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The quantum Rabi model (QRM) is a fundamental model for light-matter interactions. A fas-
cinating feature of the QRM is that it manifests a quantum phase transition which is applicable
for critical quantum metrology (CQM). Effective application for CQM needs the exact location of
the transition point, however the conventional expression for the transition coupling is only valid
in the extreme limit of low frequency, while apart from zero frequency an accurate location is still
lacking. In the present work we conversely use the quantum Fisher information (QFI) in the CQM
to identify the transition coupling, which finds out that transition coupling indeed much deviates
from the conventional one once a finite frequency is turned on. Polaron picture is applied to ana-
lytically reproduce the numeric QFI. An accurate expression for the transition coupling is obtained
by the inspiration from the fractional-power-law effect of polaron frequency renormalization. From
the QFI in the polaron picture we find that the transition occurs around a point where the effective
velocity and the susceptibility of the single-photon absorption rate reach maximum. Our result
provides an accurate reference of transition couplings for quantum metrology at non-zero frequen-
cies. The formulation of the QFI in the polaron picture also prepares an analytic method with an
accurate compensation for the parameter regime difficult to access for the numerics. Besides the in-
teger/fractional power law analysis to extract the underlying physics of transition, the QFI/velocity
relation may also add some insight in bridging the QFI and transition observables.

PACS numbers:

I. INTRODUCTION

In the modern research trends of light-mamter inter-
cations induced by both theoretical [1–4] and experi-
mental [5, 6] progresses, few-body quantum phase tran-
sitions [4, 7–21] and topological phase transitions [15–
19, 22] have recently arised as a special focus. Applica-
tions for critical quantum metrology [23–27] have been
proposed, with a great potential to become practical
ultra-high-precision quantum technology in the contem-
porary era of ultra-strong coupling [5, 6, 28–41] and even
deep-strong coupling [41–43].

A most fundamental prototype of light-matter in-
teraction is the quantum Rabi model (QRM) [44–46]
which contains both the rotating-wave terms [47, 48]
and counter-rotating terms. In the ultra-strong cou-
pling regime, it has been experimentally found that
the counter-rotating terms are playing an indispensable
role[33, 49], which brings more attention to the QRM.
Theoretically, the milestone work [1] revealing the inte-
grability of the QRM has inspired a massive dialogue [2]
between mathematics and physics in light-matter in-
teractions [1–26, 39, 44, 48–81, 84–101]. A fascinat-
ing feature of the QRM is that as a few-body system
it possesses [4, 7–18, 20] a quantum phase transition
(QPT)[102] which traditionally lies in condensed matter,
despite that it might be a matter of taste to term the
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transition quantum or not by considering the negligible
quantum fluctuations in the photon vacuum state [11].
Indeed, the QPT in the QRM can be bridged to the
thermodynamical limit via the universality of the critical
exponent [12]. Moreover, extended versions of the QRM
with anisotropy [12, 15–18, 49, 81–83] and Stark non-
linear coupling [17, 19, 56–58] also manifest single-qubit
topological phase transitions [15–18], including both con-
ventional ones [15–18] and unconventional ones [16–18],
analogously to those in condensed matter [103–116]. The
conventional topological phase transitions occur with
gap closing, while the unconventional ones emerge un-
expectedly in gapped situations either in level anti-
crossing [18, 19] or completely without any tendency of
gap closing [16, 17]. At this point it may be worthwhile to
mention that finite-size QPTs can also occur with level
crossing in other fields, e.g. in pairing-depairing mod-
els [117–119] and coupled fermion-boson models [120–
122] where one also encounters transitions of topological
structure in the energy spectrum [117–119] and the real
space [117]. As a matter of fact, the finite system in
lighter-matter interaction forms a mini-world of phase
transitions [16]. The abundant physics in such a mini-
world also brings conceptional renovations, e.g., univer-
sality and diversity as antagonists by nature can counter-
intuitively support each other [16, 17]; it is also found
that the conventionally incompatible symmetry-breaking
Landau class of transitions[123] and symmetry-protected
topological class of transitions [109–114] can coexist in a
same system and even occur simultaneously [17, 19]. Fa-
vorably for practical applications the topological features
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are robust against the non-Hermiticity induced by decay
rates and dissipation [22].

Unlike the topological phase transitions which emerge
at finite frequencies [15–18], the QPT of the QRM occurs
at low frequencies [4, 7–9, 11–17, 20]. The conventional
expression for the QPT of the QRMwas obtained in semi-
classical approximation [7, 13, 14] which is valid only in
the extreme limit of low frequency. However, in reality
one always has a finite frequency in the practical systems.
It has been found that the transition will shift away from
the conventional transition coupling once one goes away
from zero frequency and an improved scale of transition
coupling was proposed [8]. Although the new scale of
transition coupling can qualitatively better capture the
transition coupling, a quantitatively accurate expression
for the transition coupling is still lacking. On the other
hand, the QPT of the QRM has been applied for criti-
cal quantum metrology [23–26] to achieve high precision
bound of experimental measurements represented by the
quantum Fisher information (QFI) [124–126, 128, 129].
Actually such applications depend on the knowledge of
the exact location of the transition coupling beforehand,
which in turn raises the requirement to know the accu-
rate location of transition coupling. In such a situation,
an accurate expression for the frequency dependence of
the transition coupling of the QRM is highly desirable.

In the present work we conversely use the QFI in the
quantum metrology to identify the transition coupling of
the QRM. The result from the QFI shows that the transi-
tion couplings of the QRM indeed much deviate from the
conventional expression of the transition coupling once
a finite frequency is turned on. Besides the numerics
by the exact diagonalization on the QFI, we also for-
mulate the QFI in the variational polaron picture[8] to
analytically reproduce the numeric results of the QFI.
An accurate expression for the transition coupling is ob-
tained by the inspiration from the fractional-power-law
effect of polaron frequency renormalization. From the
QFI in the polaron picture we find that the transition
occurs around a point where the effective polaron veloc-
ity and the susceptibility of the single-photon absorption
rate reach their maxima. Our results provide an accurate
reference of transition couplings for quantum metrology
at non-zero frequencies. The QFI in the polaron picture
also provides an accurate compensation for the parame-
ter regime where the exact diagonalization can not access
due to demanding requirement of large basis cutoff. Our
analysis may also add some insight for the bridge of the
QFI and the transition properties.

