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Aharonov-Bohm electrodynamics predicts the existence of traveling waves of pure
potentials, with zero electromagnetic fields, denoted as gauge waves, or g-waves
for short. In general, these waves cannot be shielded by matter since their lack
of electromagnetic fields prevents the material from reacting to them. However, a
not-locally-conserved electric current present in the material does interact with the
potentials in the wave, giving the possibility of its detection. In [1] the basic theo-
retical description of a detecting circuit was presented, based on a phenomenological
theory of materials that can sustain not-locally-conserved electric currents. In the
present work we discuss how that circuit can be built in practice, and used for the
effective detection of g-waves.

I. INTRODUCTION

The extended theory of electrodynamics by Aharonov and Bohm [2–12] is a generalization

of the familiar Maxwell theory which allows to couple the e.m. field also to sources where

charge is not locally conserved – a phenomenon that is expected to occur in certain physical

system with meso- or macroscopic quantum effects. Just because of this more general

setting, the theory is not gauge invariant, and the electric and magnetic potentials ϕ, A

become univocally defined.

The formal structure is simple. The potentials are computed through the equations (□

is the D’Alembert operator c−2∂2t −∇2)

□ϕ =
ρ

ε0
, □A = µ0j (1)

(relativistic version: □Aµ ≡ ∂α∂
αAµ = µ0j

µ, with Aµ = (c−1ϕ,A), jµ = (cρ, j)).

With proper boundary conditions, the solutions of the eqs. (1) are well-known retarded
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integrals, e.g. for ϕ we have

ϕ(x, t) =
1

ε0

∫
d3y

ρ(y, t− c−1|x− y|)
|x− y|

(2)

and similarly for A.

The electric and magnetic fields E, B are computed from the potentials as usual, namely

E = ∇ϕ− ∂tA, B = ∇×A (relativistic form: Fµν = ∂µAν − ∂νAµ).

The field equations for ∇×E and ∇·B are like the second and third Maxwell equations,

while those for ∇·E and ∇×B contain additional terms depending on an “auxiliary” scalar

field S defined as S = c−2∂tϕ +∇ ·A (relativistic form: S = ∂µA
µ). More precisely, they

are

∇ · E =
ρ

ε0
− ∂S

∂t
(3)

∇×B =
1

c2
∂E

∂t
+ µ0j+∇S (4)

(for their relativistic form see [1]).

The field S satisfies the equation

□S = µ0I ≡ µ0

(
∂ρ

∂t
+∇ · j

)
(5)

(relativistic version: □S = µ0I ≡ µ0∂µj
µ), as follows immediately from its definition and

from the equations for the potentials. We thus see that the source of S is the quantity I,

called “extra-current”, which quantifies the violation of local conservation, being different

from zero only in those regions where ∂tρ ̸= −∇ · j. If I = 0 everywhere, then all equations

reduce to their Maxwell form and S can be set to zero through a gauge transformation.

Although the S field has been called “auxiliary”, because it is defined in terms of the po-

tentials, it can manifest itself in principle in some small observable effects. Among these are

waves with a longitudinal electric component and static currents with a partially “missing”

B [12, 13]. The most relevant new physical effect predicted by the theory, however, is the

possibility to detect pure gauge waves. Before explaining what these are, we need to com-

plete the physical picture of the extended theory by giving the expression of the generalized

Lorenz force exerted by fields and potentials on a probe. Let us call f the force density and

w the power density produced by the force (power supplied per unit volume). We have

f = ρpE+ jp ×B− IpA (6)

w = jp · E− Ipϕ (7)
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where ρp and jp are respectively the charge and current density in the probe, and Ip the

extra-current in the probe (by definition, Ip is a density, i.e. referred to a unit volume). The

two terms depending on A and ϕ are those which allow to measure directly the effects of

the potentials. They vanish in the absence of extra-current, i.e. when the continuity relation

∂tρ+∇ · j = 0 (relativistic version: ∂µj
µ = 0) holds everywhere in the probe.

