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The structural origin of the first sharp diffraction peak (FSDP) in amorphous silica is studied by analyzing
chemical and radial ordering of silicon (Si) and oxygen (O) atoms in binary amorphous networks. The study
shows that the chemical order involving Si–O and O–O pairs play a major role in the formation of the FSDP
in amorphous silica. This is supplemented by small contributions arising from the relatively weak Si–Si corre-
lations in the Fourier space. A shell-by-shell analysis of the radial correlations between Si–Si, Si–O and O–O
atoms in the network reveals that the position and the intensity of the FSDP are largely determined by atomic
pair correlations originating from the first two/three radial shells on a length scale of about 5–8 Å, whereas the
fine structure of the intensity curve in the vicinity of the FSDP is perturbatively modified by atomic correlations
arising from the radial shells beyond 8 Å. The study leads to a simple mathematical relationship between the
position of the radial peaks (rk) in the partial pair-correlation functions and the diffraction peaks (Qk) that can
be used to obtain approximate positions of the FSDP and the principal peak. The results are complemented by
numerical calculations and an accurate semi-analytical expression for the diffraction intensity obtained from the
partial pair-correlation functions of amorphous silica for a given radial shell.

I. INTRODUCTION

Amorphous silica (a-SiO2) is one of the most extensively
studied noncrystalline solids. While the local structure of
amorphous silica is well described in terms of the approxi-
mate tetrahedral arrangement of Si and O atoms leading to
short-range ordering (SRO) in the network, the medium-range
order (MRO) in a-SiO2 is relatively less understood as far
as the real-space ordering of the atoms is concerned [1–6].
The SRO in network glasses is readily reflected in the pair-
correlation functions (PCF) and the bond-angle distributions.
The appearance of the MRO in real space is much more sub-
tle and difficult to gauge, however. In a-SiO2, the MRO is
often associated with the relative position and orientation of
Si[O4] 1

2
tetrahedra in forming a continuous random network.

In the presence of short-range ordering, driven by local chem-
istry and geometry, these structural motifs connect with the
neighboring motifs in such a way that the resulting network
exhibits atomic correlations on a nanometer length scale [7].
Although these intermediate correlations reside in the PCF in
a rather obscure way [8, 9], their presence is particularly evi-
dent in the Fourier space. The radial correlations in the PCF,
extending up to a few nanometers in some glasses, can mani-
fest in the form of a sharp diffraction peak in the region of 1–2
Å−1 in the Fourier space. For a-SiO2, this leads to the pres-
ence of a sharp peak at Q1 = 1.5 Å−1, also known as the first
sharp diffraction peak (FSDP), which serves as a key indicator
of the presence of MRO in the network.

The FSDP in glasses has been studied extensively via X-
ray and neutron diffraction experiments [10–19], and com-
putational modeling of glasses in simulation studies [9, 20–
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25]. Although these studies have produced a wealth of struc-
tural information on glasses and established that the FSDP
is a nearly universal feature of network glasses, a definitive
understanding of the origin of the FSDP, and its thermody-
namic behavior with respect to pressure and temperature [10–
12, 16, 19, 26], in terms of the real-space ordering of atoms
on the medium-range length scale is yet to be achieved.

In the past decades, several explanations for the possible
origin of the FSDP in network glasses were proposed in the
literature [14, 21, 22, 27–29]. Among these explanations,
the viewpoints presented by Gaskell and Wallis [27] and El-
liott [21, 22] are most noteworthy. Following Gaskell and
Wallis, the FSDP in network glasses is often attributed to the
presence of diffuse quasi-Bragg planes, which are assumed to
be separated by a distance of the order of d1 = 2π/Q1 in
real space. These quasi-Bragg planes are believed to originate
from fluctuations of order, which produce a strong scattering
in the region of 1–2 Å−1 in most glasses. For a-SiO2, this
translates into a value of d1 ≈ 4 Å and experimental data
obtained from high-resolution electron microscope (HREM)
images of a-SiO2 appear to support the existence of these
quasi-Bragg planes [27]. The presence of quasi-Bragg planes
in a-SiO2 was also reported in a simulation study by Uchino
et al. [24], who employed a real-reciprocal space analysis of
the pair-correlation function of a-SiO2 by using a continuous
wavelet transform technique.

An alternative view is provided by Elliott [3, 21]. In this ap-
proach, the chemical ordering of interstitial voids – associated
with cation-centered structural motifs or clusters – in network
glasses plays a central role in the formation of the FSDP. The
author has shown that the FSDP in network glasses can be
regarded as a prepeak in the concentration-concentration par-
tial structure factor (obtained in the Bhatia-Thornton formal-
ism [30]), Scc(Q), originating from low-atomic-occupancy
zones or voids in cluster+void networks. A direct application
of this cluster+void model leads to the position of the FSDP in
a-SiO2 near 1.52 Å−1 [21], which includes a corrective fac-
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tor due to Blétry [31]. The pressure and temperature depen-
dence of the FSDP can be successfully described using this
model for most AX2-type (A = Si, Ge; X = O, S, Se) network
glasses. Although some authors [14] have disputed the appli-
cability of the cluster+void model for a-SiO2, experimental
studies on densified a-SiO2 do indicate that interstitial voids
play an important part in the formation of the FSDP and its
behavior upon change of pressure and temperature [16, 26]. It
may be noted that these two seemingly different explanations
are not totally unrelated to each other due to the presence of
interstitial voids and hence the resulting fluctuations of the
atomic density that can lead to strong scattering in the region
of 1–2 Å−1.

In this work, we employ a simple but deftly implemented
approach in real space to understand and gain new insights
on the origin and structure of the FSDP in a-SiO2. Although
our work is focused on a-SiO2, the approach employed here
is very general in nature and it can be applied to any network-
forming amorphous solids, including amorphous silicon [9].
In our approach, we shall address the problem from a real-
space point of view and demonstrate that the position of the
FSDP (and the principal peak [32] as well) can be explained
from a knowledge of the partial PCFs and their relationship
with the corresponding structure factors. In particular, we
shall show that the FSDP corresponds to the minimal value
of Q for which radial correlations originating from distant
atomic shells in real space interfere constructively to produce
a strong intensity peak in the region of 1–2 Å−1. A direct con-
sequence of this approach is that it can explain why certain
atomic pairs (for example, Si–Si pairs in a-SiO2) contribute
very little to the FSDP, due to cancellation effects of contribu-
tions from neighboring radial shells. The key purpose of this
study is to develop a quantitative approach for characterizing
the radial contributions (of atomic correlations) from distant
atomic shells to the FSDP, and to examine the relevant length
scale(s) associated with these contributions.

