36 (f) 98.20

Figure 1: Comparison of the results of MIA Zhang et al. (2020c) and accuracy for different defense
methods. From the left to right, we show the original image, the result of no defense, Mixup,
Instahide DP and our denfense methods. The value below each image indicates recognition accuracy
of the corresponding model. We expect to obtain a high-accuracy performance model while its result
of MIA looks as much as different from the original image. Some existing defense methods cannot
achieve a better trade-off between privacy and accuracy.

with its original version in training. When MixUp is explored for masking, only the mixed data
would be used in training. Unfortunately, both MixUp and Instahide have been successfully hacked
(see Carlini et al. (2020)). Although MixUp and Instahide are hacked in the first scenario, they can
be used in the second scenario for defending against the MIAs. Note that the MIA method based on
generative adversarial networks (GAN) poses a threat to the defense methods in the second scenario.
Moreover, the current methods always resist MIA at the expense of the performance decline of the
model, and fail to achieve a good trade-off between privacy and accuracy (see Fig. 1).

(a) Framework of our proposed defense
method.

(b) Strategy network.

Figure 2: The framework of (a) our proposed defense method and (b) the strategy network.

This paper proposes a hybrid defense algorithm for MIA. In Fig. 2(a), it can be seen that after
the original face image is masked by the data masking algorithm (here, we use PPFR-FD as the
first masking step), we mix the outcome of PPFR-FD with MixUp. We expected to use the idea
of hybrid masking to enhance privacy protection, but it was found that if the number of mixed
masked images k in MixUp is bigger than 3, the recognition performance would be significantly
reduced (see Table 2). We thus use reinforcement learning (RL) Williams (1992) to adaptively
select the parameter k. The more images mixed in the MixUp or Instaide algorithm, the stronger
the privacy protection ability Huang et al. (2020). However, the more mixed images, the lower the
recognition accuracy and the greater the value of the loss function. To enhance the ability of privacy
protection, the strategy network in reinforcement learning tends to choose a larger mixed value. We
take the loss function of the FR network as the reward function. For enhancing the ability of privacy
protection, we maximize the reward function (i.e. the loss function of FR) when training the strategy
network. The loss function of FR is minimized during the FR network training. The strategy and
face recognition networks can be regarded as two opposing sides in the training process. Finally,
the two reached a better trade-off between privacy and utility. Experiments also show the proposed
method not only provides good privacy protection but also makes the accuracy comparable to that
of the case when original face images are used during training.

Our contributions are as follows:

• An adaptive hybrid defense algorithm for MIA is proposed. The face image is masked
by combining frequency-domain masking and RL-enhanced MixUp. Unlike conventional
MixUp, we use MixUp in the frequency domain. Our proposed MixUp method based on
RL can improve the privacy protection capability while retaining good recognition.
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• For face image masking algorithms, we put forward a set of systematical measures to quan-
tify the effect of masking and privacy protection. Experimental results show that the pro-
posed adaptive hybrid defense algorithm has a better privacy-preserving ability and pro-
vides satisfactory recognition accuracy.

2 RELATED WORK

2.1 MODEL INVERSION ATTACKS

The majority of membership inference attacks (MIAs) harness the capabilities of generative adver-
sarial networks (GANs) Goodfellow et al. (2020), leveraging images as an initial reference to create
lifelike images. Certain MIAs Zhang et al. (2020c); Chen et al. (2021); Wang et al. (2021) have
managed to circumvent distributional discrepancies by employing GANs trained on datasets analo-
gous to the target model’s data. These approaches sometimes incorporate supplementary data, such
as a person’s blurred image Zhang et al. (2020c), and are custom-designed for particular target mod-
els Chen et al. (2021); Wang et al. (2021), which hampers the generalizability and adaptability of
the methods. Moreover, these techniques predominantly concentrate on generating low-resolution
images, which constrains the detail of the features that can be extracted, while their effectiveness
at higher resolutions has not been fully demonstrated. The currrent work Struppek et al. (2022) in-
troduces Plug & Play Attacks, which diminish the reliance on a correspondence between the target
model and the image reference. This advancement permits the use of a singular GAN to mount
attacks against diverse targets with just minimal alterations needed for the attack methodology. Ad-
ditionally, it offers a comprehensive discussion on the fundamentals of MIAs, as well as a theoretical
analysis of the optimal conditions for MIAs and factors that could lead to their degradation.

