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We study the quantum dynamics of the edge modes of lattice fractional quantum Hall liquids in
response to time-dependent external potentials. We show that the nonlinear chiral Luttinger liquid
theory provides a quantitatively accurate description even for the small lattice geometries away from
the continuum limit that are available in state-of-the-art experiments. Experimentally accessible
signatures of the quantized value of the bulk transverse Hall conductivity are identified both in the
linear and the non-linear response to an external excitation. The strong nonlinearity induced by
the open boundaries is responsible for sizable quantum blockade effects, leading to the generation
of nonclassical states of the edge modes.

Introduction — Since their first observation more
than 40 years ago in solid-state systems [1], fractional
quantum Hall (FQH) liquids have been attracting contin-
uous experimental and theoretical attention due to the
remarkable interplay between topology and strong cor-
relations, featuring a robust quantization of the trans-
verse Hall conductivity [2], collective excitations exhibit-
ing fractional charge and exchange statistics in the bulk
of the fluid [3–5] and gapless chiral modes on its edge [6–
12]. At low energies, these latter are well described in
terms of an effective one-dimensional chiral Luttinger liq-
uid (χLL ) theory [10] and provide a powerful probe of
the topological properties of the fluid [12–20].

Beyond electronic systems, a strong experimental at-
tention is presently being devoted to the realization
of FQH liquids in synthetic matter systems such as
ultra-cold atoms under synthetic magnetic fields [21–24]
or strongly interacting photons in nonlinear topological
photonic devices [25–27]. First experimental observa-
tions of small FQH clouds have been recently reported in
both the atomic [28–30] and photonic [31, 32] contexts.
Concurrently, a number of theoretical studies have pro-
posed protocols that exploit the new manipulation and
diagnostic tools that are available for these systems to ob-
tain insight on both the bulk [33–37] and the edge [38–40]
physics of FQH fluids from new points of view.

In state-of-the-art lattice setups [29, 32] however, the
lattice size and the particle number are typically small,
the spatial confinement provided by open boundaries is
far from being smooth, and the magnetic field too large
for a continuum description to be accurate. One may
therefore be concerned that the basic FQH physics is dis-
torted and the topological features washed out.

In this Letter we show that the χLL nature of the FQH
edge excitations is robust and unambiguously visible even
in small lattice systems containing a few particles. In

particular, we show that the edge excitations generated
in response to a time-dependent external potential give
access to the quantized Hall conductivity of the FQH
bulk. Turning the small spatial size and the open bound-
aries of state-of-the-art systems into an advantage, we
anticipate that the non-linearity of the χLL induced by
the spatial confinement [41–45] mediates efficient three-
wave mixing process between Luttinger quanta in the
discrete chiral edge modes around the fluid. This ex-
tends to the FQH edge quantum blockade effects which
are well-known in electronic [46], photonic [47–50], and
opto-mechanical [51, 52] systems and opens a path to-
wards the generation and control of nonclassical states of
the edge modes.
Model — We consider the set-up sketched in

Fig. 1(a), namely a system of N bosonic particles moving
in a M × M two-dimensional square lattice with open
boundaries and lattice spacing a, pierced by a uniform
and orthogonal (synthetic) magnetic field B. We describe
the system with the Hofstadter-Bose-Hubbard Hamilto-
nian [53–56]

ĤHBH = −J
∑

⟨ij⟩

(
eiϕij â†j âi + h.c.

)
+
U

2

∑

i

â†i â
†
i âiâi (1)

where âi (â
†
i ) are the destruction (creation) operators for

a particle at site i. Both the on-site interaction energy U
and the hopping strength J > 0 are taken uniform in the
lattice, and we restrict to the U ≫ J hard-core limit. The
hopping phase ϕij from site i to j is related to the mag-
netic vector potential through ϕij =

q
ℏ
∫ rj
ri

A ·dr [57] and

gives a gauge-invariant phase α = 2πϕ/ϕ0 for hopping
around a plaquette. Here, ϕ = Ba2 is the magnetic flux
piercing a plaquette and ϕ0 = h/q is the flux quantum.
Calculations for the eigenstates, the matrix elements, and
the dynamics in response to external perturbations are
numerically performed by exact diagonalization methods.
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FIG. 1. (a) Scheme of the model under consideration. (b-
c) Numerically calculated spectrum of the many-body eigen-
states for N = 4 atoms with α = 0.15 in a (b) 12 × 12
and (c) 10 × 10 square lattice (black horizontal lines). In
panel (b) the confinement is dominated by a harmonic poten-
tial Vh(r) = ω2

h (r − r0)2/2 of strength ωh = 0.14J around
the lattice center r0. In panel (c), the only trapping comes
from the open boundaries. Comparison with the linear dis-
persion of a χLL theory (blue dashed line) highlights the
stronger anharmonicity of the open boundary case of (c):
here, the nonlinearity-induced splitting of the l = 2 mani-
fold is indicated by the green arrows, while the blockade ef-
fect is illustrated by the red full/dashed arrows indicating
the resonant/detuned transitions. Orange points show the
eigenenergies obtained from the diagonalization of the non-
linear χLL Hamiltonian Eq. (2). The effective parameters
Ω,Γ are estimated from the energy of the first excited state
and the splitting between the two second excited states, re-
spectively.

This model is known to host a variety of FQH
states [55, 58–61]. In this Letter, we will focus on the
simplest Laughlin ν = 1/2-like [3] state that correspond
to the ground state in the region 0.1 ≲ α ≲ 0.2 (see the
transparency window in Fig. 2(a-d) [62]). The finite ex-
tension of the FQH region is allowed by the flexibility
in the value of the density at the center offered by the
density-depleted region at the boundary [36, 56, 62, 63].

Nonlinear chiral Luttinger liquid — In the an-
gular momentum basis labeled by the angular momentum
l > 0, the effective one-dimensional nonlinear χLL the-
ory [44, 64, 65] of the edge dynamics of a anharmonically
trapped FQH fluid has the form

Ĥ =
∑

l>0

Ω l b̂†l b̂l +
∑

l,l′>0

Γ
√
ll′(l + l′)

[
b̂†l+l′ b̂lb̂l′+h.c.

]
(2)

where b̂l (b̂
†
l ) are the bosonic destruction (creation) oper-

ators of Luttinger quanta in the l mode. The first term
describes the chiral angular velocity Ω of edge excita-
tions, as determined by the spatial confinement. On top
of this, the anharmonicity of the confinement gives the
second term describing scattering processes between Lut-
tinger quanta mediated by a nonlinear term of strength
Γ ≥ 0 [44]. Higher-order contributions to the phonon dis-
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FIG. 2. Magnetic field dependence of the excited state
eigenenergies in the different l = 1, . . . , 4 (a-d) sectors. Points
are coloured according to the normalized matrix element

lM(l)
n,0/Sl. The purple background transparency is propor-

tional to the overlap of the ground state with a discretized
Laughlin state [62]: minimal purple opacity represents maxi-
mal overlap.(e) Normalized static structure factor (full lines)
compared to the χLL prediction in the thermodynamic limit
(lateral arrows) and a finite-size calculation for a N = 4 sys-
tem in the continuum (horizontal dashed lines). Same param-
eters as in Fig. 1(c).

persion can be safely neglected as they are irrelevant for
the low-energy processes considered in this work [44, 45].

If the trapping is purely harmonic (Γ = 0), the theory
reduces to the standard chiral Luttinger liquid [66], where
the excitations are non-interacting and have a perfectly
linear dispersion. As such, the eigenstates collapse on the
ωl = Ωl line [blue line in Fig.1(b,c)] and, at each l, have a
high degeneracy given by the number Pl of inequivalent
integer partitions of l [10], that is P1 = 1, P2 = 2, P3 =
3, P4 = 5, . . .. Under a generic confinement potential,
the massive degeneracy of the eigenstates at a given l is
lifted by the nonlinearity in (2).