The rest of the paper is presented as follows. In Sec. II, we
discuss the computational method employed to generate the
structure of a-SiO2, using a combination of Reverse Monte
Carlo and first-principles simulations. Section III discusses
the results. Starting with the validation of the models, the po-
sitions of the FSDP and the principal peak are obtained by
developing a simple ansatz from a knowledge of the partial
PCFs. This is followed by a discussion on the origin of the
FSDP and the principal peak, with particular emphasis on the
contribution arising from individual radial shells of Si–Si, Si–
O and O–O pairs in real space. The results are verified numer-
ically and semi-analytically. The latter is achieved by deriving
an accurate semi-analytical expression for the diffraction in-
tensity originating from a given radial shell in the Gaussian
approximation. The conclusions are presented in Sec. IV.

II. COMPUTATIONAL METHOD

The starting point of this study is to construct a model
of a-SiO2 using a combination of reverse Monte Carlo
(RMC) [33, 34] and ab initio molecular dynamics (AIMD)

θ
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FIG. 1. Construction of an initial configuration of a-SiO2 from a
tetrahedral model of amorphous silicon (blue) by introducing oxygen
atoms (red) near the center of Si–Si bonds in the network. Each
oxygen atom makes an angle θ of about 10–25◦ with its nearest Si–
Si bond as indicated in the diagram.

simulations [35–37]. To this end, we begin with a 216-atom
model of amorphous silicon (a-Si) with no coordination de-
fects. This initial ‘seed’ model is used as a framework struc-
ture, which can be augmented by adding oxygen atoms in the
network. The generation of a-SiO2 models in our approach
thus consists of the following steps [34, 37]:

(i) The first step involves incorporation of oxygen atoms in
a 216-atom a-Si network. For a given Si–Si bond, an oxy-
gen atom was placed close to (but not at) the center of the
bond so that the resulting Si–O–Si bond angle lay between
130 to 160◦. This was achieved by generating a random unit
vector that made an angle θ=10–25◦ with the Si–Si bond di-
rection. An oxygen atom was then placed at a distance of ap-
proximately half of the Si–Si bond length along the unit vec-
tor. Care was taken to ensure that oxygen atoms were always
placed either to the left or to the right of the four Si–Si bonds
associated with a central silicon atom in order to construct an
initial configuration as close as possible to the a-SiO2 geom-
etry. This is illustrated in Fig. 1, where four oxygen atoms
can be seen to appear on the right of the Si–Si bonds (viewing
clockwise from above) originating from the central Si atom to
produce an approximate tetrahedral unit of Si[O4] 1

2
. The pro-

cedure was repeated for all Si–Si bonds in the network. The
atomic positions in the resulting structure were then scaled by
adjusting the length of the cubic simulation cell in order to
match the mass density of the model with the experimental
density of 2.2 g.cm−3 [38] of a-SiO2;

(ii) Having included the correct stoichiometry, approximate
chemical ordering, topology, and geometry of the a-SiO2

structure in the network, the resulting model was subjected to
RMC simulations in the second step. The RMC simulation
proceeded by matching the experimental neutron-weighted
total structure factor of a-SiO2 with that calculated for the
model. The simulation was conducted by incorporating an
additional constraint on O–Si–O bond angles and their stan-
dard deviation so that the bond-angle distribution, imposed
via selective addition of oxygen atoms in the first step, could
not deviate considerably from the approximate tetrahedral dis-
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tribution of O–Si–O bond angles. The purpose of the RMC
step here is to refine the overall radial structure of the model
so that the (radial) distances between Si–O, O–O and Si–Si
pairs of atoms are more or less consistent with those observed
in diffraction experiments. Detailed discussions on the gen-
eration of amorphous structures using RMC simulations are
given by McGreevy [33] and others [39–42];

(iii) The final step of the method involves low-temperature
annealing or thermalization of the RMC-refined structure at
600 K, which is followed by total-energy relaxations using
density functional theory (DFT). This is to ensure that the
structural information enforced into the system in the last
two steps is consistent with ‘thermodynamic’ equilibrium or
a strong minimum on the potential-energy surface of a-SiO2,
as determined by total-energy and forces from DFT calcula-
tions. The annealing was done by conducting AIMD simu-
lations in canonical ensembles at 600 K for a total simula-
tion time of 5 ps using the code SIESTA [43]. SIESTA em-
ploys atom-centered numerical basis functions to solve the
Kohn-Sham equation using the self-consistent field approx-
imation within the framework of density functional theory
(DFT). The norm-conserving pseudopotentials for silicon and
oxygen atoms in the Troullier-Martins form [44] were used
to describe the electron-ion interactions, and the exchange-
correlation energy of the system was computed in the gener-
alized gradient approximation (GGA) [45]. The total-energy
of the thermalized/annealed models was further minimized by
employing the conjugate gradient (CG) method using ab ini-
tio forces and total-energy obtained from SIESTA. Throughout
the calculations, we used double-zeta basis functions. The CG
relaxation continued until the magnitude of the total force on
each atom was less than or equal to 0.01 eV/Å.

To study the origin and structure of the FSDP and the prin-
cipal peak in a-SiO2 by analyzing the radial pair correlations
between constituent atoms, we assume that the disordered sys-
tem is isotropic and homogeneous in nature. Following El-
liott [46], the reduced scattering intensity (Ir) for such a sys-
tem, consisting of N atoms or scatterers, can be written as

Ir =
Q

⟨f⟩2

[
I

N
− ⟨f2⟩

]
=

∫ ∞

0

4πρ0r[g(r)− 1] sinQr dr, (1)

where g(r) is the total atomic pair-correlation function (PCF),
ρ0 is the average number density of the system and I is the
total intensity. The symbol ⟨fn⟩ (for n=1,2) stands for the
concentration-weighted average value of the n-th moment of
the scattering factor f . Writing

g(r) =
∑
ij

cicjfifj
⟨f⟩2

gij(r) =
∑
ij

ω′
ij gij(r) (2)

in terms of the partial PCFs, gij(r), and noting that ci and fi
are the atomic fraction and the scattering factor of atoms of

type i, respectively, Eq. (1) can be expressed as [46]

I

N⟨f2⟩
− 1 =

∑
ij

cicjfifj
⟨f2⟩

[Iij(Q)− 1]

=
∑
ij

ωij [Iij(Q)− 1]. (3)

In Eq. (3), Iij is the partial interference function

Iij(Q) = 1 +
1

Q

∫ ∞

0

4πρ0 r[gij(r)− 1] sinQr dr

and gij(r) is the partial PCF between atoms of type i and type
j. It may be noted that the coefficients ωij and ω′

ij are close
to each other but not identical because of the use of different
denominators, ⟨f2⟩ and ⟨f⟩2, respectively, in their definition,
and

∑
ij ω

′
ij = 1. For an elemental system, Eq. (3) reduces to

the well-known expression for the static structure factor

S(Q) =
I

Nf2
= 1 +

4πρ0
Q

∫ ∞

0

r[g(r)− 1] sinQr dr.