2.2 MASKING BASED DEFENSE METHODS

Common defense methods include data augmentation, differential privacy and other making meth-
ods. In Chamikara et al. (2020), privacy protection using the EigEnface Perturbation (PEEP) method
is presented. It perturbates eigenfaces using DP Gong et al. (2020) and only stores perturbed data
at the third-party servers that run the eigenface algorithm. But the FR accuracy of PEEP is much
worse than that using original face images. Typical masking techniques include MixUp, which is
originally a data enhancement method, Instahide and PPFR-FD. The first two methods have been
recently hacked Carlini et al. (2020). The last method exposes some rough face information after
black-box reconstruction. Therefore, there are still some security risks.

In general, the masking effect is measured using the attack methods, which include white-box and
black-box attacks. The white-box attack is customized because it assumes that the specific operation
details of masking are known, and its attack method is also combined with specific masking steps.
The black-box attack assumes that the attack model can be accessed multiple times and multiple
input-output pairs can be obtained. In literature such as Huang et al. (2020); Wang et al. (2022b),
the black-box attack is usually realized by GAN. Most works judge whether they can resist black-
box attacks according to the visualization effect of reconstructed images from GAN, which lacks
quantitative measure standards. Some literature Tanaka (2018); Wang et al. (2022b) uses the size of
brute force search space, which is often used in cryptography, to quantify the ability of privacy pro-
tection at the pixel level. Due to the strong semantic correlation between image pixels, in most cases,
sensitive information can be obtained without completely restoring all pixels. So it is inappropriate
to use brute force search space to measure the privacy-preserving ability at the pixel level.

3 THREAT MODEL

We consider this scenario: the private data owner conducts model training, and the trained model
will be provided to an untrusted third party for use. The untrusted third party can obtain the structure
of the model and all parameter information. At the same time, we give an untrusted third party the
ability to infer all masked data. This is a powerful assumption for attackers. The attacker attempts
to deduce the original training data from the model and masked data.
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4 METHODOLOGY

4.1 ADAPTIVE HYBRID MASKING

We provide detailed introductions of masking in the frequency domain as preliminary preparations
in Appendix.

In MixUp, the mixed images used in this work come from the same batch. The processing steps are
as follows. When the number of images participating in each mixing is set to k, k batches are first
obtained by randomly shuffling the images in the original batch k − 1 times. For the convenience
of explanation, assume that a supermatrix with the size of batch ∗ k is obtained, each entry in the
supermatrix corresponds to an image, and the first column collects the images of the original batch.
Next, we randomly generate the weight coefficient matrix of size batch ∗ k and normalize the rows
so that the sum of the coefficients of each row is 1, and the maximum coefficient cannot exceed the
specified value of 0.55. Then, each row of the image supermatrix is weighted with each coefficient
matrix along the row direction, and finally, a batch ∗ 1 mixed image supermatrix is obtained. Labels
are mixed in a similar way. The difference is that labels are represented by weighted one-hot vectors,
that is, a mixed image corresponds to a weighted one-hot vector, in which the non-zero value is no
longer 1, but the previously randomly generated weighting coefficients.

Table 1: Comparison of face recognition accuracy between MixUp and Instahide in the RGB and
frequency domains. The experiment set is the same as that in Section 5.1.

Method RGB domain (LFW) Frequency domain (LFW)
MixUp(k=2) 86.38 98.76

Instahide(k=2) 61.75 82.93

Note that the difference between Instahide and MixUp is that the former randomizes element signs
based on the latter. Through the comparison between Instahide and MixUp in Table 1, we find that
the accuracies of these two algorithms in the frequency domain are much better than that in the
RGB domain. Moreover, the face recognition accuracy of MixUp is better than that of Instahide.
Given this, we use frequency-domain MixUp in the following fusion method. The pseudo-code of
the MixUp-based ArcFace algorithm is provided in Appendix Algorithm 1.