Spectrum of edge excitations — In a square lat-
tice the full rotational symmetry is not present; a proper
choice of the gauge ϕij [38] ensures that the discrete rota-

tion operator eiL̂z
π
4 commutes with the system’s Hamil-

tonian Eq. (1), so that the angular momentum is con-
served modulo 4. Examples of numerically computed ex-
cited state spectra are plotted in Fig. 1(b,c) as a function



3

of the reduced angular momentum C4. The reduced rota-
tion symmetry makes the C4-dependent spectrum to get
folded with a period 4. In Fig. 1(b) the trapping is dom-
inated by an additional harmonic confinement, so that
the spectrum is almost linear and resembles the stan-
dard χLL prediction (blue dashed line) with minor split-
tings and corrections due to the residual anharmonicity.
In Fig. 1(c), the only confinement is the one due to the
open boundaries: its intrinsic anharmonicity is respon-
sible for marked nonlinear effects and the wide splitting
of the multiplets at given l. The numerical eigenenergies
are in remarkable quantitative agreement with those of
the nonlinear χLL theory Eq. (2), which is is equivalent
to a free fermionic theory [45].

This physics is specially visible in the simplest l = 2
manifold. From the form of (2), it is immediate to rec-
ognize that the effect of the nonlinearity is to coherently
convert a pair of l = 1 Luttinger quanta into a single l = 2
Luttinger quantum and viceversa, so that the eigenstates
are non-classical superpositions of the b̂†2|0⟩ and (b̂†1)

2|0⟩
Fock states above the ground state |0⟩. In analogy with
the biexciton Feshbach blockade effect proposed in the
optical context in [67], the anharmonicity of the result-
ing spectrum leads to a marked blockade effect indicated
by the red arrows in the level scheme of Fig. 1(c): an
external excitation that is resonant with the l = 1 mode
at linear regime will not be able to inject a second quan-
tum, as the corresponding eigenstates are shifted away
in energy. A similar analysis holds for the higher l ≥ 3
multiplets, yet is made less straightforward by the inter-
twining of the edge-modes splittings with bulk modes,
and is further complicated by the folding effect.

Linear response — We now proceed with a study
of the response of the fluid to external perturbations,
starting from the linear regime of a weak excitation. We
consider an external potential of angular momentum l
and amplitude λ(t) of the form Û(t) =

∑
i U(ri, t)â

†
i âi

with U(r, t) = Re
[
zlλ(t)

]
in terms of the shorthand

z = x + iy. Beyond their straightforward realization in
synthetic matter systems [40, 44, 68], such potentials can
nowadays be implemented also for neutral edge excita-
tions in electronic FQH systems [69]. As a consequence
of the transverse Hall response, the component of the
force oriented along the azimuthal direction will induce
a flow in the radial direction and, thus, a spatially peri-
odic modulation of the density along the edge. Within
the χLL theory [10, 44], the strength of this response is
expected to be proportional to the quantized transverse
conductivity and thus to the filling factor ν [62].

Each excited state |C4, n⟩ (i.e. the n-th excited state
at angular momentum C4) will give a peak in the re-
sponse to the external potential located at frequency
ℏωC4,n = EC4,n − E0,0 (E0,0 being the ground-state en-
ergy) with a strength determined by the matrix element

M(l)
n,0 =

∣∣〈C4, n
∣∣∑

i z
l
in̂i
∣∣ 0, 0

〉∣∣2 with C4 = l (mod 4).

The frequencies and the strengths of the peaks for the
lowest l = 1 . . . 4 excitation channels are summarized in
Fig. 2(a-d). In spite of the reduced rotational symme-
try, the matrix element weight is concentrated in those
eigenstates that result from the splitting of the corre-
sponding multiplet at l in the nonlinear χLL theory and,
as first remarked in [40], excitations to eigenstates folded
by Bragg scattering processes have a negligible matrix
element. Moreover, the fact that the number of visible
l = 4 states does not match the number of partitions
Pl=4 = 5 confirms the presence of uncoupled dark edge
eigenstates [62] first predicted by the fermionized theory
of [45] and here numerically highlighted also in the lattice
geometry.

Summing over all the low-energy eigenstates at a given
C4 = l (mod 4) that are illustrated in Fig. 2(a-d) pro-
vides the numerical value for the structure factor of
the edge dynamics Sl =

∑
n M

(l)
n,0 that we display in

Fig. 2(e). Here, the exact diagonalization results for the
lattice geometry (full circles) are compared to the nu-
merical ones for a N = 4 Laughlin state in a contin-
uum geometry [44] (horizontal dashed lines) [62] and to

the χLL prediction in the thermodynamic limit SχLL
l =

νlR2l
cl (lateral arrows). In this last expression, the clas-

sical radius Rcl =
√
2N/ν lB of the FQH cloud accounts

for the chosen rl radial dependence of the applied poten-
tial and lB = a/

√
2πα is the usual magnetic length.

For sufficiently small l, a clear plateau is visible in the
region around α ∼ 0.15 of good overlap with the discrete
Laughlin state highlighted in Fig.2(a-d). The height of
the plateaus relative to the l = 1 and l = 2 modes are in
perfect quantitative agreement with the χLL prediction.
For l > 2 the corrections due to the small number of
particles induce sizeable deviations between the N = 4
lattice numerics and χLL predictions, while still remain-
ing in quantitative agreement with numerical results for
a N = 4 Laughlin state [62]. This suggests that the ob-
served deviations for the higher multipole excitations are
not a consequence of the lattice discretization but of the
small particle number.

Measuring the transverse conductivity —
These numerical results provide evidence of the validity
of the χLL theory also in small lattice FQH fluids
and suggest that the quantization of the transverse
conductivity can be experimentally assessed from a
measurement of the response of the fluid to external po-
tentials. Fig. 3(a) illustrate this idea for the l = 1 dipole
case. The single dipole mode can be efficiently excited
by means of a spatially uniform and temporally pulsed
force, U(r, t) = λ(t)x with λ(t) = λd exp

[
−(t/τ)2

]
.

A few snapshots of the spatial profile of the density
perturbation generated in the fluid at different times are
shown in Fig. 3(b). After the end of the perturbation,
the x, y components of the dipole moment [blue and
yellow lines in Fig. 3(a)] keep oscillating in quadrature
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FIG. 3. (a) Time evolution of the dipole moment dx(t) (blue solid line) and dy(t) (orange solid line). The pulsed excitation
temporal profile λ(t) is shown as a red dotted line. (b) Snapshots of the normalized density variation δρ/ρn at the different
time instants indicated in (a). We used N = 3, M = 9, α = 0.15, λd = 10−4J/a, τJ/ℏ = 50 and ρn = 4λd/(aJ). The dipole
frequency is ℏωd/J ≈ 0.027. (c) Time evolution of the real Re[Qz(t)] (yellow solid line) and imaginary Im[Qz(t)] (blue solid
line) parts of the quadrupole moment. The pulsed excitation temporal profile λ(t) is shown as a red dotted line. (d) Snapshots
of the normalized density variation δρ/ρn at the different time instants indicated in (c). We used N = 3, M = 9, α = 0.15,
λQ = 10−5J/a2, τJ/ℏ = 160 and ρn = 50λQ/(a2J). The quadrupole frequency is ℏωQ/J ≈ 0.035.

at the natural frequency ℏωd = E1,0 − E0,0 according to
dx(t) = ⟨∑i xin̂i⟩ (t) ≃ −Ad sin (ωdt) and a correspond-

ing formula for y. The amplitude Ad = S1

2ℏ λ̃(ωd) is the
same for the x, y components, proportional to S1 and the
Fourier component at ωd of the excitation pulse. From a
measurement of dx(t), it is then possible to estimate the
structure factor S1 and thus the transverse conductivity.