For our purpose, we rewrite Eq. (3) as

S(Q)− 1 = F (Q) =
∑
ij

ωij(Iij(Q)− 1) =
∑
ij

Fij

where

Fij(Q) =
4πρ0ωij

Q

∫ ∞

0

r [gij(r)− 1] sinQr dr. (4)

The upper limit of the integral in Eq. (4) is generally trun-
cated and replaced by a finite cutoff value of Rc. The latter
is usually taken to be the half of the cubic simulation cell
length or a value of r for which gij(r ≥ Rc) = 0. The Rc

value for the present models is about 10.7 Å. For neutron scat-
tering, the expressions in this section are valid provided that
one replaces the scattering factors, fi, by the corresponding
neutron-scattering lengths, bi, for s-wave scattering [47, 48].
The values of bSi and bO are given by 4.149 and 5.803 fm, re-
spectively.

III. RESULTS AND DISCUSSION

A. Validation of structural models

Before addressing the results, we briefly examine the static
structure factor of the model and compare the results with
those from experiments in order to validate the model used
in our calculations. For binary a-SiO2, it suffices to examine
the distributions of Si–O–Si and O–Si–O bond angles, and the
full structure factor for the purpose of validating a model.

Figure 2 shows the neutron-weighted static structure fac-
tor S(Q) obtained from two 648-atom models of a-SiO2.
Here, S(Q) has been computed following the Faber-Ziman
approach [49] using Eq. (4). The corresponding experimen-
tal data for a-SiO2 from neutron diffraction measurements by
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FIG. 2. The neutron-weighted static structure factor of a-SiO2 ob-
tained from averaging over two 648-atom models (blue line) and ex-
periments (red circles) [11]. The inset shows a magnified view of the
FSDP and the principal peak, at 1.5 and 2.8 Å−1, respectively.

Susman et al. [11] are also included in the figure. It is evi-
dent from the plots that the computed and experimental values
agree well in the scattering-vector region from 0.6 to 15 Å−1.
A small deviation below 1 Å−1 can be attributed to finite-size
effects on G(r) obtained from small models. The presence of
numerical noise in G(r) at large distances can make S(Q) par-
ticularly sensitive in the small-angle region of Q < 1 Å−1 [50]
for small finite-size models.

The FSDP and the principal peak are found to be at 1.5
and 2.8 Å−1, respectively, which are shown in the figure
more closely as an inset along with their experimental coun-
terparts. The position of the FSDP at 1.5 Å−1 is also con-
sistent with those from the X-ray diffraction measurements
by Tan and Arndt [26] and MD simulations reported in the
literature by others [20, 23]. The average value of the Si–O
bond length is found to be 1.64±0.013 Å, which is a bit larger
than the experimental value of 1.61±0.09 Å [14, 51] and
1.62±0.08Å from first-principles MD simulations reported in
the literature [20, 23, 37]. Likewise, the average nearest-
neighbor distances between Si–Si and O–O pairs are found
to be 3.14±0.14 Å and 2.63±0.06 Å. These values compare
well with the average Si–Si distance of 3.1 Å and the av-
erage O–O distance of 2.64 Å obtained from classical MD
simulations [20, 52], and 3.12 Å and 2.65 Å, respectively,
from ab initio MD simulations [37]. The computed values are
close to the experimental values of Si–Si and O–O distance
of 3.08±0.1 and 2.63±0.089 Å, respectively, which were ob-
tained by Johnson et al. [51] by assuming that the radial peaks
are symmetric and can be fitted by a Gaussian function [51].

Turning to bond angles, the O–Si–O and Si–O–Si angles
play a critical role in building the local structure and topology
of a-SiO2, and the connectivity between SiO4/2 tetrahedra in
the network. These two angles provide the relative shape and
orientation of two neighboring SiO4/2 tetrahedra that form the
structural basis of amorphous silica networks. The distribu-
tions of these angles are presented in Fig. 3. The average value
of O–Si–O angles in this work is found to be 109.5±3.5◦.
By contrast, the Si–O–Si angles exhibit a somewhat broader
distribution, with an average value of 141.5±12.5◦. These
values match closely with those from earlier MD simulation
studies [20, 23, 37] and experiments [51, 53]. In particular,
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FIG. 3. The bond-angle distributions associated with: (a) Si–O–
Si angles and (b) O–Si–O angles. The average values of Si–O–Si
and O–Si–O are 141.5◦ and 109.5◦, respectively. The corresponding
standard deviations are found to be 12.5◦ and 3.5◦.

the Car-Parrinello simulations of a-SiO2 using 72-atom mod-
els by Sarnthein et al. [23] obtained the average values for
the O–Si–O and Si–O–Si angles to be 109±6◦ and 136±15◦,
respectively. The corresponding experimental values from X-
ray and neutron diffraction are reported to be about 109◦ and
140–150◦ [51, 53].

B. Chemical order in a-SiO2 and the FSDP

In studying the FSDP in network glasses, a question of con-
siderable importance is to what extent the presence of chemi-
cal ordering between constituent atoms/species can affect the
position and the intensity of the diffraction peak. It is also
necessary to ascertain the characteristic length scale of radial
correlations that plays the most decisive role in forming the
shape of the intensity curve near the FSDP. While it is an es-
tablished fact that the FSDP originates from medium-range
ordering on the length scale of 5–10 Å, a quantitative char-
acterization of the contributions arising from different radial
shells and atomic species is still missing in the literature. For a
binary a-SiO2 system, this entails examining the role of radial
atomic correlations that originate from chemically ordered Si–
Si, Si–O and O–O pairs in forming the FSDP. To address this
question, we write

F (Q) =
∑
ij

ωij(Iij − 1) =
∑
ij

Fij(Q)

and

Fij(Q) =
1

Q

∫ Rc

0

Gij(r) sinQr dr, (5)

where Gij(r) = 4πρ0 ωij r[gij(r) − 1] is the neutron-
weighted reduced atomic pair-correlation function. Equation
(5) provides a convenient starting point to determine the con-
tribution to the total FSDP arising from Fij(Q), or its Fourier
counterpart Gij(r) in real space.