The paper is organized as follows. Section II intro-
duces the QRM. Section III shows the deviation of the
conventional transition coupling at non-zero frequencies.
Section IV presents the QFI with numerical identifica-
tion and analytical expressions for accurate transition
coupling. Section V is devoted for formulation of the
QFI in the polaron picture. The general expression of
the QFI is simplified by a finding of a vanishing term.
Maximum effective velocity is shown around the tran-

sition identified by the QFI. Section VII demonstrates
the transition coincidence with the maximum suscepti-
bility of single-photon absorption rate. Finally Section
VII gives a summary of conclusions.

II. MODEL AND SYMMETRY

The QRM [44–46] takes the following form

H = ωa†a+ gσz(a
† + a) +

Ω

2
σx (1)

which describes the coupling between a bosonic mode
with frequency ω and a qubit represented by the Pauli
matrices σx,y,z. Here we have adopted the spin notation
as in Ref.[55], in which σz = ± conveniently represents
the two flux states in the flux-qubit circuit system[132],
while superconducting circuit systems can realize ultra-
strong coupling [5, 6, 28–38, 41] and even deep-strong
coupling [41, 42], respectively with coupling strength g
beyond 0.1ω and 1.0ω. The operator a† (a) creates (an-
nihilates) a boson and a†a is the boson (photon) number.
In the conventional spin notation Ω is the level splitting.
One can retrieve the conventional notation by a spin ro-
tation {σx, σy, σz} → {σz,−σy, σx} around the axis x⃗+z⃗.

By transformation a† = (x̂− ip̂)/
√
2, a = (x̂+ ip̂)/

√
2,

where x and p̂ = −i ∂
∂x are the effective position and

momentum, we can rewrite the Hamiltonian in position
space

H =
∑
σz=±

hσz
|σz⟩ ⟨σz|+

Ω

2

∑
σz=±

|σz⟩ ⟨σz| (2)

where σz = −σz = ± represents the spin state in
z direction. Here hσz

= ω
2 p̂

2 + vσz
(x) is effective

singe-particle Hamiltonian in the spin-dependent poten-
tial vσz

(x) = ω (x+ g̃σz)
2
/2+ εz0 with a constant energy

εz0 = − 1
2 [g̃

2 + 1]ω. Indeed x and p can be represented
by the flux and charge of Josephson junctions in circuit
systems [132, 133]. In such a representation the coupling
plays a role to separate the potential in opposite direc-
tions with a displacement denoted by the rescaled cou-
pling g̃ =

√
2g/ω. The Ω term now acts as spin flipping

in σz space or tunneling in position space [8, 55].

The model possesses the parity symmetry P̂ =

σx(−1)a
†a which commutes with the Hamiltonian. The

parity symmetry leads to an antisymmetric ground-state
wave function under exchange of spin and inversion of
position simultaneously, which will simplify our formula-
tion.

III. CONVENTIONAL TRANSITION
COUPLING AND DEVIATIONS AT NON-ZERO

FREQUENCIES

The QRM manifests a quantum phase transition[4, 7–
18, 20] at a critical point which has a conventional loca-
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tion at

gc0 =

√
ωΩ

2
. (3)

Note here that gc0 is frequency-dependent. However, in
reality this expression of gc0 is exact only in the extreme
limit of low frequency. It has been found that the tran-
sition will shift away from gc0 at finite frequencies and a
new scale of transition coupling was proposed as [8]

gc1 =

√
ω2 +

√
ω4 + g4c0 (4)

which better captures the transition at finite frequencies.
Figures 1(a) and 1(b) compare the frequency depen-

dence of gc0 (orange dotted line) and gc1 (green (light
gray) solid line) in linear scale and logarithmic scale of
the frequency ratio ω/Ω. From Fig. 1(b) one sees that gc0
and gc1 coincide at ω/Ω = 0, while they depart from each
other immediately once the frequency is turned on to any
finite value. This indicates that gc0 may be inaccurate
even at the very low frequencies except right at zero fre-
quency, which turns out to be true as in comparison with
the result of the QFI (dots, later addressed in next sec-
tion). In practice, the bosonic mode in the light-matter
interaction has a non-zero frequency, the inaccuracy of
gc0 at non-zero frequencies would hinder the application,
especially when high precision is the goal of quantum
metrology which in turn requires the knowledge of ac-
curate location of the transition coupling. On the other
hand, although gc1 yields a qualitative improvement in
scale estimation of the transition coupling, a quantita-
tively more accurate transition coupling is still lacking.
We shall obtain an accurate transition coupling gc2 by a
combination of the QFI and the polaron picture in the
following section.

IV. QUANTUM FISHER INFORMATION (QFI)
AND ACCURATE FREQUENCY DEPENDENCE

OF TRANSITION COUPLING

A. QFI for quantum phase transition

In measurements the precision of any experimental
estimation of the parameter λ in the Hamiltonian is

bounded by F
1/2
Q [124]. Here FQ is the QFI [124–126]

which takes the following form for pure states

FQ = 4
[
⟨ψ′ (λ) |ψ′ (λ)⟩ − |⟨ψ′ (λ) |ψ (λ)⟩|2

]
, (5)

where ′ denotes the derivative of the ground state |ψ(λ)⟩
of H with respect to λ. So the QFI is the precision cri-
teria quantity in quantum metrology, with higher QFI
meaning higher measurement precision. Around a QPT
the ground-state wave function is varying quickly, which
provides a sensitivity resource for the so-called critical
quantum metrology[23–26], with the a maximum QFI

(thus a maximum measurement precision) available at
the QPT.
On the other hand, actually χF = FQ/4 is the suscep-

tibility of the fidelity [129–131]

F = |⟨ψ (λ) |ψ (λ+ δλ)⟩| = 1− δλ2

2
χF (6)

in an infinitesimal variation δλ of the parameter λ. The
fidelity can be a basic quantity to characterize the QPT
[127–131], with a peak of the fidelity susceptibility being
a transition signal.