MixUp has two hyper-parameters. One is the maximum weight for the mixed images (the sum of
all weights needs to be 1). Both MixUp and Instahide set this hyper-parameter to 0.65 by default.
In this work, we choose a smaller value of 0.55 so that different images can contribute more to the
mixed data, which leads to higher privacy protection capability. The other hyper-parameter is the
number of images used in the mixing operation, denoted by k. It can be expected by intuition that a
larger k should result in higher privacy protection level ability at the cost of lower face recognition
accuracy. To obtain a better trade-off between privacy protection and system utility, we propose an
adaptive hybrid masking method based on RL. The basic idea is to sample the possible strategies
using a strategy network during training.

As shown in Fig. 2(b), we select ResNet18 as the strategy network backbone, and its input is the
PPFR-FD-masked version of the entire batch.The strategy network aims at generating the probability
mass function (PMF) for the possible values of k, which are collected in the specified set, e.g.,
{2,3,4,5,6}. The softmax operation is introduced after the full-connection layer of ResNet18 to
achieve this purpose. The above design enables the RL module to select a strategy, which is the
number of masked images used in MixUp, by sampling k from {2,3,4,5,6} according to the PMF
estimated by the strategy network. Another modification we include is the average pooling operation
before the full connection layer. This effectively creates a batch size of 1, which matches well with
the need for generating a single PMF as output.

4.1.1 LOSS FUNCTION

For participant i, when we don’t use the adaptive MixUp module, i.e., PPFR-FD+MixUp with fixed
k (no strategy network exists), training the face recognition network attempts to solve

min
Wi

E(xt,yt)∼DL (FRNet (xmix,Wi) , yt) , (1)
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where xt and yt are the raw data and label in xbt and ybt, xbt and ybt denote the raw data and label
sets of a batch selected from the training set D during the tth-round training. L is the cross-entropy
loss function. We use Arcface as the metric function for the face recognition network (FRNet), and
the weights of FRNet are included in Wi. xmix is the output of MixUp(xbt,k) that mixes every
image in xbt with other k images in it. When the adaptive MixUp module is active, i.e., PPFR-
FD+AdaMixUp with adaptive k sampling according to the strategy network outcome, our goal is
to protect privacy as much as possible, and the strategy network should choose the strategy that
increases the loss of the FRNet. So training the face recognition network becomes solving

min
Wi

E(xt,yt)∼D

(
max
ϕi

Ek∼p(k|xmt,ϕi)
L (FRNet (xmix,Wi) , yt)

)
, (2)

where ϕi is the weight of the strategy network, xmt is the masked data by the masking algorithm.
We use the strategy network to produce the sample-dependent and learnable strategy p (k|xmt, ϕi).

To train the strategy network, we first produce a batch of PPFR-FD-masked face images. The
strategy network then outputs the associated PMF for k, according to which a sample of k is drawn.
The selected value of k is used in MixUp to mix masked images in the batch. The mixed data
xmix are input into the face recognition network for recognition and calculating the recognition loss
(called reward1) using

L1 (ϕi) = L (FRNet (xmix,Wi) , yt) . (3)

Based on L1 (ϕi), we train the face recognition network to obtain its updated version FRNet1. This
newly trained face recognition network is used to calculate the loss of the strategy network only, and
it is discarded after the current strategy network training epoch. The MixUp outcome xmix is fed to
calculate the recognition loss (called reward2) using

L2 (ϕi) = L
(
FRNet1

(
xmix, W̊i

)
, yt

)
, (4)

where W̊i and FRNet1 are the updated weight and model FRNet after one-step training.