Figure 4 shows the three neutron-weighted partial PCFs,
Gij(r), for a-SiO2. It is apparent from the plots that neutron-
weighted Si–Si correlations are considerably weaker than
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their Si–O and O–O counterparts, with the first two peaks of
GSiSi(r) being about ten times smaller than the correspond-
ing values of GSiO(r) and GOO(r). In view of this, it is
not inapposite to surmise that the Si–Si correlations may not
play a significant role in determining the overall structure of
the FSDP. This surmise can be verified by computing Fij(Q)
from Eq. (5). Figure 5 shows the contribution to F (Q) from
its three partial components Fij(Q). The major contribution
to the FSDP at 1.5 Å−1 can be seen to originate from the Si–
O correlations, which are followed by the O–O correlations
in real space. This statement applies to the principal peak
near 2.8 Å−1 as well. The presence of weak Si–Si correla-
tions, relative to the magnitude of its Si–O and O–O counter-
parts, produces an almost flat structure factor in the Fourier
space, with two small bulges near 1.5 and 2.7 Å−1. An anal-
ysis of Eq. (5), with the aid of Fig. 4 in the next section, will
reveal that the first bulge in FSiSi(Q) near the FSDP arises
from the second radial shell of Si–Si correlations (depicted in
pink-purple color in Fig. 4a), whereas the principal peak in
FSiSi(Q) gets its contribution from both the first and second
radial shells of silicon, extending as far as 6 Å.

By contrast, the position of the principal peak in F (Q)
(in Fig. 5) is determined by atomic correlations originating
from GOO(r), GSiO(r) and GSiSi(r) as follows. The contribu-
tion from GOO(r) produces a strong peak or maximum near
2.8 Å−1 in FOO(Q), whereas GSiO(r) yields an equally strong
minimum near 2.76 Å−1 in FSiO(Q). These two contributions
effectively cancel out each other. The resulting intensity ob-
tained from the sum of FOO(Q), FSiO(Q) and a small positive
contribution from FSiSi(Q) near 2.74 Å−1 produces the prin-
cipal peak near 2.8 Å−1 in F (Q). It thus appears that the
chemical ordering of Si–O and O–O pairs plays an important
role by competing with each other in determining the final po-
sition and intensity of the principal peak in amorphous silica.
On the other hand, the Si–Si pairs provide a small but nontriv-
ial contribution to those originating from Si–O and O–O pairs.
Below, we discuss this in detail by developing an ansatz to ob-
tain the approximate positions of the FSDP and the principal
peak from Eq. (5).

C. Origin of the FSDP and the principal peak in a-SiO2

The structural origin of the FSDP and the principal peak
in a-SiO2 at 1.5 and 2.8 Å−1, respectively, can be intuitively
understood from the approximate behavior of Eq. (5) and a
knowledge of the partial PCFs. To this end, we rewrite Eq. (5)
as

Fij(Q) =

∫ Rc

0

rGij(r)

[
sinQr

Qr

]
dr (6)

and postulate – following the saddle-point approximation of
the integral in Eq. (6) – that the maxima (minima) of Fij(Q)
should roughly correspond to those values of Q for which
sinQr/Qr is maximum (minimum), where the values of r
are given by the dominant peaks in rGij(r). Noting that the
position of peaks in G(r) and rG(r) are very close to each
other [54], and that the maxima (minima) of (sinx)/x can be

expressed in terms of the maxima (minima) of sinx, one can
write in the first-order approximation

Qk ≈ (4n± 1)π

2rk
− 2

(4n± 1)πrk
, n = 1, 2, 3, . . . (7)

where rk corresponds to the k-th peak in Gij(r) and the plus
(minus) sign applies to the maxima (minima). This can be
shown by solving the optimality condition, cosx = (sinx)/x,
(x = Qr) for the maxima/minima of (sinx)/x in terms of
the solutions of sinx = ±1 or xn = (4n ± 1)π/2 for
n = 0, 1, 2, . . . Writing x = xn + x′, where x′ is a small cor-
rection, one arrives at the first-order correction x′ = −1/xn

via power series expansion of sinx′ and cosx′ for small x′

in the expression for the optimality condition. For practical
purposes, the second term in Eq. (7), which is of the order of
0.1 Å−1 [55] for a-SiO2, can be ignored and the approximate
values of Qk then read

Qk ≈ (4n± 1)π

2rk
, n = 1, 2, 3, . . . (8)

The validity of the result above rests on the assumption that
the first few peaks in G(r) are well defined and that they
progressively decay so that the contribution from distant ra-
dial shells/peaks have a decreasing influence on the resultant
FSDP and the principal peak in F (Q). For elemental systems,
such as a-Si, it has been shown recently that Eq. (8) provides
a good estimate of the positions of the FSDP and the principal
peak [9]. However, complications can arise for multinary sys-
tems where one must take into account not only the contribu-
tions from the distant radial shells but also those that originate
from different partial components of G(r). Since the contri-
butions from the first few peaks of different Gij(r) could be
similar in magnitude but out of phase to varying degrees, the
resultant FSDP and the principal peak may or may not ap-
pear in the vicinity of Qk as determined by Eq. (8), due to the
cancellation of out-of-phase contributions. This is apparent in
Fig. 5, where the position of the principal peak is determined
by the sum of the intensity from the neutron-weighted Si–Si,
Si–O and O–O pair correlations in the Fourier space. The
intensity from Si–O and O–O correlations cancel each other
out for the most part near the principal peak, leaving behind a
resulting nontrivial part that combines with the small contri-
bution from Si–Si correlations to determine the final position
and the shape of the principal peak at 2.8 Å−1. This obser-
vation suggests that a knowledge of the intensity of Fij(Q)
near the FSDP and the principal peak can be very useful in
determining the exact final position of the peak in multinary
systems. We shall delve into this point in the next section. For
now, we focus on Eq. (8) to obtain the approximate positions
of the FSDP and the principal peak of a-SiO2 with the aid of
the neutron-weighted partial PCFs shown in Fig. 4.

Starting with the Si–Si PCF, one notes from Fig. 4 that the
positions of the first three peaks (at rk) are at 3.14, 5.1 and
7.7 Å, respectively. Following Eq. (8), the first radial peak at
3.14 Å is expected to produce a peak at 2.5 Å−1 (for n = 1) in
the Si–Si partial structure factor. Likewise, the second radial
peak at 5.1 Å should produce peaks at 1.54 and 2.77 Å−1 for
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components, FSiSi(Q), FOO(Q) and FSiO(Q), originating from Si–
Si (green), O–O (black) and Si–O (red) radial pair correlations, re-
spectively. The FSDP and the principal peak of F (Q) are located at
1.5 and 2.8 Å−1, respectively.

n = 1,2, respectively. A similar calculation for the third ra-
dial peak at 7.7 Å suggests that a peak should appear at 1.83
Å−1 (for n=2) and 2.65 Å−1 (for n=3). An examination of
the Si–Si partial structure factor in Fig. 5 does confirm the
presence of peaks near 1.5 and 2.7 Å−1. In view of this obser-
vation, it is apposite to conclude that the Si–Si principal peak
near 2.7 Å−1 in Fig. 5 gets its contribution mostly from the
second and third Si–Si radial shells, whereas only the second
shell contributes to the FSDP near 1.5 Å−1. The weak inten-
sity associated with these peaks can be attributed to the rel-
atively small values of neutron-weighted GSiSi(r) (compared
to its Si–O and O–O counterparts), the largest absolute value
of which over the entire radial range is found to be less than
unity in Fig. 4a.