A. Gauge waves: properties and generation

If we consider for simplicity the region where the wave can be considered as plane, a

gauge wave takes the form

ϕ(x, t) = ϕ0e
i(ωt−kx) (8)

A(x, t) = A0e
i(ωt−kx) (9)

in which it is understood that the real part of the right sides is taken, and where the

amplitudes ϕ0, A0 satisfy the relation

ωA0 = kϕ0 (10)

This implies that the wave is longitudinal. It is a solution of the Aharonov-Bohm equations

in vacuum, with standard relation between the wave vector k and frequency ω, namely

ω/|k| = c. It follows from (10) that |ϕ0| = c|A0| and also that k ·A0 = ω
c2
ϕ0. This means

in turn that the potentials ϕ and A of a gauge wave satisfy the equation ∇ ·A+ 1
c2
∂tϕ = 0,

also known in Maxwell electrodynamics as “Lorentz gauge condition” (relativistic form:

∂µA
µ = 0).

Thus we see that in a gauge wave S is zero by definition, and it is straightforward to

check, using the relations which give E and B in terms of the potentials, that also E = 0 and

B = 0 in the wave. This justifies the name of “gauge waves”. It can also be verified using

the generalized expressions for the field energy and momentum densities [11] that a gauge

wave does not carry any energy or momentum. Actually, in a gauge-invariant theory such a

wave would be regarded as non physical, because it is equivalent, via a gauge transformation,

to one with potentials ϕ and A identically zero. In the Aharonov-Bohm theory, however,

the potentials of a gauge wave are not equivalent to zero and cannot be ignored. They

propagate without attenuation in normal media, but are able to interact with “anomalous”

probes having I ̸= 0, according to eqs. (6), (7).
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The simplest method for generating gauge waves is through normal oscillating dipoles.

The physical A.-B. potentials of an oscillating dipole are (like in Maxwell theory in Lorentz

gauge)

ϕ(x, t) =
µ0c

4πr
ṗ(t− r/c) · n (11)

A(x, t) =
µ0

4πr
ṗ(t− r/c) (12)

where r = |x| and n = x/r is the local propagation direction.

The vector potential A can be written as the sum of a longitudinal component

An = (A · n)n =
ϕ

c
n (13)

satisfying the gauge wave condition |An| = ϕ/c, and a transverse component AT .

Along the oscillation axis of the dipole we have that AT = 0, so that the wave is longi-

tudinal and a pure gauge wave. At any other point, the four-potential can be considered

as the sum of a gauge wave (ϕ,An) and a transverse vector potential (0,AT ). If the gauge

wave encounters a normal conducting medium it is not affected (supposing the process is

linear). The transverse component, on the other hand, generally interacts with the medium

and in several cases can be strongly dampened, leaving as a result a pure gauge wave which

propagates in the medium and then possibly gets out of the medium again into free space.

B. Gauge waves: detection

The general principle for computing the effect of a gauge wave on an anomalous con-

ductor is the following [1]. Suppose that in the absence of the wave the conductor hosts a

certain unperturbed current density ju and unperturbed electric field Eu. The electric power

dissipated in the conductor is the volume integral of ju · Eu and is supplied by an external

generator which in the following we assume to be a DC generator.

In the presence of the gauge wave, the power w supplied to the circuit does not change,

because the wave does not carry any energy. The dissipated power, however, is given by the

volume integral of (j ·E− Iϕ) (eq. (7), omitting here the suffix “p” because it is clear that

we are speaking of a probe). Therefore there must be a variation in the product j · E:

δ(j · E) = j · E− ju · Eu ≃ δj · E+ j · δE (14)
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and the integral of this quantity must be equal to the integral of Iϕ. The products δj · E

and j · δE can be expressed, for an ohmic conductor with resistance R, in terms of R and of

the variation of the current. About the integral of Iϕ, it is found to depend on the gradient

∇ϕ in the conductor, on the conductor length, on the current in it and on an adimensional

constant γ ≪ 1 which expresses in the simplest possible way the magnitude of the violation

of local conservation associated to the extra-current I. In conclusion, oscillations of ϕ cause

oscillations in the current.