B. QFI of the QRM

From both points of view of the critical quantum
metrology and the fidelity theory of the QPT, we can
utilize the QFI FQ to identify the QPT in the QRM.
Here the coupling g is taken as the parameter for λ. Fig-
ure 2 shows the evolution of FQ, numerically obtained
by the method of exact diagonallization (ED) [14, 18], in
the variation of the coupling g. Here in panel (a) of the
figure FQ is scaled by its maximum Fmax

Q at each fixed

frequency ratio ω/Ω. We see that FQ indeed has a peak,
which is located at gc0 in the extreme limit of low fre-
quency ω/Ω → 0 but moves to larger relative coupling
g = g/gc0 once the frequency is raised from zero. We de-
note as gcF for the transition coupling identified by the
location of Fmax

Q . The result confirms the inaccuracy of
gc0 and the shift of the transition away from gc0 for any
finite frequency. The evolutions of the peak position and
the peak value Fmax

Q can be seen more clearly from the
black dots in Fig. 2b where FQ is un-rescaled. Here the
logarithmic plot of FQ indicates the large values of the
QFI around Fmax

Q , which is favorable for the quantum
metrology.

C. Accurate transition coupling of the QRM

As afore-mentioned in Sec.III, the frequency depen-
dence of the conventional transition coupling gc0 has
large deviations from the beginning in going away from
zero frequency and the improved one gc1 is not either
accurate enough even at low frequencies. Actually gc0
can be equivalently obtained by a semiclassical approx-
imation which assumes a mass of point as the classical
particle in the effective field for the spatial part while
keeping quantum character for the spin part[13, 14]. It
is the classical treatment in the spatial part that leads to
the deviation, since in full quantum mechanical picture
the particle should appear as a wave packet for spatial
distribution instead of a point of mass. As an improve-
ment gc1 considers the spatial wave packet in the po-
laron picture, however as an analytical simplification the
frequency renormalization of the polarons has not been
included [8].
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FIG. 1. Frequency dependence of transition coupling gc in different expressions. (a) gc scaled by gc0 in natural logarithm of
frequency ratio ω/Ω. (b) gc scaled by gc1 versus ω/Ω. (c) gc scaled by gc2. Here gcF (black dots) as the reference of accurate
transition coupling is numerically extracted from position of Fmax

Q , while gc0 (orange dotted line) is the conventional transition
coupling in (3), gc1 (green (light gray) solid line) is the transition coupling in polaron picture in (4), and finally gc2 (blue (dark
gray) solid line) is the analytical transition coupling obtained from Fmax

Q in (7).

FIG. 2. Quantum Fisher information FQ with respect to coupling g at different frequency ratios ω/Ω. (a) FQ renormalized
by its maximum (peak value) Fmax

Q . (b) FQ with maximum Fmax
Q (black dots) in natural logarithm. (c) FQ with maximum

positions (black dots) re-aligned in a vertical line in a scaling g/gc2 by the accurate transition coupling gc2 in (7). Here FQ

is numerically obtained by exact diagonalization (ED) for ω/Ω = 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 from left to right in
(a) and from upper to lower in (b).

Indeed, as demonstrated in Appendix A, when the fre-
quency renormalization of the polarons is picked up one
gets a correct direction for further improvement of the
transition coupling as gcξ. It turns out that the fre-
quency renormalization effect enters in the improvement
of the transition coupling in a form of fractional power
low ω2n/3 of the frequency as in (A11).

Although gcξ is still not accurate enough due to the
analytical simplification, it inspires us to propose accu-
rate expressions with adjusted coefficients from gcξ. To
the second order we find

gc2 = gc0

[
1 +

1

100αFS
(
ω

Ω
)2/3 − 1

8
(
ω

Ω
)4/3

]
, (7)

where αFS = 1/137 by coincidence is the fundamen-
tal fine-structure constant in quantum mechanics, works
very accurately in ω/Ω ∈ [0, 0.5] regime by comparison
with the numerical gcF, as one sees in Fig. 1(a-c) and
Fig. 2(c). Another second-order expression

gc2 = gc0

[
1 +

4

3
(
ω

Ω
)2/3 − 3

40
(
ω

Ω
)4/3

]
, (8)

can extend the validity up to ω/Ω = 3.0 with a small
price of larger error than (7) in order 10−3 in ω/Ω ∈

[0, 0.5]. These expressions are extracted by coefficient
fractionization in second-order least-squares fitting. If
one keeps decimalized coefficients, a fitting expression in
the third order

gfittingc2 = gc0

[
1 + c1(

ω

Ω
)2/3 + c2(

ω

Ω
)4/3 + c3(

ω

Ω
)6/3

]
,

(9)
with c1 = 1.3715, c2 = −0.1311, c3 = 0.0184 can cap-
ture the maximum point of FQ accurately in the entire
frequency regime up to ω/Ω = 3.0, though the transi-
tion becomes a crossover in high frequencies. A com-
parison with the ED result in low-frequency regime and
high-frequency regime is provided in Appendix B. De-

spite that gfittingc2 has a wider range for accuracy of the
position of Fmax

Q , the expression gc2 in (7) and (8) is eas-

ier to remember with the fractionized coefficients (rather

than decimalized) and it has the same accuracy as gfittingc2

in the low-frequency regime where the transition makes
more sense.
At this point one might speculate that a Fourier ex-

pansion with integer powers of the frequency (ω/Ω)n

should also work without need of the fractional-power
form. However, as demonstrated in Appendix A 5,
such a Fourier-expansion fitting is very inefficient while
fractional-power fitting already reaches a good conver-
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gence with only a couple of orders, without mentioning
that such a Fourier expansion does not provide any phys-
ical insight if it were not coinciding with integer-power-
series law of gc1 as in Eq. (A13). This indicates that
the integer-power law in the Fourier expansion does not
capture the physical essence of frequency renormalization
around the transition in the QRM.

The accurate transition coupling gc2 should be useful
in applications of the quantum metrology as in practice
the frequency is non-zero. Even if the transition becomes
more broadened at a higher frequency, gc2 still can pro-
vide an accurate location for the maximum QFI where
one can find relatively the highest measurement preci-
sion in variation of the coupling despite that one does
not achieve an ideal divergence.