The foregoing analysis applies to the O–O pairs as well.
Figure 4c shows that the first three peaks in GOO(r) appear
at 2.65, 5.2 and 7.2 Å. Following the same reasoning as be-
fore, the first radial peak at 2.65 Å should give rise to a peak
at 2.96 Å−1 (for n = 1) and the second radial peak at 5.2 Å
leads to 1.51 and 2.72 Å−1 in FOO(Q) for n=1,2, respectively.
Similarly, the third peak at 7.2 Å is expected to produce peaks
at 1.96 and 2.83 Å−1 for n = 2,3, respectively. A comparison
of the results with FOO(Q) in Fig. 5 shows that the suggested
peaks appear near 1.5 and 2.8 Å−1, including a weak quasi-

peak near 2 Å−1. Table I lists the approximate positions of
the FSDP and the principal peak of FSiSi(Q) and FOO(Q) ob-
tained from using Eq. (8) and the location of the first three
radial peaks of GSiSi(r) and GOO(r). The values of Q that
contribute to the FSDP and the principal peak are highlighted
in Table I in orange and green colors, respectively.

The case for Si–O correlations is a bit confusing, however.
In contrast to FSiSi(Q) and FOO(Q), there is no principal peak
or maximum in FSiO(Q) but a minimum near 2.8 Å−1 (see
Fig. 5). The preceding argument works well to determine
this minimum using the position of the minima obtained from
Eq. (8). In particular, the first three peaks of GSiO(r), ap-
pearing at 1.65, 4.27 and 6.4 Å, are expected to produce three
minima at 2.86 Å−1 (for n = 1), 2.58 Å−1 (for n = 2) and
2.7 Å−1 (for n = 3), respectively. The combined effect of
these minima is expected to reflect in FSiO(Q) by producing a
strong minimum near 2.8 Å−1. Figure 5 does corroborate this
expectation. We shall further confirm this observation using
numerical results in Sec. IIID. However, the argument appears
to fail in locating the FSDP of FSiO(Q) at 1.5 Å−1. Equation
(8) suggests that the second radial shell should produce a peak
at 1.84 Å−1 (for n = 1) and for the third shell at 1.23 Å−1 (for
n=1). But none of these positions is close enough to the ob-
served peak at 1.5 Å−1 in Fig. 5. Should we consider the
fourth radial shell (with a peak at 8.6 Å in Fig. 4b), we get
peaks in FSiO(Q) at 0.91 Å−1 (for n=1) and 1.64 Å−1 (for
n=2). But without a knowledge of the intensity of these peaks,
it is not clear whether the peaks would coalesce into a single
peak at 1.5 Å−1 or not. The approximate positions of the max-
ima and minima of FSiO(Q) obtained from using Eq. (8) for
the first four radial peaks are listed in Table II.

The discrepancy observed above concerning the position of
the estimated FSDP in FSiO(Q) cannot be satisfactorily ex-
plained using the qualitative argument [based on Eq. (8)] pre-
sented so far in this section. At this point, it suffices to men-
tion that the anomaly can be resolved by noting that the peak
at 1.23 Å−1 originating from the third shell interferes con-
structively with those at 1.84 Å−1 from the second shell and
at 1.64 Å−1 from the fourth shell (see Table II) to produce
the FSDP at 1.5 Å−1. In the next two sections, we address
this issue by numerical and semi-analytical calculations, and
examine the observed behavior of Fij(Q) with reference to
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TABLE I. Approximate positions (Q) of the FSDP (orange cells) and
the principal peak (green cells) obtained from the first three radial
peaks (ri) of GSiSi(r) and GOO(r) using Eq. (8). For a given radial
peak (ri) and n, and K = (4n + 1)π/2, the values of Q = K/ri
are listed below in Å−1.

n K Si–Si (ri) O–O (ri)
3.14 Å 5.1 Å 7.7 Å 2.65 Å 5.2 Å 7.2 Å

1 5π/2 2.5 1.54 1.02 2.96 1.51 1.1

2 9π/2 4.5 2.77 1.83 5.33 2.72 1.96

3 13π/2 6.5 4.0 2.65 7.7 3.93 2.83

TABLE II. The approximate location of the maxima (Q+) and min-
ima (Q−) in FSiO(Q) obtained from the first four shells using Eq. (8).
K(+,−) are given by (4n± 1)π/2 and Q± = K(+,−)/ri. The max-
ima and minima contributing to the FSDP and the principal minima
in FSiO(Q) are indicated in orange and green cells, respectively.

Si – O (ri)
n K(+,−) 1.65 Å 4.27 Å 6.4 Å 8.6 Å 1.65 Å 4.27 Å 6.4 Å 8.6 Å

Q+ (maxima) Q− (minima)
1 (5,3)π

2
4.76 1.84 1.23 0.91 2.86 1.1 0.74 0.54

2 (9,7)π
2

8.57 3.31 2.21 1.64 6.66 2.58 1.72 1.28

3 (13,11)π
2

12.37 4.78 3.19 2.37 10.47 4 2.7 2

4 (17,15)π
2

16.18 6.25 4.17 3.1 14.28 5.52 3.68 2.74

neutron-weighted atomic pair correlations arising from indi-
vidual radial shells of the partial PCFs of a-SiO2.

D. Relation between radial correlations, the FSDP and
principal peak

In the preceding section, we have seen that the position of
the FSDP and the principal peak can be obtained – except for
the FSDP in FSiO(Q) – from a heuristic argument based on the
qualitative behavior of the integral in Eq. (6) and the position
of the radial peaks in Gij(r). The argument tacitly assumed
that the function Gij(r) can be locally replaced by a suffi-
ciently narrow pair-distribution function or a δ function at the
maximum of each radial shell in the zeroth-order approxima-
tion. This consideration leads to a reasonable estimate of the
position of the maxima/minima in the corresponding partial
structure factor, but not the intensity of the peaks/dips. We
now examine the accuracy of the position of maxima/minima
obtained earlier by numerical calculations and study the radial
contribution originating from the individual shells of Gij(r).

To obtain the shell-by-shell contribution from the real-
space PCFs, it is convenient to write

Fij(Q) =

s∑
α=1

Fα
ij(Q;Rij

α , R
ij
α+1)

=
1

Q

s∑
α=1

∫ Rij
α+1

Rij
α

Gij(r) sinQr dr. (9)

Here, the Greek index α indicates the shell number and the

TABLE III. Radial extents of the first four shells in the partial PCF of
Si–Si, Si–O and O–O, as shown in Fig. 4. The pair of numbers within
brackets below indicates the range of the α-th radial shell in Å.