Combining the two loss terms in (3) and (4), as well as the loss term of FRNet itself, we transform
the optimization problem in (2) into

min
Wi

E(xt,yt)∼D(
max
ϕi

Ek∼p(k|xmt,ϕi) (L0 (Wi) + a · L1 (ϕi) + b · L2 (ϕi))

)
,

(5)

where L0 (Wi) is in fact L (FRNet (xmix,Wi) , yt) in (1), a and b are hyper-parameters with de-
fault values a = 1 and b = 1. In order to enhance the ability of privacy protection, the strategy
network in reinforcement learning tends to choose a larger mixed value. We take the loss function
of the FR network as the reward function. For enhancing the ability of privacy protection, we max-
imize the reward function (i.e. the loss function of FR) when training the strategy network. The
loss function of FR is minimized during the FR network training. The strategy and face recognition
networks can be regarded as two opposing sides in the training process.

4.1.2 SOLVING (5)

We propose an algorithm to solve (5) efficiently. The developed technique is based on alternative
projection. Specifically, given the strategy network ϕi, (5) reduces to training the face recognition
network through solving

min
Wi

E(xt,yt)∼DEk∼p(k|xmt,ϕi) (L0 (Wi)) . (6)

Next, fixing the face recognition network Wi, (5) reduces to training the strategy network through
solving

max
ϕi

E(xt,yt)∼DEk∼p(k|xmt,ϕi) (a · L1 (ϕi) + b · L2 (ϕi)) . (7)

Note that the selection strategy k can only take values in a finite discrete set. Following by the
REINFORCE algorithm Williams (1992), we can transform (7) into

max
ϕi

E(xt,yt)∼DEk∼p(k|xmt,ϕi) (a · L1 (ϕi) + b · L2 (ϕi))

= max
ϕi

∑
k

ND∑
p (k|xmt, ϕi) (a · L1 (ϕi) + b · L2 (ϕi)) ,

(8)
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where ND is the number of samples in the training batch.

It can be seen that within the proposed adaptive hybrid masking algorithm, two masking techniques,
namely PPFR-FD and MixUp (with the adaptive selection of the number of images for mixing),
are combined. The use of MixUp thus brings in extra privacy protection ability. Moreover, the
introduction of the RL module (i.e., the strategy network) allows MixUp to mix more than three
images wherever possible to improve privacy protection without greatly sacrificing FR accuracy.
See Section ’Experiments’ for experimental verification.

4.2 PERFORMANCE MEASURE FOR MASKING ALGORITHMS

Note there are no standard measures for quantifying the ability of privacy protection and impact
on the recognition accuracy of a face masking algorithm. In this subsection, we advocate a set of
performance measures for masking algorithms that consider their masking effect, attack effect and
impact on recognition accuracy.

4.2.1 MASKING EFFECT

We evaluate the masking effect from the perspective of the visual effect and feature-level evaluation.
Visual effect: The metrics for evaluating image quality generally include learned perceptual image
patch similarity (LPIPS), peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Zhang
et al. (2018) proves that using LPIPS is more effective than other metrics. Here, we also use LPIPS
as a performance measure. During the evaluation process, LPIPS for the original face image and
the masked image are calculated. We average the result over the whole dataset, and the output is
denoted as the S1 index. The larger S1 is, the greater the difference between the original image and
the masked image would be at the visual level, implying a better masking effect.
Feature level evaluation: During the evaluation process, a model F1 trained with the original
face images is provided to extract features. The original face image and the masking image are
respectively input into the model to obtain the corresponding feature vectors. The cosine similarity
of the two feature vectors is calculated as the score for a particular image. Conducting the same
operation on all the samples, the mean score is found and subtracted from one to produce the S2
index. A larger S2 indicates lower similarity between the original image and masked image at the
feature level, thus meaning a better masking effect.

4.2.2 ATTACK EFFECT

The attack methods can be generally divided into white-box attacks and black-box attacks. White-
box attack methods assume the knowledge of all the details of privacy protection protocols in ad-
vance. Generally, their attack methods are customized, that is, different privacy protection methods
may be associated with different white-box attacks. To emphasize the generality of the evaluation
criteria, we use Conditional GAN (CGAN) as the basis of the attack method. The masked data is
obtained by passing the auxiliary dataset through the masking algorithm, which produces pairs of
original data and masked data. Masked data and noise are used as input and original images as
output. CGAN which has a strong fitting ability is used to model the corresponding relationship
between these data pairs. However, if we know the details of privacy protection methods in advance,
we can also integrate them into the reconstruction process as a priori information. Note that when
benchmarking multiple masking algorithms at the same time, we need to train CGAN using the same
network structure and training dataset, and then generate the recovered images based on the masked
test data and trained CGAN. Again, we evaluate the attack effect from the perspective of the visual
effect and feature-level evaluation using recovered images. As the methods in the previous section,
we use the S3 and S4 indexes to denote visual effect and feature-level evaluation.