V. POLARON PICTURE FOR QFI

As afore-mentioned, the above result of the QFI at fi-
nite frequencies is numerically obtained by the method of
ED [14, 18] which needs a cutoff of the basis number. In
the presence of a large coupling at low frequencies such
a basis number might be divergently large, which might
lead to a heavy computation cost and even goes beyond
the numerical access limit. In such a situation an analyt-
ical form for the QFI would be desirable. The variational
method of polaron picture (PP) [8] provides such a possi-
bility with high accuracy over the entire coupling regime
including the transition area. The validity of the PP is
not limited by the frequency and it often facilitates the
understanding of underlying physics in light-matter in-
teractions [4, 8, 13–17, 69, 70]. In this section we shall
formulate the QFI of the QRM in the PP.

A. Formulation of QFI in polaron picture

The eigen wave function of the QRM has two spin com-
ponents

|ψ (g)⟩ = 1√
2

∑
σz=±

ψσz
(g) |σz⟩ (10)

subject to the normalization condition

⟨ψ (g) |ψ (g)⟩ = 1

2

∑
σz=±

⟨ψσz
(g) |ψσz

(g)⟩ = 1. (11)

Equivalently ⟨ψσz (g) |ψσz (g)⟩ = 1 and the inner prod-
uct can be written in integral form ⟨ψσz (g) |ψσz (g)⟩ =∫
dxψ∗

σz
(g, x)ψσz (g, x) in the position space. Here we

have defined the scaled coupling g = g/gc0, while the
QFI with respect to g simply differs by a factor

FQ (g) = FQ (g)

(
dg

dg

)2

=
1

g2c0
FQ (g) . (12)

In the following we formulate the QFI FQ (g) with respect
to g in the PP.
In the variational PP each spin component of the wave

function can be decomposed into a linear combination of
polarons represented by φi

ψ+ (g, x) =
∑
i=α,β

wi (g)φi (g, x) (13)

ψ− (g, x) = Pψ+ (g,−x) (14)

where P = −1 is the negative parity for the ground state.
Explicitly the polaron in the ground state takes the form
of Gaussian wave packet

φi (g, x) = (ξi/π)
1/4

exp
[
−ξi (x+ xi)

2
/2

]
(15)

with polaron displacement xi = ζig
′, as renormalized

from the potential displacement g′ by ζi, and the fre-
quency renormalization factor ξi [8]. The frequency
renormalization gives a more compact representation of
polarons than the coherent state expansion[86] and in
Appendix A we also see that the frequency renormaliza-
tion yields an correct direction for improvement of the
transition coupling.
Here we have adopted the two-polaron decomposition

[8] for the ground state of the QRM with the weights

wα (g) = α, wβ (g) = β. (16)

The two-polaron decomposition with frequency renor-
malization is already accurate enough for our discussion
and convenient for physical descriptions, although exten-
sion to multi-polaron representation is direct and might
gives some small quantitative improvements[69].
The two terms in FQ are then obtained by

⟨ψ′ (g) |ψ (g)⟩
=

∑
i,j

[wi (g)wj (g) ⟨φ′
i|φj⟩+ w′

i (g)wj (g) ⟨φi|φj⟩] ,(17)

and

⟨ψ′ (g) |ψ′ (g)⟩
=

∑
i,j

[
wi (g)wj (g) ⟨φ′

i|φ′
j⟩+ w′

i (g)w
′
j (g) ⟨φi|φj⟩

]
+
∑
i,j

[
wi (g)w

′
j (g) ⟨φ′

i|φj⟩+ w′
i (g)wj (λ) ⟨φi|φ′

j⟩
]
.(18)

The first-order derivative terms of the inter products
include the variations of displacemnent and frequency
renormalization with respect to the coupling

⟨φ′
i|φj⟩ = ⟨∂φi

∂xi
|φj⟩

dxi
dg

+ ⟨∂φi

∂ξi
|φj⟩

dξi
dg
. (19)

and the second-order derivative terms collect their
quadratic mixture

⟨φ′
i|φ′

j⟩ = ⟨∂φi

∂xi
|∂φj

∂xj
⟩dxi
dg

dxj
dg

+ ⟨∂φi

∂xi
|∂φj

∂ξj
⟩dxi
dg

dξj
dg

+⟨∂φi

∂ξi
|∂φj

∂xj
⟩dξi
dg

dxj
dg

+ ⟨∂φi

∂ξi
|∂φj

∂ξj
⟩dξi
dg

dξj
dg

.(20)
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FIG. 3. Comparison of FQ for the ED (symbols) and the
variational method of polaron picture (PP) (solid lines). (a)
ω/Ω = 0.1. (b) ω/Ω = 0.005. The missing data in (b) in-
dicates the numerical difficulty for the ED in low frequencies
and large couplings, while it is readily accessible and compen-
sated by the variational PP.

The expressions for ⟨φ′
i|φj⟩, ⟨φ′

i|φ′
j⟩, dxi/dg and dξi/dg

are explicitly available as provided in Appendix C.

B. Accuracy of QFI in polaron picture and
compensation for ED

The result of the QFI in the PP is quite accurate and
also provides a compensation for the ED in case that the
ED leads to an overload of computation cost due to the
need of large cutoff of basis number. Indeed, as illus-
trated by Fig.3, the PP (solid lines) basically reproduces
the ED results (circles) of the QFI in the entire regime
of coupling. Note here the ED can go deep into the large
coupling regime beyond the transition for the frequency
ω/Ω = 0.1 in Fig.3(a), while access to large couplings
by the ED might become difficult at low frequencies as
indicated by the missing data at ω/Ω = 0.05 in Fig.3(b).
Nevertheless, with the accuracy guaranteed, as checked
in the ED-accessible regime, the missing data in the in-
accessible regime for the ED can be readily compensated
by the result of the PP as demonstrated by the extended
solid line in Fig.3(b). Thus, the formulation of the QFI in
the PP provides an accurate and convenient tool without
heavy cost of computation to cover the entire parameter
regime.