Application of a similar protocol to the higher l > 1
modes requires isolating the several eigenstates forming
the higher multiplets. The quadrupole l = 2 case is illus-
trated in Fig.3(c). The two excited states can be sepa-
rately addressed using a rotating saddle-shaped pulse of
the form U(r, t) = λQ Re

[
z2λ(t)

]
with a long oscillating

pulse λ(t) = e−(t/τ)2 e−iωt [red dotted line in Fig. 3(c)]
on resonance with each natural oscillation frequency
ℏωQ = E2,0(/1) − E0,0. At the end of the excitation
pulse, the complex-valued quadrupole moment Qz(t) =
⟨∑i(x

2
i − y2i )n̂i⟩ + i ⟨∑i(2xiyi)n̂i⟩ keeps oscillating at

the selected bare frequency ωQ as Qz(t) ≃ A
(+)
Q eiωQt +

A
(−)
Q e−iωQt. Here, the counter-rotating terms propor-

tional to A
(−)
Q stem from the reduced four-fold rotational

symmetry of the lattice which enhances (reduces) the
quadrupole moment when the density perturbation is

along the cartesian (diagonal) directions [Fig. 3(d)]. A
(+)
Q

can be extracted from the amplitude of the real and imag-
inary parts of Qz(t) and gives direct information on the

matrix element M(2)
n,0 = (A

(+)
Q /λQ)(2ℏ/(

√
πτ)). Upon

summing over both quadrupole modes, the static factor
S2 provides an estimate of the transverse conductivity,
to be compared to the quantized value expected from
χLL theory, Fig. 2(e).

Quantum nonlinear dynamics — The
χLL theory becomes even richer when one goes beyond
the linear response regime and considers excitations that
are strong enough to induce nonlinear effects. These
are mediated by the new interaction terms that appear
in the Hamiltonian Eq. (2) as a consequence of the
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FIG. 4. Amplitude of the dipole oscillations under the ef-
fect of a monochromatic excitation of different durations τ as
indicated in the legend (solid red, brown, yellow lines) as a
function of the (normalized) excitation strength λd. Dashed
black line shows the theoretical form (3) of the Rabi oscilla-
tions. Same parameters as in Fig. 3.

The brown dotted line is the linear regime prediction.

anharmonic trapping potential. As a simple yet most
illustrative example, we consider a quantum blockade
effect for edge modes. Let us consider a periodically
oscillating potential U(r, t) = λ(t) cos(ωdt)x, resonant
with the dipole transition at frequency ωd, with a Gaus-
sian envelope of duration τ and sizable peak amplitude
λd. Given the strong anharmonicity of the excitation
spectrum highlighted in Fig.1(c), this perturbation is
able to efficiently excite the l = 1 excited state but
remains well detuned from all two-excitation states in
the higher l = 2 manifold which therefore remain empty.
As a consequence, the dynamics recovers the one of
a resonantly-driven two-level system as first noticed
in [40], yet with the key advantage of the much stronger
nonlinearity due to open boundaries. At the end of
the excitation sequence, each dipole component dx,y
oscillates at the fast frequency ωd, with an amplitude
Ad. This is determined by the coherent transfer between
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the ground- and excited- state during the excitation
sequence [70], at a Rabi frequency roughly proportional
to the perturbation strength λd. As one can see in
Fig. 4, the Rabi oscillations are cleanest and closest to
the theoretical prediction

Ad =

√
S1

2
sin

(√
πτ

λd
√
S1

2ℏ

)
(3)

for longer-excitation times τ , when the narrower spec-
trum of the excitation pulse makes the blockade effect
on the l = 2 manifold more effective. As typical in cav-
ity quantum optics, a small system size is beneficial to
the blockade effect, as it makes the dynamics faster by
reinforcing the nonlinear splitting, and thus helps tam-
ing decoherence effects. Interestingly, the dependence of
the Rabi oscillation frequency in Eq. (3) on the structure
factor offers an alternative way to assess the quantized
transverse conductivity of the FQH fluid.

Looking closer at the quantum state generated by the
excitation sequence, we note that after a 2π (or multiple)
pulse, the system is brought back to the ground state by
the Rabi oscillation, while after a π pulse the system is
instead fully transferred in its l = 1 excited state. In
a quantum optical language [71] this corresponds to the
generation of a very non-classical Fock state with a sin-
gle Luttinger quantum of excitation in the FQH edge,
analogous to a single photon wavepacket in quantum op-
tics. As another remarkable quantum effect, the spectral
splitting of the l = 2 response due to the nonlinear inter-
action terms of the χLL theory can be used to convert an
l = 2 Luttinger quantum into a pair of l = 1 quanta so to
obtain a source of correlated Luttinger pairs for quantum
optical experiments on FQH edge modes.

Conclusions — In this work we have shown that
the edge dynamics of small lattice fractional quantum
Hall fluids [29, 32] is well captured by a nonlinear gener-
alization of chiral Luttinger liquid theory [44, 65]. The re-
sponse to time-dependent external potentials carries evi-
dence of a quantized value of the transverse conductivity
in the bulk. Turning the small spatial size and the open
boundaries of state-of-the-art systems [29–32] into an ad-
vantage, we have moved the first steps into quantum non-
linear optics of FQH edge modes: thanks to the intrinsic
nonlinearity stemming from spatial confinement, quan-
tum blockade effects set in and lead to the generation of
nonclassical states of the edge modes. Future theoretical
work will deal with more complex quantum optical ef-
fects, such as the generation of entangled χLL pairs [72],
solitonic and bunched excitations of the fractional quan-
tum Hall edge [73–75] and exploitation of the edge as a
information channel between localized impurities [76, 77].
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WEN’S MATRIX ELEMENTS

In this section we review the theory for the static structure factor of the relevant observable
∑N

i=1 z
l
i in the case of

a N -particle Laughlin state in the continuum, in the thermodynamic limit (N ≫ 1). In this case the system is fully
rotationally symmetric; the angular momentum is a good quantum number, and we can label the system’s eigenstates
as |l, n⟩, with l being the angular momentum with respect to the one of the Laughlin ground state. Here n is the
additional quantum number which enumerates the system’s eigenstates at fixed l. We are interested in the matrix
elements

Sl =
∑

n

∣∣∣∣∣

〈
l, n

∣∣∣∣∣
N∑

i=1

zli

∣∣∣∣∣ 0
〉∣∣∣∣∣

2

. (1)

These matrix elements can be conveniently rewritten as

Sl =
∑

n

∣∣∣∣
∫
rleilθ ⟨l, n |ρ̂(r)| 0⟩ d2r

∣∣∣∣
2

. (2)
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FIG. 5. Low-energy static structure factor Sl (see Eq. (2)) for a continuum Laughlin state as a function of the number of

particles N . Our results are normalized to the expected result SχLL
l (see Eq. (6) per contributing state l, SχLL

l /l = νR2l
cl . The

points are the results of Monte-Carlo simulations, while the dashed lines highlight the expected limit l.

Since the bulk is incompressible, the only contributions can come from a thin layer at the system’s edge, close to
system’s classical radius Rcl =

√
2N/νlB , lB being the magnetic length; in the large particle number (N ≫ 1) limit

the previous expression can be approximated by

Sl ≈ R2l
cl

∑

n

|⟨l, n |ρ̃l| 0⟩|2 . (3)

where ρ̃l =
∫
eilθρ̃(θ)dθ is the angular Fourier transform of a one-dimensional effective density ρ̃(θ) =

∫
ρ̂(r)rdr.