For the details of the variation of the current in a specific device in response to ∇ϕ, see

Sect. II.

The constant γ depends on the material and is defined in the phenomenological “γ-model”

[1]; a characteristic relation involving γ is the generalized continuity equation ∂tρ+(1+γ)∇·

j = 0.

C. Possible materials suitable for a gauge wave probe

In Sect. II of this work we propose a detector of gauge waves based on the physical

principles described above. The sensing element of the detector is a graphite “antenna” of

the length of a few centimeters. The choice of graphite has two motivations.

The first motivation is theoretical and originates from some known properties of graphene,

which can be seen as the elementary constituent of graphite. The electric conduction mech-

anism of graphene is peculiar and not yet fully understood. Conducting electrons behave

as relativistic particles with null mass and a constant velocity equal to the Fermi velocity,

described by chiral wavefunctions. Quantum tunneling in these materials becomes highly

anisotropic and markedly different from the case of normal, non-relativistic electrons. It

is in fact a condensed-matter realization of the Klein tunneling, which raises a paradox

concerning local charge conservation [14, 15]. The solutions of the paradox that have been

proposed go beyond single-particle wavefunctions and involve multi-particle quantum field

theory processes (see e.g. [16] and refs.). However, it is well known that chiral symmetry is

often broken at the quantum level.

On another front, there exist so-called “first principles” numerical calculations of conduc-

tion profiles in carbon macromolecules which reveal possible violations of local conservation.

The first studies in this direction were due to J. Wang and collaborators [17, 18]. They have
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shown that using a single-particle nonequilibrium Green’s function technique coupled with

the density-functional theory one obtains a conserved current density pattern only by adding

to the density “ψ̄∇ψ” derived from the molecular orbitals wavefunction a “secondary” cur-

rent density extended in space which coincides with the term ∇S in the Aharonov-Bohm

equations. This behavior is confirmed by calculations of Jensen, Garner, Solomon and col-

laborators for saturated chains of alkanes, silanes and germanes [19] and for linear carbon

wires [20, 21]. In [19] the authors apply the recipe by Wang et al. computing the secondary

current via a Poisson equation. In [20] and [21] they give detailed plots of the integrated

local current density, as compared to the (constant) conserved current.

The second motivation is experimental and concerns directly graphite and its partial

superconductive properties, observed even at room temperature [22–24]. Although no gen-

erally accepted explanation of these superconductive properties exists, it is quite clear that

conduction in graphite involves effects of macroscopic quantization. In this case one may

expect some violations of local charge conservation because (1) several phenomenological

non-BCS models of superconductivity comprise nonlocal wave equations [12, 25]; (2) the

number/phase uncertainty relation ∆N∆ϕ ≃ 1 and the non-commutativity of the quantum

operators ρ̂ and ĵ imposes a quantum uncertainty on the operator ∂tρ̂+∇ · ĵ [11].

II. BASIC CIRCUIT

The proposed circuit is shown in Fig 1

FIG. 1: Schematic of the detecting circuit.

The circuit components are:
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R1 = 2.2 KΩ,

R2 = 10 KΩ,

V0 = 9 V,

C = 47 µF,

COUT = 47 nF,

Transistor: 2N3904.

The element denoted as RL (that symbolizes its resistance RL) is a graphite pencil lead of

length of a few centimeters, that acts as the detecting element. The length is in fact related

to the wavelength of the radiation to be detected. It should be sufficient for the value of

∆ϕ of the gauge wave along the element to be non-negligible. A practical limitation to the

possible frequencies to be detected is given by the characteristics of the chosen transistor

that indicate that it should work well up to a frequency of about 100 MHz.