C. Vanishing ⟨ψ′ (λ) |ψ (λ)⟩ term

From the convenient analysis in the PP we come across
the vanishing of the first derivative term in the QFI

⟨ψ′ (g) |ψ (g)⟩ = 0. (21)

We find this consequence stems from the non-degeneracy
of the eigenstate of the QRM. Actually we can prove more
generally for a parameter λ that the vanishing relation

⟨ψ′ (λ) |ψ (λ)⟩ = 0 (22)

holds for a general non-generate state ψ (λ). Indeed, we
can always chose the general ψ (λ) to be real

ψ∗ (λ, x) = ψ (λ, x) (23)

at any position x, up to an irrelevant total phase,
since otherwise supposed linear-independent real part
and imaginary part of a complex wave function would
yield degenerate eigenstates contradictorily to the non-
degenerate assumption. Thus, with the real wave func-
tion, we have

d

dλ
⟨ψ (λ) |ψ (λ)⟩ = ⟨ψ′ (λ) |ψ (λ)⟩+ ⟨ψ (λ) |ψ′ (λ)⟩

= 2⟨ψ′ (λ) |ψ (λ)⟩. (24)

On the other hand, from the normalization condition
⟨ψ (λ) |ψ (λ)⟩ = 1 we have d

dλ ⟨ψ (λ) |ψ (λ)⟩ = 0, which
leads to ⟨ψ′ (λ) |ψ (λ)⟩ = 0 in combination with Eq. (24).
As a result, we can simplify the QFI with respect to a
single parameter λ as

FQ = 4⟨ψ′ (λ) |ψ′ (λ)⟩ (25)

for non-degenerate egein states.

D. Maximum effective velocity around transition

The transition coupling identified by the QFI is then
determined by the peak position

dFQ (g)

dg
= 4

d⟨ψ′ (g) |ψ′ (g)⟩
dg

= 0, (26)

where we have taken Eq. (22) into account to use (25).
In the polaron picture essentially the process of the

transition in the ground state of the QRM is the split-
ting or separating of the polarons under the competi-
tion of the tunneling energy and the potential energy.
The tunneling energy between the two spin components
is negative in the negative parity, while the potentials
vσz

(x) in (2) have different values for the two spin com-
ponents as they are separated by the effective coupling
g̃. When the tunneling energy is dominant the polarons
tend to stay around the origin x = 0 to gain a maximum
negative tunneling energy, otherwise when the potential
cost is too high to stay around the origin the polarons
leave the origin and the transition occurs. Such a picture
of transition agrees with the ED result in Figure 4(b).
Note tunneling energy is proportional to the overlap

of the poalrons, while the frequency renormalization can
extend the polaron wavepackets to increase the over-
lap. Around the transition the polaron frequency nearly
reaches the maximum renormalization to keep the rem-
nant tunneling energy as much as possible, with ξ′i (g) ≈ 0
around the transition [8]. On the other hand, around and
beyond the transition the overlap between the separated
polarons becomes exponentially small. As an approxima-
tion we can neglect the effect of weight variation in the
polaron splitting due to the insight that the weight lost in
one polaron would goes to the other polaron, which may
not much affect the variation of the total contribution of
the wave function to the QFI. As anther simplification
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FIG. 4. Bridge of the QFI and transition property around the transition. (a) The transition position in FQ (solid line). (b)
The distribution probability in spin-up component. (c) Transition coupling by crossing point (black dot) of g (orange (light
gray) solid line) and −2ζ′/ζ′′ in (28). (d) Polaron acceleration a versus g. (e) The spin-component displacement expectation
⟨x̂⟩±. The PP (solid line) yields a same result as the ED (circles). (f) The spin-component displacement velocity d⟨x̂⟩±/dg.
Here ω/Ω = 0.1 and the vertical dashed lines in all panels mark the transition coupling at Fmax

Q . The a = 0 point (black dot)
in (d) indicates the maximum polaron velocity at transition similarly to the expectation in (f).

we assume the same same frequency renormalization ξ
and displacement renormalization magnitude ζ for the
separating polarons. Under all these considerations, the
QFI around the transition is simplified to be

FQ (g) ≈ Ω

ω
[ζ ′ (g) g + ζ (g)]

2
ξ (g) (27)

in the leading order. Then from Eq. (26) we find the
transition coupling in the PP

gPP
cF =

2ζ ′ (g)

−ζ ′′ (g)
. (28)

Here we have defined the derivatives ζ ′ (g) = d
dg ζ (g) and

ζ ′′ (g) = d2

dg2 ζ (g).

The solution (28) can be re-arranged to be

d2

dg2
(ζg̃) = 0. (29)

Note g̃ =
√
2g/ω is the potential position and xp = ζg̃ is

the polaron displacement, thus it is also equivalent to

a ≡ d2

dg2
xp = 0. (30)

If we vary g with a uniform speed, a is actually the ef-
fective acceleration of the polaron in the increase of the
coupling up to a square factor of the increasing speed of
the coupling. In such a sense, the transition condition

(30) means a vanishing polaron acceleration or the max-
imum polaron velocity (the first derivative dxp/dg) with
respect to the increase of the coupling.
In turn, when we recall the relation (27), the FQI

around the transition is then endowed a more physical
connotation to be a renormalized effective kinetic energy

FQ (g) ≈ 1

2
mF v

2
p (31)

with renormalized mass, position and velocitymF , xp, vp:

mF = 2
Ω

ω
ξ (g) , vp =

dxp
dg

, xp = ζg. (32)

Figure 4 illustrates an example at ω/Ω = 0.1 to show
the validity of the relations (28) and (30). Here in the fig-
ure panel (a) shows the QFI in logarithm numerically cal-
culated by the ED, with the vertical dashed line marking
the transition coupling gcF. Panel (b) shows the distribu-
tion probability by the ED, one sees that the wave packet
stays around the origin x = 0 before the transition while
it splits into two wave packets and depart from each other
after the transition. The wave packets represent the po-
larons. Panel (c) shows the crossing point (black dot) of
the g line and the curve of 2ζ ′ (g) /[−ζ ′′ (g)] in (28) by
the main polaron with a larger weight α, which is the
solution for gPP

cF . We see that gPP
cF is in good agreement

with the accurate gcF (vertical dashed line). Panel (d)
tracks the corresponding evolution of the polaron accel-
eration a, the zero point (black dot) also matches well
with the transition coupling gcF.
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FIG. 5. Density plots of the QFI FQ (a) and the susceptibility
of single-photon absorption rate d |⟨x̂⟩±| /dg (b), both renor-
malized by their maxima at fixed frequencies. Their maxima
coincide with each other, which is well captured by gc2 in
Eq.(7) (white solid line) but missed by the conventional gc0
(red dashed line).