4.2.3 RECOGNITION ACCURACY

We use the trained model F1 in the previous section (or retrain a network) to evaluate the recognition
accuracy for the original test data, and the obtained recognition accuracy is denoted as accbsl. Then,
we train another face recognition network F2 with masked data and test on the masked test set to
obtain the recognition accuracy accmask. accmask/accbsl is the recognition accuracy indicator, i.e.,
Scorecls. The larger Scorecls is, the less impact of the masking effect on the recognition accuracy
is.
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4.2.4 COMPREHENSIVE EVALUATION

We fuse indicators using different weights to produce the privacy score Scorepp and recognition
accuracy score Scorecls.

Scorepp = Normalization(α(s1 + s2) + β(s3 + s4)), (9)

Scorecls = Normalization(accmask), (10)

where α and β are the weights for measures at the visual level and attack level, and
Normalization(∗) stands for normalization operation. Usually, masking images at the visual level
is easier to achieve, so we will pay more attention to the indicators at the attack level. With this
observation in mind, α and β are set to be 0.4 and 0.6 in the experiments. In the experiments, the
normalized range is [0.5, 1].

Finally, taking the product of the above two scores yields the following scalar comprehensive score
to measure the overall privacy protection ability and recognition accuracy

Score = (Scorepp + Scorecls)/2. (11)

5 EXPERIMENTS

We assume that malicious server attackers, utilizing shared gradients and weights from clients, have
sufficient ability to reconstruct the data participating in the process of network training. This worst-
case assumption is necessary to measure the privacy protection ability of the masking algorithms.
Note that the reason why the federal face recognition algorithms introduced in Section 2.1.2 is not
added in the comparative experiments is that these algorithms are difficult to resist the malicious
attack methods set in Section 3. However, we can better resist the malicious attack method by
adding our proposed masked algorithm based on these algorithms (see experiments in Section 5.2).

5.1 EXPERIMENTS IN CENTRALIZED SCENARIOS

Table 2: Comparison of the face recognition accuracy among methods with and without privacy
protection for different datasets in centralized scenarios.

Method Mask Score Scorepp Scorecls(LFW) LFW CFP AgeDB CALFW
ArcFace Deng et al. (2019) No - - - 99.23 96.26 95.53 94.92
Masking+AdaMixUp(k:2-6) Yes 0.968 0.979 0.957 96.15 93.63 94.73 91.20

Masking+AdaMixUp(k:2-5) Yes 0.981 0.975 0.987 98.20 95.29 95.11 93.25
Masking+AdaMixUp(k:2-4) Yes 0.959 0.925 0.992 98.43 95.33 95.18 93.71

Masking+MixUp(k=2) Yes 0.912 0.825 0.999 98.92 95.29 95.66 94.03
Masking+MixUp(k=3) Yes 0.940 0.892 0.989 98.20 94.81 95.03 93.38
Masking+MixUp(k=4) Yes 0.877 0.975 0.779 84.62 80.07 80.62 77.90
Masking+MixUp(k=5) Yes 0.796 0.988 0.605 73.31 69.51 68.55 66.49
Masking+MixUp(k=6) Yes 0.750 1.000 0.500 66.53 63.35 65.83 63.07

MixUp-FD(k=2)Zhang et al. (2017) Yes 0.749 0.500 0.997 98.76 95.22 94.92 93.88
PPFR-FD(Masking)Wang et al. (2022b) Yes 0.806 0.613 1.000 98.93 95.54 95.08 93.65

DP Chamikara et al. (2020) Yes 0.753 0.917 0.590 72.36 69.71 68.54 66.80
InstaHide-FD(k=2)Huang et al. (2020) Yes 0.733 0.713 0.753 82.93 77.01 76.76 73.13

Table 3: Average proportion of each candidate value k for Masking+AdaMixUp when its candidate
value sets are {2,3,4,5,6}, {2,3,4,5}, {2,3,4}, respectively.