Following Wen’s bosonization we can replace the full ρ̃l operators with bosonic fields

ρ̃l =
√
νl b̂†l , (4)

where
[
b̂l, b̂

†
l′

]
= δl,l′ , and see the excited states |l, n⟩ as being generated by the current algebra through

|l, n⟩ =
∏

l′∈λl

b†l′√
nl′ !

|0⟩ (5)

where λl is an integer partition with angular momentum l and nl′ the multiplicity with which l′ appears in λl. The
only state contributing to the summation in Eq. (3) is therefore |l, n⟩ = b̂†l |0⟩, and we get

Sl ≈ νl R2l
cl . (6)

Some numerical Monte-Carlo results obtained as detailed in [44, 45] for the edge-excitations on top of a bosonic
ν = 1/2 state are shown as a function of the number of bosons N for l = 1, . . . , 4 in Fig. 5.

Notice that at l = 1 the result is filling-fraction-independent and compatible with Kohn’s theorem, as we will detail
in the next section, and the numerical result for a translationally invariant system in Fig. 5 indeed exactly matches
the result of Eq. (6); however it should also be noticed that there is no a-priori reason for our lattice system to obey
Kohn’s theorem and the result we show for l = 1 has to be understood as a signature of fractional quantum Hall
physics.

KOHN’S THEOREM

In this section we briefly review the content of Kohn’s theorem [78]. The system one considers is a collection of
N quantum particles moving in two-dimensions under the influence of a perpendicular magnetic field, B, under the



3

influence of internal forces alone and at most an external harmonic potential

H =

N∑

i=1

(pi − qA(ri))
2

2M
+

N∑

i=1

1

2
Mω2r2i +

∑

1≤i<j≤N

V (ri − rj). (7)

We here use the symmetric gauge, A(r) = B
2 (−y, x, 0). The motion of the center of mass can be decoupled from the

one of the N − 1 remaining relative coordinates; the former is ruled by a simple Hamiltonian: introducing the center
of mass variable R = 1

N

∑
i ri and its canonically conjugate momentum P =

∑
i pi one can separate the Hamiltonian

H = Hrel +HCM into two parts, a part Hrel which only depends on the N − 1 relative coordinates and a second part
HCM which instead depends only on the center of mass coordinates

HCM =
P2

2M ′ −
ωc

2
Lz +

1

2
M ′Ω2R2, (8)

where Lz = (R × P) · ẑ is the center of mass angular momentum. Here we introduced the cyclotron frequency
ωc = qB

M , the total mass M ′ = NM and an effective oscillator frequency Ω =
√
ω2 + ω2

c/4. The eigenfunctions are
those of a harmonic oscillator; introducing radial R and azimuthal θ coordinates for the center of mass position, these
eigenfunctions can be written as

Φ(CM)
n,m (R, θ) =

1√
π

Γ(n+ |m|+m
2 +1)

Γ(n− |m|−m
2 +1)

l2CM

(
R

lCM

)|m|
eimθ L

(|m|)
n− |m|−m

2

(
R2

l2CM

)
e
− R2

2l2
CM , (9)

where Γ(n) is Euler’s Gamma function, L
(α)
n (x) are associated Laguerre polynomials and we introduced a center

of mass unit of length lCM =
√

ℏ
M ′Ω . These wavefunctions diagonalize the center of mass angular momentum,

LzΦ
(CM)
n,m = mΦ

(CM)
n,m , as well as the center of mass Hamiltonian Eq. (8), with eigenvalue

E(CM)
n,m =

ℏΩ
2

[
4

(
n+

m+ 1

2

)
− ωc

Ω
m

]
. (10)

In terms of the principal quantum number n ∈ N, the angular momentum quantum number m must satisfy m ≥ −n.
For any value of ω, the ground state can be seen to correspond to n = 0, m = 0.

When the cyclotron frequency is much larger than the harmonic confinement one, ωc ≫ ω, the energies reduce to

Landau level ones E
(CM)
n,m ≃ ℏωc

(
n+ 1

2

)
, independent of the angular momentum quantum number m. This center of

mass separation is relevant for the evaluation of the matrix elements of certain observables, such a

U =
∑

i

zi = NRe+iθ

U∗ =
∑

i

z∗i = NRe−iθ
(11)

since they only depend on the center of mass variables and not on the N − 1 relative coordinates. In particular, U
couples the ground state only to n = 0, m = 1. This can be seen to be a low-energy excitation, since it does not
change the Landau level quantum number n. U∗ on the other hand couples the ground state only to n = 1, m = −1;
it therefore represents an high-energy excitation (whose cost is set by the cyclotron energy ℏωc). This result is known
as the Kohn’s cyclotron’s resonance [78]. It is not difficult to show that

⟨Φ(CM)
0,1 |U |Φ(CM)

0,0 ⟩ = N lCM −−−−→
ωc≫ω

√
2N lB (12)

where lB =
√

ℏ
Mωc

. Since this single state is contributing at low-energies (in the limit ωc ≫ ω), we get

S1 = | ⟨Φ(CM)
0,1 |U |Φ(CM)

0,0 ⟩ |2 = 2N l2B , (13)

which is the same result Eq. (6) obtained in the previous section in the case in which the angular momentum carried
by
∑

i z
l
i is l = 1. Notice also that information on the relative motion will start to matter for any l > 1.
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x̂

ŷ

F = −qEx

Jy = σxyEx
B ©•

FIG. 6. Schematic depiction of a quantum Hall system with an edge. The yellow region represents the incompressible quantum
Hall fluid, whose edge (the black curly line) is deformed with respect to its ground-state position (the dashed black line). A
force is applied along the x̂ direction and a current flows proportionally to the applied force in the ŷ direction due to the
presence of a strong perpendicular magnetic field.

χLL COMMUTATION RELATIONS

In this section we want to give an alternative heuristic derivation of the commutation relations of the density
operators of a χLL , which highlights the connection with the transverse conductivity of the bulk and does not rely
on a specific form for the edge Hamiltonian.

We consider a quantum Hall region infinite in the x̂ direction and semi-infinite in the ŷ direction, as we schematically
depict in Fig. 6. The magnetic field is along the ẑ direction. If we apply a constant force in the x̂ direction, by imposing
an external potential U = qExx, a quantized current flows in the bulk Jy = σxyEx perpendicularly to the edge.

Since charge is conserved, a continuity equation ∂tρ = −∇·J/q must hold. For the present discussion, we only focus
on the effect of this transverse current and not on the charge dynamics once the edge is reached (i.e. we neglect the
chiral motion along the boundary caused by the sample confinement) by dropping the x̂ contribution to the current;
more explicitly, ∂tρ ≃ −∂yJy/q. We now integrate this equation along the ŷ direction, from the bulk region (where
the density has not changed because of the bulk’s incompressibility and Jbulk

y = σxyEx) to the outside of the sample
(where both the density and the current vanish)

∂

∂t

∫
dyρ(x, y) = −1

q

∫
dy
∂Jy
∂y

=
1

q
Jbulk
y =

σxy
q2

∂U

∂x
. (14)

On the other hand, the left hand side of the expression can be rewritten by subtracting off the equilibrium density
and

∫
dy [ρ(x, y)− ρ0(y)] = δρ(x) can be seen as an effective edge density.