VI. BRIDGING QFT TO TRANSITION
OBSERVABLE: TRANSITION COINCIDENCE

WITH MAXIMUM SUSCEPTIBILITY OF
SINGLE-PHOTON ABSORPTION RATE

The above discussion with the transition equation (30)
obtained from the QFI inspires us to bridge the QFI to
a transition observable. The effective velocity and accel-
eration in Sec.VD is defined on a polaron. We can also
check the position expectation ⟨x̂⟩± for the spin compo-
nents which is polaron-picture independent and are avail-
able both in the ED and in the PP. In the PP we have

⟨x̂⟩+ = α2⟨φα|x̂|φα⟩+β2⟨φβ |x̂|φβ⟩+2αβ⟨φα|x̂|φβ⟩ (33)

subject to the normalization condition α2 + β2 +
2αβ⟨φα|φβ⟩ = 1. The spin-down component has the op-
posite sign, ⟨x̂⟩− = −⟨x̂⟩+, due to the parity symmetry.
In the ED

⟨x̂⟩± = ⟨ψ±|x̂|ψ±⟩ = ⟨ψ±|
a† + a√

2
|ψ±⟩ =

√
2⟨ψ±|a|ψ±⟩

(34)
is defined directly on the ED eigenstate |ψ±⟩ expanded
on the Fock states.

We plot the amplitude |⟨x̂⟩±| in Fig. 4(e,f) where in
panel (e) one sees that the results by the PP (solid line)
and the ED (circles) completely coincide with each other.
Similarly to the introduced velocity dx/dg in the PP, in

panel (f) we also present the evolution of d |⟨x̂⟩±| /dg
which, if getting out of the PP language, is actually the
susceptibility of the displacement or the single-photon
absorption rate, as indicated by Eq. (34), in response to
the coupling variation. Corresponding to the zero ve-
locity (maximum acceleration) in the PP, we see that
d |⟨x̂⟩±| /dg really reaches the maximum around the tran-
sition (vertical dashed line).
Density plots in the ω-g plane for the QFI and the sus-

ceptibility of single-photon absorption rate d |⟨x̂⟩±| /dg
are provided in Fig. 5. We see that the maxima (black)
of the QFI and d |⟨x̂⟩±| /dg coincide with each other in
the wide frequency regime, as indicated by their simul-
taneous agreements with gc2 in (7) (white solid line). In
contrast, the coinciding maxima are missed by the con-
ventional transition coupling gc0 (red dashed line).

Thus, via the transition we bridge the QFI maximum
point, the maximum polaron velocity and the maximum
susceptibility of the single-photon absorption rate.

VII. CONCLUSIONS

We have combined the quantum Fisher information
(QFI) and the variational polaron picture (PP) to iden-
tify and extract the accurate transition couplings for the
quantum phase transition of the quantum Rabi model
(QRM). With the combined QFI-PP analysis we also gain
some implication and insight for the underlying physics
of transition in the QRM.

The continuing interest on the QRM is only lying in the
fact that it is a fundamental model for light-matter inter-
actions but also is attracted by the quantum phase tran-
sition it possesses which can be applied for the critical
quantum metrology. In quantum metrology, the square
root of the QFI represents the precision bound of ex-
perimental measurement. In the present work we have
conversely used the peak location of the QFI to identify
the transition couplings in the QRM. By the QFI result
from exact diagonalization (ED) we have demonstrated
that transition couplings at finite frequencies much de-
viate from the conventional one which is exact actually
only right at zero frequency. Inspired by the fractional-
power-law behavior in the influence of polaron frequency
renormalization on the expression improvement for the
transition coupling, we have obtained an accurate expres-
sion of the transition coupling which coincides with the
numeric transition couplings by the QFI in the variation
of frequency. Besides the implication acquired from the
integer/fractional power law analysis for a deeper under-
standing of the essence of transition, the transition cou-
pling can provide an accurate reference in the practical
applications of the quantum phase transition in the quan-
tum metrology, since in practice the bosonic mode always
has a non-zero frequency which invalidates the frequency-
dependence of the conventional transition coupling.

We have also formulated the QFI in the PP. The PP is
capable of analytically reproducing the numeric QFI by
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ED, without a heavy computation cost as in the ED. On
the other hand, the QFI in the PP can compensate for
the missing data of the ED in the regime where the ED
cannot access due to the demanding need of large basis
number. Such a situation emerges in the large coupling
regime, especially at low frequencies where the phase
transition is sharp and provides the best sensitivity re-
source for raising the measurement precision. Therefore,
the formulation of the QFI in the PP prepares an accu-
rate and convenient tool to get the precision bound in
covering the entire parameter regime, which may also be
helpful in applications of quantum metrology.

From the QFI in the PP we have also come across the
vanishing of the first-derivative term in the QFI in the
QRM. We find this vanishing consequence comes from
the non-degeneracy of the eigenstate. The conclusion has
been extended for general non-degenerate pure states,
which simplifies the expression of the QFI.

Finally from the QFI in the PP we see that the tran-
sition occurs with a zero polaron acceleration or maxi-
mum polaron velocity. Correspondingly the susceptibil-
ity of single-photon absorption rate reaches the maximum
around the transition. This finding might add some in-
sight in bridging the QFI and the physical properties at
the transition.

As a closing remark, it is worthwhile to mention that,
besides the transition in the QRM addressed in this work,
similar transitions [4, 12–17, 26] also occur at low fre-
quencies in other forms of light-matter interactions, such
as the anisotropic coupling [12, 15–18, 49, 81], the mix-
ture with nonlinear two-photon coupling [13, 14, 26] and
the Stark nonlinear coupling [17, 19, 56–58]. On the other
hand, although the two-polaron description in the PP
has reached a very high accuracy, extension to the multi-
polaron representation[69] is direct if even higher accu-
racy is needed. Our treatment addressed in the present
work concerning the QFI and the transition coupling can
be readily applied to these systems, which we shall leave
for some future works.
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Appendix A: Inspiration for the transition coupling
from frequency renormalization effect of polarons

From Fig. 4 in the main text, one may realize
that the transition is essentially the splitting of the
wave packet, which can be well described by the sep-
aration of the two polaron represented by φi (g, x) =

(ξi/π)
1/4

exp
[
−ξi (x+ xi)