Method Average proportion
Masking+AdaMixUp(k:2-6) [0.17,0.25,0.13,0.26,0.19]
Masking+AdaMixUp(k:2-5) [0.21,0.28,0.16,0.35,-]
Masking+AdaMixUp(k:2-4) [0.31,0.44,0.25,-,-]

We use CASIA Yi et al. (2014) as the training set. 4 benchmarks including LFW Zhang and Deng
(2016), CFP-FP Sengupta et al. (2016), AgeDB Moschoglou et al. (2017), CALFW Zhang and Deng
(2016)are used to evaluate the performance of different algorithms following the standard evaluation
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protocols. We train the baseline model on ResNet50 He et al. (2016) backbone with SE-blocks Hu
et al. (2020) and batch size of 512 using the metric and loss function similar to ArcFace. The head of
the baseline model is BackBone-Flatten-FC-BN with embedding dimensions of 512 and the dropout
probability of 0.4 to output the embedding feature. All models are trained for 50 epochs using the
SGD optimizer with the momentum of 0.9, weight decay of 0.0001.

We first investigate the centralized training, that is, all the data are in one client. Compared methods
include Arcface (using original data) and the existing masking algorithms PPFR-FD, DP, Instahide
and MixUp. Instahide-Fd and MixUp-FD in Table 2 denote Instahide and MixUp using the fre-
quency domain data. As shown in Table 1, the performance of Instahide and MixUp is very poor for
the original images in the RGB domain. In DP Chamikara et al. (2020), ϵ is set to 3 and laplacian
noise is introduced. For InstaHide, we set k to 2, that is, only two images in the same data batch
used for encryption. To compare the effects of the adaptive module, we provide experiments of
a combination of PPFR-FD and MixUp without the introduction of adaptive modules, i.e., Mask-
ing+MixUp when k=2, 3, 4, 5 and 6, respectively. We also investigate experiments of a combination
of PPFR-FD and adaptive MixUp, i.e., AdaMasking, which considers different candidate value sets
({2,3,4}, {2,3,4,5} and {2,3,4,5,6}). As shown in Table 2, when k=4, the performance of MixUp
used alone has decreased significantly. Table 3 provides the average proportion of each candidate
value k for Masking+AdaMixUp when its candidate value sets are {2,3,4,5,6}, {2,3,4,5}, {2,3,4},
respectively. For the case of AdaMasking, when k belongs to {2,3,4}, the proportion of k=4 in the
whole training process is about 30%. while the recognition accuracy is only 0.5% lower than that of
MixUp (k=2). When k belongs to {2,3,4,5}, the proportion of k > 3 in the whole training process
is about 50%, while the recognition accuracy is only 0.82% lower than that of MixUp (k=2). When
k belongs to {2,3,4,5,6}, the proportion of k > 3 in the whole training process is about 60%, while
the recognition accuracy is 2.77% lower than that of MixUp (k=2). Since DP directly adds noise
to the image or gradient, the recognition performance is significantly degraded. Combined with the
privacy scores, we can see that although the recognition performance of PPFR-FD, Instahide and
MixUp (k=2 or 3) is good, the privacy score is not as good as that of AdaMasking.

The reconstruction results are shown in Fig. 3. Visual sense from Fig. 3 and privacy scores in Table
2 almost have the same trend. And we can see privacy scores provide better quantitative results. In
Table 2, we find that the recognition accuracy of Masking+MixUp(k=2) is better than that of MixUp-
FD(k=2). Note that we train the models using the frequency-domain data. The frequency-domain
energy distribution of each image is uneven, and the direct current (DC) partly accounts for more
than 90% of the energy Wang et al. (2022b). The training of MixUp-FD(k=2) uses all frequency-
domain components. And Masking+MixUp removes the redundant frequency-domain components
(the DC component is also removed) for training the recognition models, making the training data
used more evenly distributed, and the accuracy of it may be slightly better.