From a more microscopic perspective, U couples to the system’s density ρ̂ = Ψ̂†Ψ̂ through an interaction Hamilto-
nian

Ĥ =

∫
dx dy U(x)(ρ̂− ρ0) =

∫
dxU(x)

∫
dy(ρ̂− ρ0) =

∫
dxU(x)δρ̂, (15)

and Eq. (14) can be seen as the expectation value of a Heisenberg equation of motion ∂
∂tδρ̂(x) =

σxy

q2
∂U
∂x . In order for

this to be compatible with the Hamiltonian Eq. (15), we need

i

ℏ

[
Ĥ, δρ̂(x)

]
=

∂

∂t
δρ̂(x) =

σxy
q2

∂U

∂x
, (16)

or

i

ℏ

∫
dy U(y) [δρ̂(y), δρ̂(x)] =

σxy
q2

∂U

∂x
. (17)

If we assume [δρ̂(y), δρ̂(x)] = αδ′(y − x), we get α = i
ℏσxy

q2 or

[δρ̂(y), δρ̂(x)] =i
σxy
ℏq2

δ′(y − x)

=i
ν

2π
δ′(y − x)

(18)

which indeed does coincide with the famous χLL liquid commutation relations derived by Wen [6–8, 10, 11]. This
highlights the connection between the non-Fermi-liquid commutator Eq. (18) (which in turn is responsible for the
static structure factor value in Eq. (6)) and the bulk’s transverse conductivity.
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FIG. 7. Energy levels En (with respect to the system’s ground state energy E0) as a function of the magnetic flux per plaquette
α, for N = 4 hard-core bosons moving in a (a) 7 × 7, (b) 8 × 8, (c) 9 × 9, (d) 10 × 10 square lattice. The purple background
transparency is regulated according to the (squared) overlap of the ground state |0⟩ with the discretized Laughlin state of
Eq. (19), |ΨL⟩. In order for the data point not to disappear when the overlap drops, when the squared overlap drops below 0.7
the transparency is kept constant.
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FIG. 8. Ground state densities of the N = 4 hard-core boson system in lattices with different sizes, for some selected values
of the magnetic flux per plaquette α which correspond to a ground state in the Laughlin phase. In particular, the four panels
correspond to (a) 7 × 7 lattice with α = 0.22, (b) 8 × 8 lattice with α = 0.21, (c) 9 × 9 lattice with α = 0.17 and (d) 10 × 10
lattice with α = 0.15. The particular values of α have been chosen so as to (approximately) maximize the overlap (see Fig. 10)
of the given state with the discretized Laughlin wavefunction in Eq. (19).

LATTICE-SIZE EFFECTS

In this section we analyze how the number of lattice sites influences the energy spectra and the structure factors.
In Fig. 7 we show the excitation spectra for N = 4 particles on a M ×M lattice, for M = 7, . . . , 10. The background
transparency is regulated according to the overlap of the ground state with a discretized bosonic Laughlin wavefunction

ΨL =
∏

1≤i<j≤N

(zi − zj)
1/ν e

− 1

4l2
B

∑N
i=1 |zi|2

. (19)

Here ν = 1/2 is the (robust) filling fraction associated to the particular incompressible phase, while zi = xi + iyi take
values on the square lattice. A large region in which the ground state has a large overlap with this model-wavefunction
can be seen (see also Fig. 10). It can also be seen from Fig. 7 that as the size of the lattice is increased (from the
leftmost panel to the rightmost), the edge-excitation velocity decreases, as can be expected from the atoms avoiding
the occupation of the boundary lattice sites (see Fig 8).

In Fig. 9 we then plot the matrix elements M(l)
n,0 for l = 1, 2; since in the Laughlin region only l modes have large

matrix-elements, we normalize the results to the integrated structure factor per state in the continuum, SχLL
l /l =

νR2l
cl , Rcl =

√
2N/νlB being the classical radius and lB the magnetic length. This result can be obtained from a
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FIG. 9. Matrix elements M(l)
n,0 =

∣∣〈n ∣∣∑
i z

l
in̂i

∣∣ 0
〉∣∣2 as a function of the magnetic flux per plaquette α, for N = 4 hard-core

bosons, moving in a (a,e) 7 × 7, (b,f) 8 × 8, (c,g) 9 × 9, (d,h) 10 × 10 square lattice. The top (a-d) (/bottom (e-h)) panels are
for l = 1 (/l = 2). The purple background transparency is regulated according to the (squared) overlap of the ground state
|0⟩ with the discretized Laughlin state of Eq. (19), |ΨL⟩. In order for the data point not to disappear when the overlap drops,

when the squared overlap drops below 0.7 the transparency is kept constant. The static structure factor per state SχLL
l /l given

by Eq. (1) is shown as black dashed lines.

χLL description of the edge excitations of a Laughlin ground state in the continuum, as we explicitly showed in the
first section. With such a normalization, summing over the l non-vanishing matrix elements should therefore give l,
provided the geometric factor R2l

cl is not strongly affected by the shape of the square boundary. As the system size
is increased, it can be seen in Fig. 9(a-d) that the dipole matrix element (l = 1) does indeed approach the expected

result SχLL
1 = νR2

cl; panels(e-h) show instead what happens for the quadrupole matrix elements: in the Laughlin
region (highlighted by the purple transparency) as the number of lattice sites is increased two states only (full circles)

contribute to the structure factor SχLL
2 ; it can also be seen how their magnitude approaches SχLL

2 /2 = νR4
cl, hinting

to the correctness of the sum rule Eq. (3). We will show in greater detail in the next section (in particular in Fig. 12)

how SχLL
2 changes as a function of the magnetic flux per plaquette α, for various lattice sizes and number of particles.

Finally, in Fig. 10 we plot the overlaps of a few selected eigenstates with discretized model fractional quantum Hall
wavefunctions for the gapless edge excitations of a Laughlin liquid, for different system sizes. In particular, the ground
state, with symmetry eigenvalue C4, which we label |C4, 0⟩, is compared to the discretized Laughlin wavefunction of
Eq. (19); a good agreement (black curves) for the squared overlaps (| ⟨ΨL |C4, 0⟩ |2 up to ∼ 0.9) can be seen over a
wide range of synthetic magnetic flux per plaquette α, for various lattice sizes. The lowest lying excitation |C ′

4, 0⟩,
where C ′

4 = C4 + 1 (mod 4), is compared instead to the edge excitation

Ψd =
∑

i

zi
∏

1≤i<j≤N

(zi − zj)
1/ν e

− 1

4l2
B

∑N
i=1 |zi|2

. (20)

Again, a good agreement (red curves) can be found in the same region of α, although this window is slightly narrower.

Finally, the two quadrupolar modes |C ′′
4 , 0⟩ and |C ′′

4 , 1⟩ can be compared to discretized quadrupolar excitations of
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(c) 9 × 9 and (d) 10 × 10 lattices, as a function of the synthetic magnetic flux per plaquette.

a Laughlin state

Ψq =

(∑

i

zi

)2 ∏

1≤i<j≤N

(zi − zj)
1/ν e

− 1

4l2
B

∑N
i=1 |zi|2

Ψ′
q =

∑

i

z2i
∏

1≤i<j≤N

(zi − zj)
1/ν e

− 1

4l2
B

∑N
i=1 |zi|2

.

(21)

These two states |Ψq⟩ and |Ψ′
q⟩ are linearly independent but not orthonormal: we therefore orthonormalize them with

a standard Gram-Schmidt procedure; moreover, it does not make sense to compare the two separately to the two
quadrupolar states |C ′′

4 , 0⟩ and |C ′′
4 , 1⟩: in principle we can however expect these to be a mixture of |Ψq⟩ and |Ψ′

q⟩
which minimizes the particular Hamiltonian, provided mixing with states outside of this manifold is small. We test
this idea by defining a matrix of overlaps

U =

(
⟨Ψq|C ′′

4 , 0⟩ ⟨Ψ′
q|C ′′

4 , 0⟩
⟨Ψq|C ′′

4 , 1⟩ ⟨Ψ′
q|C ′′

4 , 1⟩

)
(22)

and testing whether it defines an unitary matrix (i.e. a “rotation” between two otherwise equivalent bases) by
computing an Hilbert-Schmidt norm of U†U

||U†U || =

√√√√1

d

d∑

i,j=1

|(U†U )i,j |2, (23)

where d is the dimension of the subspace under consideration; in this case, d = 2. Ideally, U†U = 1 and the
normalization in Eq. (23) has been chosen so that ||1|| = 1. Notice finally that when d = 1, Eq. (23) reduces to the
squared overlap used in the two previous cases with the ground- and dipole- states. Again, a good agreement (yellow
curve) can be seen in the relevant region of α in Fig. 10, with ||U†U || ≈ 0.9.