2
/2
]
in (15). Here xα = ζαg̃

gc0 gc1 gcξ gc2gcF

0.0 0.1 0.2 0.3 0.4 0.5
0.8

0.9

1.0

1.1

1.2

ω / Ω

g
/
g c
1

FIG. 6. Inspiration from the transition coupling gcξ by in-
cluding frequency renormalization. gcξ (red dashed line) in
(A9) has some improvements over gc0 (orange dashed) and
gc1 (green (light gray) solid line). Although gcξ is still not
accurate in comparison with gcF (red dots), it has the right
direction of improvement and provides inspiration for formu-
lation of gc2 (blue (dark gray) solid line).

and xα = ζβ g̃ with g̃ =
√
2g/ω. As a simplification we

can assume two same polarons by setting

ζα = −ζβ = ζ, ξα = ξβ = ξ. (A1)

Here the minus sign of ζβ denotes the displacement direc-
tion opposite to the other polaron α. Thus the distance
of the two polarons is 2ζg̃. The overlap of the two po-
larons is decreasing exponentially in the separation. The
overlapping degree is decided by the crossing point of the
two polaron wave packets which is moving away from the
peak by a distance d. One can regard the separation to be
basically complete when d reaches some point dc where
the polaron overlap becomes small enough to complete
the transition. The distance relation around the transi-
tion is then given by

2ζg̃ = 2dc. (A2)

Note that in the low-frequency limit we have the explicit
displacement renormalization factor [7, 8, 13]

ζ ≈

√
1− g4c0

g4
(A3)

starting from the transition, which can be applied to ob-
tain improved expressions of the transition coupling.

1. gc0 by classical mass point

To mark the difference from the polaron frequency
renormalization we set dc = dc1/

√
ξ where dc1 is the

transition distance in the absence of frequency renormal-
ization. If the polaron wave packet is regarded as a clas-
sical mass point, then the separation process is immedi-
ately complete at dc = 0, substitution of which in (A2)
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retrieves the conventional transition coupling

gc = gc0 =

√
ωΩ

2
(A4)

as in (3).

2. gc1 by neglecting polaron frequency
renormalization

However, in quantum mechanics the mass point should
be replaced by the wave packet and dc is finite. As a first
order of improvement with finite dc, we can neglect the
polaron frequency renormalization by setting ξ = 1. We
can judge the transition by a point where the wave func-
tion φi at the crossing point decays to an exponentially

small value by the ratio φi/φ
peak
i = e−2 which occurs at

dc = 2. Then Eq. (A2) becomes√
1− g4c0

g4c

√
2gc
ω

= 2 (A5)

which yields

gc = gc1 =

√
ω2 +

√
ω4 + g4c0 (A6)

in (4) as an improved transition coupling over gc0.

3. gcξ by including polaron frequency
renormalization

We now pick up the polaron frequency renormaliza-
tion and notice the frequency-displacement scaling re-
lation ξ/ζ ≈ 1 starting from the transition in the low
frequency limit, i.e. [8]

ξ ≈ ζ ≈

√
1− g4c0

g4
. (A7)

In such a consideration Eq. (A2) becomes much more
nonlinear√

1− g4c0
g4c

√
2gc
ω

=
dc1√
ξ
=

dc1(
1− g4

c0

g4
c

)1/4
. (A8)

Nevertheless, Equation (A8) still can be analytically
solved, with the explicit solution being

gc = gcξ =
4

√
g4c0 +

ω4
c1

12
(f4 + 1 + f−4 + 24f−4g̃4c0),

(A9)
where we have defined ωc1 = dc1ω, g̃c0 = gc0

ωc1
, and

f =
12

√
1 + 36g̃4c0 + 216g̃8c0 + 24

√
3g̃6c0

√
27g̃4c0 + 1.

(A10)

FIG. 7. Comparison of fitting of the transition coupling gcF
by Fourier expansion (a,b) and by fractional-power law (c,d)
with different expansion order nf . (a,c) g scaled by gc0 (b,d)
g scaled by gc1.

4. Inspiration of fractional-power-law expansion for
gc2

In Fig. 6 we give a comparison for gc0 (dotted line),
gc1 (green (light-gray) solid line) and gcξ (red dashed
line) with dc1 = 1.9. Compared with gcF (dots), gc1 is
qualitatively better but quantitatively still not accurate
enough, as also mentioned in the main text. By taking
into the effect of the polaron frequency renormalization,
gcξ yields some more improvements over gc1, especially
in the low-frequency tendency. Although gcξ does not
achieve a perfect accuracy due to the simplifications we
have introduced in the above discussion, e.g. in (A1) and
(A7), the improvements added by the polaron frequency
renormalization is in the correct direction. Note here the
frequency renormalization effect manifests itself a behav-
ior of fractional-power-series law in low frequencies

gcξ = gc0

[
1 + (

dc1
2

)
4
3 (
ω

Ω
)

2
3 +

7

6
(
dc1
2

)
8
3 (
ω

Ω
)

4
3 + · · ·

]
= gc0

[
1 +

∞∑
n=1

cξn

(ω
Ω

)n 2
3

]
, (A11)

which inspires us to propose the expressions gc2 and

gfittingc2 in (7) and (9) for the transition coupling. It turns

out that gc2 and gfittingc2 are very accurate with only a
couple of terms in the fractional power law expansion.

5. Unfavorable mathematical expansion by Fourier
Series

It should be stressed that accuracy and efficiency of the

fractional-power form of gc2 and gfittingc2 in (7) and (9) are
based on the physical analysis from frequency renormal-
ization effect of polarons, as addressed in last sections.
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One might speculate that a mathematical expansion by
Fourier Series

gFourierc = gc0

[
1 +

nf∑
n=1

cFouriern

(ω
Ω

)n
]

(A12)

would also work without need of the fractional-power
form. It is true that a Fourier expansion can mathemati-
cally make a fitting finally, however such a Fourier-series
fitting is much more inefficient, without mentioning that
it does not provide any physical insight. We show some
orders of the Fourier-expansion fitting in Fig. 7 via the
least-squares fit. One sees in panel (a) by the coupling
scale gc0 that nf = 2 (blue dotted most-deviated line) in
Fourier expansion does not fit well at all, the qualitative
deviations can be seen more clearly in panel (b) by the
coupling scale gc1. Higher orders up to nf = 9 approach
to some convergence at low frequencies but large oscilla-
tions appear at high frequencies due to sparser reference
data of gcF (red dots). In a sharp contrast, fitting by the
fractional law in (A11) already reaches a good conver-
gence even at nf = 2. Moreover, larger nf converge well
without the oscillation problem as the Fourier expansion
even in the same sparse reference data.