We follow the powerful assumption for attackers in Section 3, i.e., the attackers have the ability
to infer all masked data. To reconstruct the original image from the masked data, we select the
same CGAN as in PPFR-FD used as a black-box attack. For the data used in the reconstruction
experiments for AdaMasking, we generate hybrid masked data according to the statistical proportion
of different k values participating in the training. It is worth noting that under strong assumptions,
the attacker can directly obtain the masked data. For cases where Instahide and MixUp are used
alone, even without reconstruction attacks, they are hacked by the method in Carlini et al. (2020).
And the proposed method has good performance in recognition performance and privacy protection
ability.

From Fig. 3, we provide more results from the black-box attack by CGAN for different masking
methods, and the proposed method can better resist the black-box attack than others. For the white-
box attack, we can use the methods in PPFR-FD Wang et al. (2022b) and Carlini et al. (2020). Since
we propose an adaptive hybrid privacy-preserving method, which is essentially a combination of two
masked methods, the combined method can provide a stronger privacy protection ability. For the
proposed privacy protection algorithm, we first use the method in Carlini et al. (2020) to decouple
the combination of different data. According to the theoretical analysis in Carlini et al. (2020), we
can obtain the inaccurate single data before MixUp. Then the white-box attack method in PPFR-FD
Wang et al. (2022b) is used to recover the original image. According to the white-box attack method
in Wang et al. (2022b), it is difficult to reconstruct the original image even if accurate masked data
is used. Note that the masked data available now are inaccurate. Since the introduction of errors, it
is more difficult to reconstruct the original image accurately. The above analysis also shows that the
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Figure 3: Face images recovered by CGAN for different masking methods. Results from
the 1st row to the last row correspond to the original images, Masking+AdaMixUp(k:2-4),
Masking+AdaMixUp(k:2-5), Masking+AdaMixUp(k:2-6), MixUp(k=2), PPFR-FD(Masking), DP,
and Instahide.

proposed algorithm brings stronger privacy protection ability to a certain extent. We also find that,
when the size of the candidate set of k is large (e.g., 2-10), the strategy network tends to choose a
larger value under the effect of the reward function. A large value k will lead to non-convergence of
the FR loss function, and ultimately lead to poor recognition accuracy.

Finally, we give a detailed discussions on the latest masking methods in Appendix.

6 CONCLUSION

Aiming at the problem of resisting the face recognition MIAs, this paper proposed an adaptive hybrid
masking-based defense algorithm, where the face image is masked by combining frequency-domain
masking and adaptive MixUp. The adaptive MixUp carries out the mixing in the frequency domain
and was developed based on reinforcement learning. The strategy and face recognition networks
can be regarded as two opposing sides in the training process. It can select as many images as
possible for mixing to enhance privacy protection while maintaining good recognition accuracy.
Experimental results show that the proposed scheme has a better privacy-preserving ability for MIA
and recognition accuracy over other existing algorithms. In this work, a set of standard measures for
quantifying the effect of masking on privacy protection and face recognition was advocated.
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A APPENDIX

Algorithm 1: MixUp based ArcFace
Input: feature scale s, margin parameter m,
class number n,mixed label list gt,
mixed label coefficient list co,mixed number k,
full connection layer weight wFC ,extracted feature x
Output: class-wise affinity score metric
1: x = L2Normalization(x)
2: wFC = L2Normalization(wFC )
3: fc = FullyConnected(data=x,weight=wFC )
4: metric = 0
5: for i in range(k):
6: Original target logit = Pick(fc,gt[i])
7: θ = arccos(Original target logit)
8: Marginal target logit = cos(θ +m)
9: One hot = OneHot(gt[i])
10: metric = metric+co[i]*(fc+broadcast mul(One hot,
11: expand dims(Marginal target logit -
12: Original target logit,1)))
13: Return metric = metric · s

A.1 MASKING IN THE FREQUENCY DOMAIN

For the completeness of the algorithm description, we give a detailed introduction of PPFR-FD
developed in Wang et al. (2022b).