Although these overlaps can be expected to drop to zero in the thermodynamic limit [62] (N,L→ ∞), the fact that
they are significantly close to 1 in a limited window of fluxes per plaquette for the lattice sizes we analysed supports
our interpretation of them being the edge modes of a Laughlin state. Let us finally stress that the fact that we expect
these overlaps to drop does not mean that our conclusions will be altered: on the contrary, Eq. (3) is a thermodynamic
limit statement and a consequence of dealing with a Laughlin topological order [79], and not of exactly having model
Laughlin-like wavefunctions for the ground state and its excitation.

SCALING WITH THE NUMBER OF PARTICLES

In this section we briefly show and discuss the results for the matrix elements M(l)
n,0 for different number of particles.



8

In particular, in Fig. 11 the results in the l = 1, 2 cases are shown as a function of the synthetic magnetic flux per

plaquette α, for different lattice sizes. In the top panels (a-d) we show the results for M(1)
n,0. It can be seen that a

single state has a significantly non-zero matrix element in the region of α in which the ground state is a Laughlin
state. Only this state, which we identify with the dipole excitation of Eq. (20), contributes to the integrated structure
factor of Eq. (1); indeed it can be seen that in the Laughlin region the value of this matrix element collapses to the
static structure factor curve Eq. (6) (black dashed line), for every N and L displayed here.

In the bottom panels (e-h) we instead show the results for M(2)
n,0. It can be seen that only two states contribute

significantly to the static structure factor Eq. (1); we interpret these two states as the quadrupole modes of a Laughlin

state, Eq. (21). The matrix elements have been compared to the expected static structure factor per state, SχLL
l /l

(black dashed line); as we already discussed in the previous section, it is important to notice that there is no a priori

reason why the two matrix elements should be equally contributing to SχLL
l : in principle only one of them could be

carrying all the spectral weight (see for example Eq. (3), Eq. (4) and Eq. (5) above). It can however be seen, at least

qualitatively, that as the number of particles is increased, the expected value of SχLL
l is reached.

We also performed a more quantitative test. In particular, in Fig. 12 we show the integrated dynamic structure

factor, namely Sl =
∑

n M
(l)
n,0. In the l = 1 case (panels (a-d)) a good agreement with the prediction for SχLL

l given
by Wen’s theory (black dashed line), Eq. (6), can be seen. In the l = 2 case (panels e-h)), even though the integrated
structure factor Sl deviates from this prediction, as the number of particles is increased the plateau that Sl exhibits
gets closer to SχLL

l . Furthermore, this finite size correction is compatible with the results (red dotted dashed line)
that we obtained for a Laughlin state in the continuum (see Fig. 5).

EFFECT OF ADDITIONAL HARMONIC CONFINEMENT

In this section we analyse the effect of an additional harmonic confinement which does not spoil the fourfold
rotational symmetry of the lattice; namely, we add to the Harper-Hofstadter Hamiltonian an additional potential
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FIG. 11. Matrix elements M(l)
n,0 =

∣∣〈n ∣∣∑
i z

l
in̂i

∣∣ 0
〉∣∣2 as a function of the magnetic flux per plaquette α, for (a,e) N = 2 (b,f)

N = 3, (c,g) N = 4 and (d,h) N = 5 hard-core bosons, for different lattice sizes. The top (a-d) (/bottom (e-h)) panels are for

l = 1 (/l = 2). The static structure factor per state SχLL
l /l given by Eq. (1) is shown as black dashed lines.
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FIG. 12. Static structure factors Sl =
∑

n M(l)
n,0 as a function of the magnetic flux per plaquette α, normalized to the static

structure factor per contributing state SχLL
l /l given by Eq. (6); in the various panels, different system sizes are shown: (a,e)

N = 2 (b,f) N = 3, (c,g) N = 4 and (d,h) N = 5. The expected static structure factor given by Eq. (6) is shown as black dashed
lines. The top (a-d) (/bottom (e-h)) panels are for l = 1 (/l = 2). In the l = 2 cases (panels (e-h)), the red dashed-dotted lines
are the results for the static structure factor Eq. (2) for a continuum state (see also Fig. 5).

term

Ûconf =
∑

i,j

Uha
2

((
i− M − 1

2

)2

+

(
j − M − 1

2

)2
)
n̂ij . (24)

We study the energies and matrix elements M(l)
n,0 as a function of Uh in Fig. 13.

In the absence of the harmonic confinement, when plotted against the fourfold discrete rotation symmetry eigenvalue
C4, the level structure cannot be easily interpreted visually (see Fig. 13(a)) due to the competing energy-scales of
bulk and edge excitations. However, a weak harmonic confinement isolates in each symmetry sector a low-lying group
of states with the counting predicted by the edge-mode theory for a Laughlin state (see Fig. 13(f)). The degeneracy
is slightly shifted by perturbations of Wen’s Hamiltonian, leading to a weakly non-linear χLL [44, 45, 65].

In the mid panels, Fig. 13(b-e), we show that the ground state in the absence of the harmonic confinement Eq. (24)
is adiabatically connected to the ground state in its presence, which is unambigously identified to be a Laughlin
topological order by the edge-mode counting seen in Fig. 13(f). Furthermore, the lowest lying states at l = 1 and
l = 2 can be seen to be connected with the low-lying edge excitations highlighted in Fig. 13(f). This supports the
results we previously exhibited in Fig. 10 for the overlaps with the discretized model wavefunctions for the Laughlin
state of Eq. (19) and its edge excitations Eq. (20) and Eq. (21).

The points in Fig. 13(b-e) are also coloured according to the matrix elements M(l)
n,0 =

∣∣⟨n
∣∣∑

i z
l
in̂i
∣∣ 0⟩
∣∣2; it is worth

highlighting some features. First of all in the C4 = 3 plot in Fig. 13 (panel (e)) it can be seen that the 3 states
that carry non-zero weight for the l = 3 excitation are those that at large Uh can be identified with the 3 edge
excitations of a continuum Laughlin liquid at the same angular momentum variation with respect to the ground state;
at small Uh these states cross with other levels, but they do not mix with them. Secondly, for N = 4 particles, also
the counting of edge modes in the C4 = 4 ≡ 0 (mod 4) symmetry sector shown Fig. 13(b) is expected to show the
thermodynamic-limit counting [10, 80] (i.e. a group of 5 states). For the parameters we used however this is not so
clear. Indeed in Fig. 13(b) it can be seen that around Uh/J = 0.01 there is a low-lying group of 5 states which couple
to the density operator in the same way a non-harmonically confined Laughlin state does [44, 45] - namely only 4
states couple to it while the fifth one is dark; however, as Uh is further increased there is a level crossing (for which
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FIG. 13. (a) Energy levels (with respect to the ground state one) of a system of N = 4 hard-core bosons moving on a 10 × 10
lattice, at α = 0.18. The energies are plotted against the fourfold discrete rotation symmetry eigenvalue C4.
(b-e) Energy levels (with respect to the ground state one) for the same system, as a function of the harmonic confinement
strength Uh (see Eq. (24); the various panels refer to the different C4 values: (b) C4 = 0 (c) C4 = 1 (d) C4 = 2 and (e) C4 = 3.

The points are coloured according to the value of the matrix elements M(l)
n,0 =

∣∣⟨n ∣∣∑
i z

l
in̂i

∣∣ 0⟩
∣∣2, for l = C4 (mod 4), i.e. (b)

l = 4, (c) l = 1, (d) l = 2 and (e) l = 3.
(f) Energy levels (with respect to the ground state one) plotted against the symmetry eigenvalue C4 for the same system, in
the presence of an additional harmonic confinement with strength Uh/J = 0.02. Dashed-blue ellipses highlight the now well
isolated group of edge modes with the counting predicted for a Laughlin ground state [38, 40].

we lack an intuitive understanding) at around Uh/J ≈ 0.12, mixing in this subspace. This makes the interpretation
of the low-lying group of 5 states at Uh/J = 0.02 (seen both in Fig. 13(b) and (f)) a bit ambiguous. A well isolated
group of 5 states can indeed be obtained (in the region 0.005 ≲ Uh/J ≲ 0.015) by slightly increasing the size of the
lattice, as we show in Fig. 14. Also in this case it can be seen that one of the five edge states is dark (which may
be difficult to spot at a fast glance because “hidden” below the green coloured points), analogously to the weakly
non-linear Luttinger liquid [44, 45].