In order to analyze the circuit behavior we refer to the Fig. 2

FIG. 2: Notation and conventions used in the circuit analysis.

The following relations apply:

VOUT = V0 −R1i1,

VC = V0 −R1i1 −R2i2,

i1 − i2 = βiL.

In the last relation β is the amplification parameter of the transistor, that relates the collector

current (i1 − i2) to the base current (iL). For the parameters chosen the transistor works in

a regime where β ≃ 190 (the value of β, however, cancels in the final expressions).
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For simplicity we assume the wave to be of sufficiently high frequency (to be quantified

below) for the capacitor C to act as a short circuit, so that for the small-amplitude signal

analysis we can approximate δVC ≃ 0. The full analysis should be done for the Fourier

amplitudes of the small signals, which would include the impedance of C, and also δiC as an

additional magnitude to be determined (this is done in the next subsection). Note besides

that δiC = (1 + 1/β) δi2 − δi1/β is limited by the resistors R1 and R2, so that it cannot

be arbitrarily large when the C impedance goes to zero, making the assumption δVC ≃ 0

possible.

In this way, from the second relation we have

δi2 = −R1

R2

δi1. (15)

The time-varying signal detected through the capacitor COUT is given from the first

relation as

δVOUT = −R1δi1,

which using the third relation and (15) results in

δVOUT = − R1β

1 +R1/R2

δiL. (16)

We can now determine the expected δiL considering that along RL there is a voltage

VL = VC − VBE, with VBE the voltage between base and emitter of about 0.7 V, whose

variations are determined below. In this way we have that for the perturbation due to the

gauge wave the energy conservation applied to the circuit gives:

δ (iLVL) = δ
(
RLi

2
L

)
−
∫
Iϕd3x, (17)

where I is the extra-current previously defined[1].

Due to the assumed high frequencies we can again take δVC ≃ 0, while δVBE has to be

determined from the transistor characteristics [26]. We thus have (IB, and IC represent the

base and collector currents)

δVBE =
∂VBE

∂IB

)
IB=iL

δiL = β
∂VBE

∂IC

)
IB=iL

δiL.

The working regime of the transistor for the proposed circuit corresponds to its DC operation

at room temperature, with a collector DC current of about 3.5 mA, obtained solving the
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equations in the DC case, when ic = 0. For the small signal analysis around this regime we

have
∂VBE

∂IC

)
IB=iL

≃ 57Ω,

so that defining RBE ≡ β ∂VBE

∂IC

)
IB=iL

, we obtain

δVL = −RBEδiL.

From relation (17) we thus have, using also the γ-model developed in [1] to express I in

terms of the electric current, as detailed in that reference,

VLδiL −RBEiLδiL = 2RLiLδiL −
∫
Iϕd3x

= 2RLiLδiL − γiL∆ϕ,

where ∆ϕ is the difference of gauge-wave potential along RL. Since RLiL = VL, we have

δiL = γ
∆ϕ

RL +RBE

,

giving finally from (16)

δVOUT = −γ R1β

(1 +R1/R2)

∆ϕ

(RL +RBE)

= −γ R1

(1 +R1/R2)

∆ϕ

∂VBE

∂IC

)
IB=iL

. (18)

where in the last line is was used that RL ≪ RBE. For the values of the parameters chosen

we thus have

δVOUT ≃ −31.6γ∆ϕ. (19)

This voltage is definitely larger than one could obtain with the simpler passive circuit without

transistor described in [1], for which δVOUT ⪅ γ∆ϕ.