In fact, the expression (A6) obtained by neglecting
polaron frequency renormalization, if expanded, has an
integer-power-series law as gFourierc

gc1 = gc0

(
1 +

2ω

Ω
+

2ω2

Ω2
− 4ω3

Ω3
− 10ω4

Ω4
+ · · ·

)
= gc0

[
1 +

∞∑
n=1

cn1

(ω
Ω

)n
]
. (A13)

Both the inefficiency of fitting convergence and the co-
incidence of integer-power-series law with gc1 indicate
that the Fourier-series fitting gFourierc does not capture
the physical essence of frequency renormalization effect
around the transition in the QRM.

Appendix B: Comparison of gc2 in different
coefficient choices

In Sec. IVC we provide different expressions of the
transition coupling (7)-(9). Here we make a compari-
son for their difference. Figure 8 shows gc2 in Eq. (7)
with αFS = 1/137 (thin blue dashed line), gc2 in Eq.

(8) with c1 = 4/3 (thin black dashed line) and gfittingc2 in
(9) with c1 = 1.3715, c2 = 0.1311, c3 = 0.0184 (green
long-dashed line) in comparison with the gcF data (red
dots) numerically extracted from the peak locations of
the QFI. As shown in Fig. 8(a), the expression (7) with
αFS = 1/137 is very accurate and is actually produc-
ing gcF in the low frequency regime ω/Ω < 0.5. Al-
though considerable deviations appear in the high fre-
quency regime 1 < ω/Ω < 3 in Fig. 8(b), the transition
loses the sense there as it becomes much broadened. Nev-
ertheless, the QFI always has a peak value, an expression

FIG. 8. Comparison of gc2 with different coefficients in low-
frequency regime (a) and high-frequency regime (b): gc2 in
Eq. (7) with αFS = 1/137 (thin blue dashed line), gc2 in Eq.

(8) with c1 = 4/3 (thin black dashed line) and gfittingc2 in (9)
with c1 = 1.3715, c2 = 0.1311, c3 = 0.0184 (green long-dashed
line). The result of gcF (red dots) is the accuracy reference.
gc0 (thick orange dotted line) and gc1 (thick green solid line)
are taken as the coupling scale in (a) and (b).

valid for the entire parameter regime would be a perfect
goal. In this need, the expression (8) with c1 = 4/3 is ac-
curate up to ω/Ω = 3, despite it is slightly less accurate
in the low frequency regime with an error of the order

10−3 larger than (7). Finally gfittingc2 is very accurate re-
ally in the entire frequency regime up to ω/Ω = 3. Note
gc2 in (7) and (8) is in the second order of (ω/Ω)2n/3

power law, while gfittingc2 is in the third order, which al-
ready reaches the convergence as shown by Fig. 7(c,d) in
Appendix A 5.

Appendix C: Explicit expressions for the QFI in the
variational polaron picture

Explicitly, by the wave function of the polaron in Eq.
(15) for the non-derivative terms we have

⟨φα|φα⟩ = ⟨φβ |φβ⟩ = 1, (C1)

⟨φα|φβ⟩ =

√
2ξ

1/4
α ξ

1/4
β√

ξα + ξβ
exp[− (xα − xβ)

2
ξαξβ

2 (ξα + ξβ)
].(C2)
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For the polaron-derivative terms in (19) we get

⟨∂φi

∂xi
|φj⟩ =

√
2ξ

5/4
i ξ

5/4
j (xj − xi)

(ξi + ξj)
3/2

fE
, (C3)

⟨φj |
∂φj

∂xj
⟩ =

√
2ξ

5/4
i ξ

5/4
j (xi − xj)

(ξi + ξj)
3/2

fE
, (C4)

⟨∂φi

∂ξi
|φj⟩ =

√
2ξ

1/4
j {ξ2i + ξ2j [2ξi (xi − xj)

2 − 1]}

ξ
3/4
i (ξi + ξj)

5/2
fE

,(C5)

⟨φi|
∂φj

∂ξj
⟩ =

√
2ξ

1/4
i {ξ2j + ξ2i [2ξj (xi − xj)

2 − 1]}

ξ
3/4
j (ξi + ξj)

5/2
fE

,(C6)

and in (20) the explicit expressions read

⟨∂φi

∂xi
|∂φj

∂xj
⟩ =

√
2{ξi + ξj − ξiξj (xi − xj)

2}
(ξi + ξj)

5/2
ξ
−5/4
i ξ

−5/4
j fE

, (C7)

⟨∂φi

∂xi
|∂φj

∂ξj
⟩ =

{ξ2j + ξ2i [2ξj (xi − xj)
2 − 5]− 4ξiξj}

2
√
2 (ξi + ξj)

7/2
ξ
−5/4
i ξ

−1/4
j (xi − xj)

−1
fE
, (C8)

⟨∂φi

∂ξi
|∂φj

∂xj
⟩ =

{ξ2i + ξ2j [2ξi (xi − xj)
2 − 5]− 4ξiξj}

2
√
2 (ξi + ξj)

7/2
ξ
−5/4
j ξ

−1/4
i (xj − xi)

−1
fE
, (C9)

⟨∂φi

∂ξi
|∂φj

∂ξj
⟩ =

4ξ3i ξ
3
jx

4
ij + ξ+ij(2ξiξjx

2
ij − ξ+ij)(ξ

2
i + ξ2j − 10ξiξj)

8
√
2 (ξi + ξj)

9/2
ξ
3/4
i ξ

3/4
j fE

, (C10)

where we have defined ξ+ij = (ξi + ξj), xij = (xi − xj)

and fE = exp{(xi − xj)
2
ξiξj/[2 (ξi + ξj)]}. The

dispalcement-derivative factor is

dxi
dg

=
dζi
dg
g

√
Ω

2ω
+ ζi

√
Ω

2ω
, (C11)

explicitly.

The variational parameters {wi, ζi, ξj} for the ground
state are determined by minimization of the energy sub-
ject to normalization condition (11) of the wave function
[8].
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