It is crucial here to notice that, even though removing the harmonic confinement (as Uh is decreased) introduces
many level crossings of the edge-modes, the eigenvectors do not mix; even though the energetic structure of the
χLL is lost, the eigenvectors survive these strong perturbations which do not close the bulk many-body gap. Roughly
speaking, since the topological order does not change, the structure of the edge theory must still be the same - and
carry the information of the quantized transverse Hall current.

As a final minor comment, notice in Fig. 13(b) that M(4)
0,0 is non-zero when Uh ≃ 0, as can also be seen in Fig. 2

of the main text. For the parameters of Fig. 13(b), at Uh = 0, 4M(4)
0,0/S

χLL
4 ≃ 0.38. This non-zero transition matrix

element is allowed by the reduced four-fold symmetry of the lattice. We notice here however that M(4)
0,0 goes to zero

as the strength of the harmonic confinement is increased, approaching thus the value expected in the continuum from
angular momentum conservation.
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FIG. 14. Same as Fig. 13(b), but for an 11 × 11 lattice.

DIPOLAR EXCITATION

Perturbation theory

In this section we explicitly derive the system’s dipole response to a dipolar pulsed excitation

V̂ (t) = λ(t)
∑

i

xin̂i; (25)

we consider the pulse to have a Gaussian temporal profile λ(t) = λd exp(−t2/τ2). We monitor the time evolution of
the system’s dipole moment

Ô =
∑

i

xin̂i. (26)

We consider our system to start in the ground state |0⟩.
To first order in perturbation theory we get

⟨Ô⟩ (t) ≃ −2

ℏ
∑

n

Im

[∫ t

−∞
dt′ λ(t′)e−iωn,0(t

′−t)| ⟨n|Ô|0⟩ |2
]

(27)

where ωn,0 = (En − E0)/ℏ is the energy of the excited state |n⟩. Here we used the fact that ⟨0| Ô |0⟩ = 0.
In the Laughlin phase, at low energies a single mode alone contributes to the summation; namely the low-energy

“dipole” edge mode (see Fig. 1(a) in the main text). We define ωd to be the frequency of such a transition. Moreover,

| ⟨n|Ô|0⟩ |2 =
∣∣〈n
∣∣∑

i
xi+iyi

2 n̂i
∣∣ 0
〉∣∣2 = S1/4. The first equality is a consequence of the lattice fourfold rotational

symmetry; the second one comes from the fact that the only contribution to the dipolar static structure factor is
exhausted by this single matrix element (see Fig. 1(b,c) in the main text).

If t≫ τ we can replace the upper integration limit in Eq. (27) with t→ ∞, obtaining

⟨Ô⟩ (t) ≃ −S1

2ℏ
Im
[
λ̃(ωd)e

iωdt
]

(28)

where we defined the Fourier transform λ̃(ωd) =
∫∞
−∞ dt′ λ(t′)e−iωdt

′
= λdτ

√
π exp

[
−
(
ωdτ
2

)2]
of the pulsed excitation

λ(t). This is the equation we quoted in the main text.
To conclude this section, let us notice that in order to control the strength of the perturbation τ cannot be chosen

to be too large, otherwise the pulse becomes adiabatic with respect to the edge modes, as testified by the Fourier
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factor ∝ τ exp
[
−
(
ωdτ
2

)2]
. This problem can be easily circumvented in principle by resonantly shaking the lattice

with λ(t) = λd exp(−t2/τ2) cos(Ωt), Ω ≈ ωd. Then, by neglecting the off-resonant term λ̃(ωd +Ω), one obtains

⟨Ô⟩ (t) ≃ −S1

4ℏ
Im
[
λ̃(ωd − Ω)eiωdt

]
. (29)

Notice that all these results are valid only within the scope of linear perturbation theory. Non-linear effects are
discussed in the next section in a two-level approximation.

Rabi oscillations

Thanks to the strong non-linearity imposed by the hard-wall condition, contrary to standard chiral Luttinger liquid
(or in the presence of weak non-linearities) - the spectrum of the edge modes is not linearly dispersing with the
excitation momentum. Highly non-linear behaviour can be seen in Fig. 1 in the main text. The idea is to exploit this
non-linearity in order for the system to perform Rabi oscillations between the ground state and the dipole mode as
if these two levels constituted an isolated two-level system. In this section we give some mathematical details on the
performed calculations.

In Heisenberg’s representation |ψ̃⟩ = eiĤt/ℏ |ψ⟩, Schrödinger equation reads

iℏ
∂ |ψ̃⟩
∂t

= Ṽ |ψ̃⟩ , (30)

where Ṽ = eiĤt/ℏV̂ e−iĤt/ℏ is the excitation operator, V̂ = λ(t)Ô. The observable we excite is again dipolar,
Ô =

∑
i xin̂i. As we briefly commented at the end of the previous section, we resonantly shake the lattice

λ(t) = λde
−t2/τ2

cos(Ωt). (31)

If the spectrum of edge modes is linearly dispersing with the momentum, as one would expect for smooth edges
in the thermodynamic limit where the chiral Luttinger liquid description is expected to be valid, long excitations
of this kind will not only drive a transition from the Laughlin ground state to its dipole moment, but also higher
order excitations which on the long run drive the system out of these two levels. However, as we already anticipated,
strong non-linearities imposed by the hard-wall confinement together with the small lattices analysed here make these
higher-order transitions off-resonant. We can therefore effectively describe the dynamics as being restricted to two
levels, and we can expand |ψ̃⟩ = c̃0 |0⟩+ c̃1 |1⟩: the two states represent the ground state and the lowest-lying dipole
state respectively, see Fig. 1 in the main text. Taking the scalar products of Eq. (30) with |0⟩ and |1⟩ we get

{
iℏ∂c̃0

∂t = c̃1 ⟨0| Ṽ |1⟩
iℏ∂c̃1

∂t = c̃0 ⟨1| Ṽ |0⟩ . (32)

Here, we used the fact that ⟨0| Ô |0⟩ = ⟨1| Ô |1⟩ = 0 by symmetry. On the other hand, ⟨1| Ô |0⟩ ≡ dx = |dx|eiα is
non-zero. The phase can be absorbed into the wavefunction amplitudes by defining b0 = c̃0e

iα/2, b1 = c̃1e
−iα/2.

Since Ω ≈ ωd we can neglect fast terms, obtaining

{
i∂b0∂t = ΩR b1(t) e

i(Ω−ωd)te−t2/τ2

i∂b1∂t = ΩR b0(t) e
i(ωd−Ω)te−t2/τ2

.
(33)

Here we defined an effective Rabi frequency

ΩR =
λd|dx|
2ℏ

. (34)

For simplicity we consider the driving to be resonant, namely Ω = ωd. The solutions with initial conditions b0(t ≪
τ) = 1 and b1(t≪ τ) = 0 read

{
b0(t) = cos (Λ(t))

b1(t) = −i sin (Λ(t)) Λ(t) =
1

2

√
πτ ΩR

(
1 + erf

(
t

τ

))
. (35)
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FIG. 15. Energies (with respect to the ground state one) for a system of N = 3 bosons on a 9 × 9 lattice, as a function of the

magnetic field per plaquette α. The points have been coloured according to the value of (a) M(2)
n,0 =

∣∣⟨n ∣∣∑
i z

2
i n̂i

∣∣ 0⟩
∣∣2 and (b)∣∣⟨n ∣∣∑

i(z
∗
i )2n̂i

∣∣ 0⟩
∣∣2.