A.1.1 BLOCK DISCRETE COSINE TRANSFORM (BDCT)

As the first step of PPFR-FD, BDCT is performed on the face image after it has been converted
from a color image to a gray one. Similar to the convolution in CNN, BDCT is carried out on image
blocks with the size a × b pixels according to the stride s. The a × b BDCT coefficient matrix is
produced for each image block. Here, we set a = 8, b = 8 and s = 8. Every element of the
coefficient matrix represents a specific frequency component. We collect the frequency components
having the same position in the BDCT coefficient matrix to form a frequency channel.

A.1.2 FAST FACE IMAGE MASKING

PPFR-FD performs the BDCT and selects channels according to the analysis network (only the DC
component is discarded for a high FR accuracy) Wang et al. (2022b). Next, the remaining channels
are shuffled two times with a channel mixing in between. After each shuffling operation, channel
self-normalization is performed. The result of the second channel self-normalization is the masked
face image that will be transmitted to third-party servers for face recognition. The goal of PPFR-FD
is to provide a lightweight masking method to make it difficult for attackers to recover the training
and inference face images in the FR system. It is also an initial step towards exploring better privacy
preservation while maintaining data utility. From the experimental section, we can see that it may
be possible to leak some privacy. To enhance its privacy protection capability, we propose a hybrid
privacy-preserving policy. We use it as the basis of the proposed method.

A.2 DISCUSSION ON THE LATEST MASKING METHODS

The first latest masking method Ji et al. (2022) is developed from PPFR-FD Wang et al. (2022b).
It proposes a privacy-preserving face recognition method using differential privacy in the frequency
domain. Due to the utilization of differential privacy, it offers a guarantee of privacy in theory. This
method first converts the original image to the frequency domain and removes the direct component.
Then a privacy budget allocation method can be learned based on the loss of the back-end face
recognition network within the differential privacy framework. Finally, it adds the corresponding
noise to the frequency domain features. Note that compared with PPFR-FD, the method in Ji et al.
(2022) does not delete redundant high-frequency channel components. In PPFR-FD, it is pointed out
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that the element values in these redundant high-frequency channels are close to 0, and the removal
of these components will not significantly affect the recognition accuracy. The privacy protection
method based on the learnable differential privacy in Ji et al. (2022) adds most of the noise to these
redundant channels with high probability in the learning process. And the noise that is added to
identify important channels may be relatively small. If the attacker attacks the masking process and
removes the relevant redundant high-frequency channels, most channels important for identification
can be obtained. Then it is possible to reconstruct the original image by the black-box reconstruction
attack. So, this method has a certain risk of privacy disclosure.

The other latest work is FaceMAE Wang et al. (2022a), which is based on Masked Autoencoders
He et al. (2022). It proposes a novel framework FaceMAE, where face privacy and recognition
performance are considered simultaneously. Firstly, randomly masked face images are used to train
the reconstruction module in FaceMAE. It tailors the instance relation matching (IRM) module to
minimize the distribution gap between real faces and FaceMAE reconstructed ones. During the
deployment phase, it uses trained FaceMAE to reconstruct images from masked faces of unseen
identities without extra training. The masked data are the reconstructed images using trained Face-
MAE. And the risk of privacy leakage is measured based on face retrieval between reconstructed and
original datasets. Its method of measuring privacy protection capability does not consider the way of
using a black-box attack. That is, it is considered to construct data pairs of the reconstructed images
using FaceMAE and the original images as the training dataset for the CGAN training. Since the
distance consistency loss function is used in the training of FaceMAE, the reconstructed (masked)
images using FaceMAE may have some correlation with the original images. This makes it possible
for the black-box reconstruction process to reconstruct the original images. For our proposed hybrid
privacy protection strategy, FaceMAE can also replace the PPFR-FD method to form a new hybrid
privacy protection policy.

From this perspective, the hybrid privacy protection strategy proposed is not only a specific pri-
vacy protection strategy but also a privacy protection framework (the basic masked method can be
replaced by a better masking algorithm).
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