PCF Shell number
↓ α = 1 α = 2 α = 3 α = 4

Si–Si (0, 3.8) (3.8, 6.2) (6.2, 8.1) (8.1, 10.7)
Si–O (0, 2.4) (2.4, 4.6) (4.6, 7.4) (7.4, 10.7)
O–O (0, 3.3) (3.3, 5.7) (5.7, 8.3) (8.3, 10.7)

pair of lengths (Rij
α , R

ij
α+1) gives the radial range of the α-

th shell for the ij-th partial PCF, Gij(r). The set {Rij
α } is

so chosen that it spans the entire radial range of the corre-
sponding PCF from 0 to Rc. Table III lists the pair of values
(Rij

α , R
ij
α+1) for the α-th shell of Gij(r). We now use these

values of {Rij
α } to calculate the radial contribution of the par-

tial PCFs to the intensity of the corresponding Fij(Q) from
individual radial shells. Our discussion is mostly confined to
Si–O and O–O pair correlations as these two pairs have been
found to play a key role in forming the FSDP and the principal
peak (cf. Fig. 5). This is followed by a brief mention of Si–Si
correlations, which provide small corrections to the intensity
of the FSDP/principal peak of the full F (Q).

Figure 6 shows the partial structure factor FSiO(Q) obtained
by numerically integrating Eq. (9) for the first three individ-
ual shells (for α=1 to 3) using the Rα

ij values listed in Ta-
ble III. The results show that shell 2 produces maxima at
1.8 and 3.52 Å−1, and shell 3 produces maxima at 1.2, 2.3,
and 3.32 Å−1. These values are quite close to the estimated
values of the maxima listed in Table II from the respective
shells. Similarly, the minima from shell 2 and 3 in Fig. 6
correspond to 2.68 Å−1, and 1.76, 2.8 and 3.8 Å−1, respec-
tively. Once again, these values are close to the estimated
values of 2.58 Å−1, and 1.72, 2.7 and 3.68 Å−1, respectively,
as listed in Table II. By contrast, the contribution from shell
1 provides a monotonic decrease of the intensity with an in-
creasing value of Q near the FSDP. The first shell does not
produce any maximum in the region between 1 to 4 Å−1 but a
minimum at 2.74 Å−1, which is estimated to be 2.86 Å−1 in
Table II. The latter is very close to the exact numerical value
of 2.74 Å−1, when one takes into account the perturbative cor-
rection of about 0.128 Å−1 for this peak [55].

The observations above suggest that the approximate posi-
tions of the maxima (peaks) and minima (dips) in Fig. 6 can
be obtained quite accurately from the heuristic argument pre-
sented in Sec. IIIC using Eq. (8). These maxima and minima
collectively lead to the formation of the FSDP and the princi-
pal minimum in FSiO(Q). The net effect of the contributions
from different radial shells to the FSDP and the principal min-
imum is shown in Fig. 7, where FSiO(Q) obtained from the
first two, first three and first four radial shells are presented.
The buildup of the FSDP near 1.5 Å−1 is evident from the
plots. The resultant FSiO(Q) obtained from all radial shells
up to 10.7 Å evolves to produce the FSDP near 1.5 Å−1 and
a minimum near 2.8 Å−1. As stated earlier, there is no prin-
cipal peak or maximum in FSiO(Q) in Fig. 7 but a minimum
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FIG. 6. The partial structure factors, Fα
ij(Q), obtained from the

first three radial shells (for α = 1, 2 and 3) of the Si–O correlation
function.
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FIG. 7. The formation of the FSDP near 1.5 Å−1 and a minimum
near 2.8 Å−1 in FSiO(Q) originating from the first two, first three
and first four radial shells. The minimum plays an important role in
the formation of the principal peak in Fig. 5.
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FIG. 8. The shell-by-shell contributions from the first three radial
shells of GOO(r) to FOO(Q) for α = 1, 2, 3. The maxima associated
with the principal peak appear near 2.8 Å−1.

near 2.8 Å−1. This minimum contributes negatively to form
the principal peak in total F (Q) along with the positive con-
tributions from FOO(Q) and FSiSi(Q) near 2.8 Å−1.

A similar analysis of O–O correlations reveals that the ap-
proximate locations of the FSDP and the principal peak in
FOO(Q) are correctly obtained in Sec. IIIC. Figure 8 presents
the contribution from the first three individual radial shells of
GOO(r). The results show the presence of two maxima at 1.42
and 2.82 Å−1 originating from the second shell. The cor-
responding estimated values of the maxima are found to be
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FIG. 9. The buildup of the FSDP and the principal peak near 1.5
and 2.8 Å−1, respectively, from small corrections originating from
the third and fourth radial shells of O–O correlations.

1.51 and 2.72 Å−1, respectively. Likewise, the first shell and
the third shell each produces a peak at 2.86 and 2.82 Å−1,
respectively, which are very close to the estimated values of
2.96 and 2.83 Å−1 listed in Table I. The overall effect of the
contribution from distant radial shells can be seen in Fig. 9,
where the intensities obtained from the first two, first three
and first four radial shells of O–O pair correlations are pre-
sented. It is apparent from Fig. 9 that the first two shells can
produce the intensity and shape of the FSDP and the princi-
pal peak [in FOO(Q)] almost correctly in the vicinity of 1.5
and 2.8 Å−1, respectively. The contributions from the third
and fourth shells then refine the shape of the intensity curve
and add small corrections to the intensity and position of the
FSDP and the principal peak.

Similar observations can be made for FSiSi(Q) as well. The
results for this case are plotted in Figs. 10–11. An inspection
of the plots in Fig. 10 suggests that, although the individual
contributions from the first three shells of GSiSi(r) are not neg-
ligible in magnitude, the resultant contribution is quite small
near the FSDP. This is evident from Fig. 11, where FSiSi(Q) is
found to be considerably smaller (by a factor of about 10) than
its Si–O and O–O counterparts in the vicinity of the FSDP.
The neutron-weighted Si–Si correlations thus provide only a
small correction to the resultant position and the intensity of
the FSDP in a-SiO2. This statement also applies to the princi-
pal peak to a lesser extent, where the peak height near 2.7 Å−1

(in Fig. 11) can be seen to increase by a small amount as the
radial correlations from the third and fourth shells are taken
into account.