We can finally write down the time evolution of the dipole moment

⟨Ô⟩ (t) = 2Re
(
b0(t)b

∗
1(t)e

iωdt|dx|
)
= −|dx| sin(2Λ(t)) sin(ωdt). (36)

As we explained in the previous section, |dx| =
√
S1/2 = |d|/2. Therefore, at large times t ≫ τ (since erf(t/τ) → 1)

we can write

⟨Ô⟩ (t≫ τ) = −|d|
2

sin

(√
πτ

λd|d|
2ℏ

)
sin(ωdt) (37)

which is the result we quoted in the main text. Notice that the dipole oscillates as a pure sine-wave with an amplitude
|d|
2 sin

(√
πτ λd|d|

2ℏ

)
: this can be interpreted as the system performing Rabi oscillations with frequency ΩR = λd|d|

ℏ ,

driven over an effective time-window T =
√
πτ .

Notice finally that when λd|d|τ/ℏ ≪ 1 it correctly recovers the perturbative result obtained in the previous section,
Eq. (29). On the other hand, the strong anharmonicity due to the confinement allows one to dynamically get larger
dipole response

| ⟨Ô⟩ | ≈ |d|
2

(38)

provided one can perform a π/2 pulse which drives the system from its many-body ground state |0⟩ to the coherent
and equal superposition (|0⟩+ |1⟩)/

√
2; this in practice is limited by the pulse duration

√
πτ , which is limited by the

coherence time of the experiment.

QUADRUPOLAR EXCITATION

Perturbation theory

Since the non-linearities introduced by the hard-wall confinement strongly split the two quadrupolar edge-modes (see
Fig. 1(c) in the main text), the quadrupolar static structure factor is most easily measured by separately addressing
the two transitions so as to measure the two transition matrix elements. In this section, we label these two states as
|q1⟩ and |q2⟩.

We consider the ground state to be excited by a rotating saddle potential

V̂ = λQ

(
Ôx2−y2 cos(Ωt) + Ôxy sin(Ωt)

)
e−t2/τ2

, (39)
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where

Ôx2−y2 =
∑

i

(x2i − y2i ) n̂i (40)

Ôxy =
∑

i

2xiyi n̂i. (41)

The perturbation can be rewritten in terms of the complex combination zi = xi + iyi as

V̂ =
1

2
λQ

(
Ôz2e

−iΩt + Ô†
z2e

+iΩt
)
e−t2/τ2

(42)

with Ôz2 =
∑

i z
2
i n̂i = Ôx2−y2 + iÔxy.

If the system was fully rotationally symmetric, due to angular momentum conservation we would have ⟨q1|Ô†
z2 |0⟩ =

⟨q2|Ô†
z2 |0⟩ = 0. However, our system has only fourfold rotational symmetry. As a consequence, these matrix elements

do not vanish, even though we find them to be significantly smaller (by a factor ∼ 10). We show a comparison

in Fig. 15. The purpose of the modulation at frequency Ω is to make transitions driven by Ô†
z2 from |0⟩ to the

quadrupole modes {|q1⟩ , |q2⟩} small; this allows one to focus instead on the transitions driven by Ôz2 , of which we
want to reconstruct the static structure factor.

Using linear-order perturbation theory we write

Qz(t) ≃
i

ℏ

∫ t

−∞
⟨Ṽ (t′)Õz2(t)− Õz2(t)Ṽ (t′)⟩ dt′ (43)

where the tilde denotes Heisenberg representation with respect to Ĥ and we defined Qz(t) = ⟨Ôz2⟩ (t). Notice that
Ôz2(t) = Ôx2−y2 + iÔxy is a complex linear combination of two physical observables.

Neglecting off-resonant terms in Eq. (43) we obtain

Qz(t) =
i

2ℏ

∫ t

−∞
dt′λ(t′)

∑

n

(
eiωn,0tei(Ω−ωn,0)t

′ | ⟨n|Ôz2 |0⟩ |2 − e−iωn,0te−i(Ω−ωn,0)t
′ ⟨0|Ôz2 |n⟩ ⟨n|Ôz2 |0⟩

)
. (44)

For large enough τ and Ω ≃ ωq only one of the quadrupole modes |q⟩ will be excited. For t≫ τ we write

Qz(t≫ τ) =
i

2ℏ

(
eiωqtλ̃(ωq − Ω)| ⟨q|Ôz2 |0⟩ |2 − e−iωqtλ̃∗(ωq − Ω) ⟨0|Ôz2 |q⟩ ⟨q|Ôz2 |0⟩

)
. (45)

By resolving the two frequencies, for example through Fourier analysis, the relevant amplitude | ⟨q|Ôz2 |0⟩ |2 can be
extracted; once this is done for the first quadrupole mode |q1⟩, the same can be done for the second one, |q2⟩ and one
can reconstruct the static structure factor and match it with Wen’s prediction.
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FIG. 16. Square modulus of the Fourier transform Q̃z(ω) of the quadrupole response Qz(t) at long times (after the pulsed
excitation has been turned off), as a function of the frequency ω (normalized to the relevant quadrupolar frequencies (a) ωq1

and (b) ωq2 . In both cases, two narrow peaks at ±1 can be seen: Wen’s sum rule Eq. (6) can be studied by analysing the
positive frequency peaks in the two cases. The yellow horizontal line is the linear perturbation theory prediction (see Eq. (45));
the red one instead is the non-linear two-level system prediction (see Eq. (46)).
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FIG. 17. Positive frequency amplitude of Qz(t ≫ τ) as a function of the pulse angle ΩRT (T =
√
πτ), for different values of

the pulse duration τ . The resonant two-level Rabi oscillation prediction (see Eq. (46)) is shown as a black-dashed line, and the
linear approximation (see Eq. (45)) is shown as a dash-dotted brown line.

We show the discrete Fourier transforms (taken only for t ≳ τ) of Qz(t) for the two quadrupolar transitions in
Fig. 16. Frequencies are measured in units of the relevant transition frequency ωq. Peaks at ω/ωq = ±1 can be seen;
as expected, the one at negative frequency, which emerges because of the reduced rotational symmetry of the lattice,
can be seen to be smaller than the relevant one at positive frequency. The peak-amplitude of the latter is compared
with the amplitude that we obtain from the perturbation theory result (yellow-dashed line) and with the non-linear
two-level system result Eq. (46). It can be seen that the latter compares successfully with the numerical results and
can be used to estimate the relevant matrix element | ⟨q|Ôz2 |0⟩ |2.

Rabi oscillations

Analogously to the dipolar-excitation case, due to the strong non-linearities imposed by the lattice the ground-state
to quadrupole transition can form an isolated two-level manifold within the exponentially large set of many-body
states. The quantitative analysis is the same as in the case of the dipolar excitation, with the additional complication
of the reduced rotational symmetry of the lattice. We find, for a resonant excitation (Ω = ωq)

Qz(t≫ τ) = i
|Q|
2

sin

(√
πτ

λQ |Q|
ℏ

)

︸ ︷︷ ︸
A

(+)
Q

eiωqt − i
Q′eiα

2
sin

(√
πτ

λQ |Q|
ℏ

)

︸ ︷︷ ︸
A

(−)
Q

e−iωqt (46)

where Q = ⟨q|Ôz2 |0⟩, Q′ = ⟨0|Ôz2 |q⟩ and α = arg (Q). To linear order in perturbation theory, this result reduces to
the perturbative one given in Eq. (45).

We compare the numerical amplitude of the peak at positive frequency, A
(+)
Q , with the above result Eq. (46) in

Fig. 17, for the case of the lower quadrupolar transition. It can be seen that for long-enough pulses the predictions
nicely match the analytical result.
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