A. Inclusion of non-zero impedance for C

If one does not assume that the impedance of C, ZC = (jωC)−1, is negligible (j is the

imaginary unit, and ω the angular frequency of the Fourier component of the signal), one

must add the relations

δiC = δi2 − δiL,

δVL = δVC − δVBE = ZCδiC −RBEδiL.
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Solving the complete system one readily obtains

δVOUT = − R1 [βR2 + (1 + β)ZC ] γ∆ϕ

R1 [RL +RBE + (1 + β)ZC ] +R2 (RL +RBE + ZC) + ZC (RL +RBE)
,

that reduces to the first line in (18) when ZC → 0. For this approximation to be valid we

see that the most stringent condition is

β |ZC | ≪ RBE = β
∂VBE

∂IC

)
IB=iL

,

that is

ω ≫

[
C
∂VBE

∂IC

)
IB=iL

]−1

,

which for the parameters considered corresponds to frequencies (f = (2π)−1 ω) much higher

than 60 Hz.

III. BASIC EXPERIMENTAL PROPOSAL

The circuit analyzed above is also sensitive to normal electromagnetic radiation, for which

the element RL acts as a normal antenna. It is thus necessary to shield it from that radiation

in order that only the gauge component present interacts with RL.

As considered in [1], the far field, dipolar radiation of an emitting antenna contains a

gauge component with a scalar potential whose electric field −∇ϕ has a magnitude similar

to that of the ordinary component (of course, the vector potential component of the gauge

wave generates a contribution −∂A/∂t that cancels that of the scalar potential, yielding

zero electromagnetic fields for the gauge wave). The ratio of normal to gauge component

depends on the orientation relative to the emitting antenna (see [1] for details).

According to the γ-model, the detector is sensitive to the scalar potential component

if the cables connected to the graphite element RL are of different material (Copper, for

instance), assumed to have a much lower value of γ.

In this way, if the circuit is conveniently shielded from normal electromagnetic radiation,

only the gauge scalar component can be detected, because it cannot be shielded by virtue

of its not interacting with matter. Any modulation of the incoming signal should thus be

present in the circuit output.

To have an estimation of the expected magnitudes we use expression (19), valid for the

proposed circuit parameters. With L ≃ 5.5 cm, and for |∇ϕ| = 1 V m−1 (corresponding to



11

the gauge component of the electromagnetic field of a dipole antenna in the region where

the radiative flux is about 0.1µW cm−2) the expected amplitude of δVOUT is about 1.7γ V,

so that even for γ ∼ 10−3 one has an easily detectable signal of the order of mV, whose

modulation could be identifiable over the noise.

IV. CONCLUSIONS

In the present work we have presented a proposal for the practical implementation of

a circuit for the detection of gauge-waves, a very special type of waves of pure potentials,

whose detection is possible in the context of Aharonov-Bohm electrodynamics, but which

are considered as non-physical (undetectable) in Maxwell electrodynamics. The rationale

for the circuit operation is that a small fraction of the current that circulates in certain

conductive materials does it in a non-conserved manner, giving rise to the so called “extra-

current”, which is shown in Aharonov-Bohm electrodynamics to directly interact with the

scalar potential; in particular, with that component of the gauge wave. The circuit thus ful-

fills two purposes. On the one hand it establishes a controlled DC current in the detecting

medium (a graphite element), whose supposedly non-conserved fraction interacts with the

scalar potential component of the wave. On the other hand, the circuit amplifies the small

current variations that result from that interaction, and which are detected as voltage vari-

ations easily analyzable on an oscilloscope. An apparently contradictory point concerning

the conservation of energy is how a wave that does not transport energy is able to inter-

act with a material medium. In fact, if the material is “passive”, in the sense that in the

absence of the gauge wave no macroscopic currents are present, the wave does not interact

with the medium, according to the γ model used to describe media capable of supporting

non-conserved currents [1]. On the other hand, in an “active” medium, the macroscopic

current present is sustained by an external source, and it is this source the one that ex-

changes energy with the currents associated with the interaction with the wave. In a sense,

the wave acts as a catalyst of the transduction of energy between the source and the current

variations. Actually, the results here presented are derived from the conservation of energy

relation valid in the context of Aharonov-Bohm electrodynamics [11], so that the principle
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of conservation of energy is fulfilled.
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