We conclude this section by making the following re-
marks. Firstly, the FSDP in FOO(Q) is primarily determined
by neutron-weighted atomic correlations originating from the
first two radial shells of GOO(r) involving a length scale of
about 6 Å. The information from the third and fourth shells
then adds perturbative corrections to the intensity and shape
of the FSDP. By contrast, the principal peak in FOO(Q) in-
volves contributions from the first three shells with atomic
correlations extending up to 9 Å. The inclusion of radial in-
formation from the fourth shell makes a small correction to
the height/intensity of the principal peak. Secondly, the Si–
O correlations from all the four shells (extending up to 10
Å) contribute to the intensity of the FSDP in FSiO(Q). With



9

1 1.5 2 2.5 3 3.5 4

Q (Å
-1

)

-0.2

-0.1

0

0.1

0.2

F ijα

(Q
)

Shell 1
Shell 2
Shell 3

Si--Si
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FIG. 11. The evolution of the intensity of FSiSi(Q) in the vicinity of
the FSDP and the principal peak with an increasing number of radial
shells. The plots show the contributions from the first two, first three,
and first four radial shells of Si–Si correlations.

the exception of the first shell, each of the remaining three
shells produces a peak in the scattering region of 1.2–1.85
Å−1. These peaks combine with the minima from the sec-
ond, third, and fourth (not shown in Fig. 6) shells to form
the FSDP near 1.5 Å−1. The involvement of the first shell
is to provide a background correction to the FSDP. Thirdly,
the principal minimum in FSiO(Q) in the vicinity of 2.8 Å−1

largely depends on the radial correlations from the first three
shells, which are supplemented by a small correction from the
fourth shell. This minimum effectively cancels out the scatter-
ing intensity that originates from the neutron-weighted O–O
pair correlations. The Si–Si correlations then provide a small
but crucial contribution (of about 2 part in 10) in the vicinity
of the resultant principal peak at 2.8 Å−1, but its contribu-
tion toward the intensity of the FSDP is practically negligible
(cf. Figs. 5 and 11).

E. Intensity of the FSDP and the principal peak: A Gaussian
approximation

Having numerically verified the approximate positions of
the FSDP and the principal peak, and noting the importance of
contributions from different partial components of the struc-

ture factor to the FSDP, we now obtain an analytical expres-
sion for the intensity of Fα

ij(Q) that arises from a given shell.
Earlier, in Sec. IIIC, we have shown that the approximate po-
sition of the peaks in Fα

ij(Q), originating from a given ra-
dial shell, can be obtained by placing a sufficiently narrow
distribution or a δ function at the center of the radial shell.
However, the calculation of the intensity of the FSDP (or
any diffraction peaks in general) requires a more sophisti-
cated approach. To this end, the δ-function approximation can
be significantly improved by replacing the δ function with a
more realistic distribution, which can be represented by a lin-
ear combination of suitable radial basis functions. Assuming
that the individual radial shells of gij(r) are Gaussian repre-
sentable [56], one can approximate the intensity due to the
α-th shell from Eq. (9) as

Fα
ij(Q) =

Bij

Q

∫
Rα

[r gαij(r)− r] sinQr dr

≈ Bij

Q

[∫
Rα

∑
n

rfα
n sinQr dr −

∫
Rα

r sinQr dr

]

≈ Bij

Q

[∑
n

Iαn − I0

]
, (10)

where Bij = 4πρ0ωij , the symbol
∫
Rα

indicates that the inte-
gration is to be carried out from Rα to Rα+1, and gαij(r) can
be expressed as a linear combination of Gaussian functions
fα
n (r)

gαij(r) =

m∑
n=1

fα
n (r) =

m∑
n=1

aαn e
−bαn (r − cαn)

2
.

In general, the radial distribution of atoms in the first shell of
gij(r), which is not symmetric [51], can be well approximated
by using a few Gaussian functions but the distant shells re-
quire several Gaussian functions in order to produce the distri-
bution accurately within the region of Rα and Rα+1 with cor-
rect boundary conditions. An analytical expression for Fα

ij(Q)
can be obtained by evaluating the integrals in Eq. (10). The
first integral is of the type

In = an

∫ x2

x1

x e−bn(x−cn)
2

sinQxdx, (11)

which cannot be evaluated analytically in a closed form with-
out the use of error functions. However, it is possible to
choose a suitable set of narrow Gaussian functions, fα

n , which
are characterized by large bn, such that the functions decay to
zero sufficiently fast before they reach the boundary points x1

and x2. This can be achieved by ensuring that all bn satisfy
the condition [57]

min[x2 − cn, cn − x1] ≫
1√
bn

. (12)

Under this condition, it is possible to obtain an analytical ex-
pression for In in Eq. (11). The calculation of In is presented
in the Appendix. The second integral I0, involving r sinQr,
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FIG. 12. The partial structure factor, Fα
SiO(Q), for the second shell

(α = 2) obtained from exact numerical calculations (red circles) and
the Gaussian approximation (blue line) using Eq. (10).

can be analytically calculated. The two integrals can be writ-
ten as

In = an

√
π

4bn
e−

Q2

4bn

[
2cn sinQcn +

Q cosQcn
bn

]
(13)

and

I0 =

[
sinQr −Qr cosQr

Q2

]Rα+1

Rα

. (14)

An analytical expression for Fα
ij(Q) is thus obtained by sub-

stituting the results from Eqs. (13) and (14) to Eq. (10) for
the α-th radial shell that ranges from Rα to Rα+1. The Gaus-
sian parameters (an, bn, cn), where bn satisfies the condition
in Eq. (12), for a given α can be obtained by fitting the func-
tions with the corresponding gαij(r). It may be noted that
the Gaussian representation of distant radial shells beyond the
first shell is highly nontrivial due to the presence of sharp cut-
offs of gαij(r) with finite values at r = Rα and Rα+1. The ex-
istence of finite values of gαij(r) at the boundaries require that
the Gaussian coefficients bn – especially those associated with
the Gaussians functions centered near the boundary – must be
sufficiently large for Eq. (13) to be valid. In this study, we
have employed a constrained Monte Carlo approach to obtain
the desired values of bn that simultaneously reproduce gαij(r)
within the radial region of interest and satisfy the inequality
in Eq. (12) for all n.

The efficacy of the Gaussian approximation can be exam-
ined by comparing the results obtained from Eq. (10) with
those from direct numerical calculations using the radial range
of the shells given in Table III. Figures 12 and 13 show the
results for FSiO(Q) for α = 2 and 3, respectively. It is ev-
ident from the figures that the Gaussian approximation can
accurately reproduce the exact numerical results. The con-
tributions to the FSDP and the principal peak are correctly
obtained from Eq. (10) for the second and third shells. Like-
wise, the results for the Gaussian approximation of FOO(Q)
in Figs. 14 and 15, for α = 2 and 3, respectively, closely
match with those from direct numerical calculations. A simi-
lar observation applies to Fig. 16, where the intensity plots of
FSiSi(Q) for α = 2, 3 are presented. The diffraction intensity
obtained from Eq. (10) using the Gaussian approximation of
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FIG. 13. Fα
SiO(Q), for α = 3, obtained from exact numerical calcu-

lations (red circles) and the Gaussian approximation (blue line).
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FIG. 14. A comparison of Fα
OO(Q), obtained from exact numerical

calculations (red circles), with that from the Gaussian approximation
(blue line) for α = 2.
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FIG. 15. A comparison of the partial structure factor of O–O
pairs obtained from exact numerical calculations (red circles) and
that from the Gaussian approximation (blue line) for the third shell
(α = 3).

the (partial) pair-correlation functions and the positions of the
FSDP and the principal peak estimated from Eq. (8) provide a
complete picture of the origin and structure of the FSDP and
the principal peak in terms of the real-space two-body dis-
tributions of silicon and oxygen atoms in the radial shells of
a-SiO2.

IV. CONCLUSIONS

In this paper, we have studied the origin and structure of
the FSDP in a-SiO2 with particular emphasis on the role of
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FIG. 16. The partial structure factor FSiSi(Q) for the second (red)
and third (blue) shells obtained from the semi-analytical Gaussian
approximation (line) and exact numerical calculations (filled circle).

chemical and radial ordering between Si–Si, Si–O and O-O
pairs. The study leads to the following observations.

An examination of the partial structure factors of a-SiO2

shows that neutron-weighted Si–O and O–O pair correlations
on the length scale of 5-8 Å contribute mostly to the forma-
tion of the FSDP, whereas Si–Si correlations (from the third
and fourth shells) provide only small corrections to the peak
position and the intensity in the vicinity of the peak. The lat-
ter is consistent with the relatively weak neutron-weighted Si–
Si pair correlations, which are found to be approximately ten
times smaller than the corresponding values of Si–O and O–O
correlations in the respective PCFs.

An approximate relationship between the position of the
FSDP (in the partial structure factors) and the radial peak po-
sitions (in the corresponding partial PCFs) is obtained from
the saddle-point approximation of the structure-factor integral
involving Gij(r). The results from this approximation are ver-
ified using numerical and semi-analytical calculations. A nat-
ural corollary of the results is that the FSDP is found to be
sensitive to the pair correlations arising from a few specific
radial shells. In particular, the first two shells of O–O pairs,
extending as far as 6 Å, and the first three shells of Si–O pairs,
with atomic correlations of up to 7 Å, are observed to play a
significant role in forming the position and the intensity of
the FSDP in a-SiO2. By contrast, the shape of the intensity
curve near the FSDP is perturbatively modified by radial cor-
relations originating from the remaining shells of Si–O and
O–O pairs. These results are consistent with those obtained
from using the continuous wavelet transform [24] of the PCFs
showing that Si–O–Si–O (i.e, the second shell of Si–O pairs)
and O–Si–O–Si–O (i.e., the second shell of O–O pairs) corre-
lations contribute significantly in the formation of the FSDP
in a-SiO2. Likewise, the principal peak is found to depend
mostly on the contribution from the Si–O and O–O pairs, and
a small contribution from Si–Si pairs. The positive contribu-
tion from the O–O pairs and the negative contribution from the
Si–O pairs near the principal peak competes with each other
and largely cancels out. The final position and intensity of the
principal peak is thus determined by the resultant contribution
of Si–O and O–O pairs, and a small but nontrivial contribution
of Si–Si pairs.

The study yields an accurate semi-analytical expression for
the diffraction intensity of a binary glass originating from a

given radial shell of the partial PCFs using a Gaussian ap-
proximation of the latter. The validity of the approximation is
confirmed by directly comparing the results with those from
exact numerical calculations. The approximation is indepen-
dent of the nature of amorphous solids and it can be applied to
both elemental and multi-component systems. The expression
is found to be particularly useful for a complete characteriza-
tion of the contributions emanating from each radial shell (of
the PCFs) to the FSDP, and to obtain quantitative values of rel-
evant radial length scales that form the basis of medium-range
ordering in a-SiO2. The results can be readily generalized and
employed to other network glasses.

Appendix: Approximation of
∫ b

a
rg(r) sinQr dr

In this section, we obtain an approximate analytical expres-
sion for the integral above when the function g(r) is Gaussian
representable and it satisfies a certain condition. Expressing
g(r) as a linear combination of Gaussian functions, the inte-
gral can be written as

I =

n∑
i=1

∫ b

a

rai e
−bi(r−ci)

2

sinQr dr =

n∑
i=1

aiIi,

where the coefficients (ai, bi, ci) parameterize the Gaussian
basis sets. Substituting y = r − ci and expanding sin[Q(y +
ci)], one obtains

Ii = I
(1)
i + I

(2)
i + I

(3)
i + I

(4)
i ,

where

I
(1)
i = sinQci

∫ r2

r1

y e−biy
2

cosQy dy,

I
(2)
i = cosQci

∫ r2

r1

y e−biy
2

sinQy dy,

I
(3)
i = ci sinQci

∫ r2

r1

e−biy
2

cosQy dy,

I
(4)
i = ci cosQci

∫ r2

r1

e−biy
2

sinQy dy. (A.1)

The upper and lower limits of the integrals in (A.1) are given
by r1 = a − ci and r2 = b − ci, respectively. In general, the
integrals in Eq. (A.1) cannot be expressed in a closed form
without using error functions. However, if the value of bi can
be chosen in such a way that bir20 ≫ 1, where r0 = min(|a−
ci|, |b−ci|), then the function exp(−biy

2) inside the integrals
decays sufficiently rapidly within the interval [a − ci, b − ci]
and the upper and lower limits of the integrals can be replaced
by +∞ and -∞, respectively. Under this condition, the odd
integrals vanish and one is left with

Ii = I
(2)
i + I

(3)
i ≈ cosQci

∫ ∞

−∞
y e−biy

2

sinQy dy

+ ci sinQci

∫ ∞

−∞
e−biy

2

cosQy dy. (A.2)
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Equation A.2 involves two standard integrals, which are
given by

∫ ∞

−∞
e−biy

2

cosQy dy =

√
π

bi
e
−Q2

4bi

and ∫ ∞

−∞
ye−biy

2

sinQy dy =
Q

2bi

√
π

bi
e
−Q2

4bi .

Collecting all the results, the original integral I can be approx-
imated as

I ≈
n∑
i

ai

√
π

4bi
e
−Q2

4bi

[
2ci sinQci +

Q cosQci
bi

]
. (A.3)

Writing bi = 1/2σ2
i , the condition of validity of the result in

Eq. (A.3) can be stated as
√
2σi ≪ r0 = min(|a−ci|, |b−ci|)

for all bi, ci, and (a, b). The validity of this expression has
been verified by numerical experiments.
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