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We develop a Coherent Perfect Absorption (CPA) protocol for cases where scale invariance is
violated due to the presence of nonlinear mechanisms. We demonstrate, using a microwave setting
that lacks geometrical symmetries, that the nonlinearity offers new reconfigurable modalities: the
destruction or formation of nonlinear CPAs (NL-CPAs), and their frequency positioning and band-
width management using the incident power as a control knob. The latter occurs via the formation of
exceptional point degeneracies of the zeroes of nonlinear scattering processes. Our results establish
NL-CPA protocols as a versatile scheme for the creation of reconfigurable hot/cold-spots in compli-
cated enclosures (e.g. buildings or vessels) with applications to next-generation telecommunications,
long-range wireless power transfer, and electromagnetic warfare.

Introduction - The wealth of the underlying math-
ematical structures of non-Hermitian operators has re-
vealed a variety of new concepts, including loss-induced
transparency [1] unidirectional invisibility [2–5], hyper-
sensitive sensing [6–10], self-protecting power limiters
[11, 12], chiral state transfer [13, 14], enhanced power
emission [15] and more (see reviews [16–18]). Among the
various developments, the coherent perfect absorption
(CPA) protocol has attracted considerable attention. It
aims to design coherently injected multiport wavefronts
that appropriately interfere to enforce perfect absorption
from an absorption center that is embedded inside a cav-
ity – even in cases where the losses are very weak [19–21].

Formally speaking, a CPA wavefront is associated with
the eigenvector of the scattering matrix that corresponds
to a zero eigenvalue. Such zero scattering mode describes
the solution of a wave operator with purely incoming
boundary conditions. When these zeroes occur on the
real frequency axis, they define incident coherent wave-
fronts that are completely absorbed by a lossy cavity.
This is the concept of CPA [19, 22], that has been exper-
imentally tested in a variety of platforms ranging from
acoustics [23], RF [24] and microwaves [25] to optics [20].
A new kind of CPAs can emerge when two (or more)
purely incoming solutions of the wave operator coalesce
forming an exceptional point degeneracy (EPD); thus
leading to an anomalous line-shape of the absorbance
[26, 27]. For example, in the case of two coalescing CPAs,
the frequency dependence of the absorbance around its
maximum has a quartic (not Lorentzian!) line-shape re-
sulting in a broadband absorption [26–28].

Most of the CPA demonstrations [21] and their EPDs
involved simple cavity geometries [27, 28]. Recently, how-
ever, CPAs have been demonstrated in complex environ-
ments [25] where multiple scattering and the consequent
interference of many photon paths through the medium
generate extraordinary complexity and sensitivity. A rea-
son for this paradigm shift is the realization that CPA
protocols can be used in wireless communications as a

means to create hot spots in reverberate environments
[29–31]. Other experimental settings include chaotic op-
tical and microwave cavities, networks of coaxial cables,
and disordered systems with parity symmetry [32–37].
Importantly, all these cases assume linear scattering pro-
cesses where the superposition principle is applicable.

On the other hand, many realistic scattering scenar-
ios involve nonlinear processes. In wireless communi-
cations, for example, diodes are indispensable compo-
nents of wireless circuits. Similarly, optical nonlinearities
emerge naturally in photonics but up to now they have
been underutilized as far as perfect absorbing protocols
are concerned. This is surprising since the incident power
might offer additional freedom for externally controlling
the formation of CPAs via a self-induced variation of the
impedance of a medium. The few NL-CPA studies are
either theoretical [38, 39], or they have been performed
using very simple settings [40, 41] that do not represent
typical complex scattering processes occurring in realis-
tic scenarios, e.g., wireless communications in reverber-
ant cavities. Likewise, EPDs (of any kind!) are barely
discussed in nonlinear frameworks.

In this Letter, we develop a theory for the im-
plementation of nonlinear CPAs (NL-CPAs) in com-
plex systems that, in general, lack geometrical symme-
tries. We demonstrate, using a microwave complex net-
work of coaxial cables, that scale-invariance offers new
modalities: external tunability of the frequencies, and
linewidths (narrow vs broad) of the CPA phenomenon.
Specifically, the electrical permitivities of nonlinear ele-
ments are externally tuned by the incident power levels;
thus allowing us to control the formation of NL-CPAs
and even enforcing their coalescence. Although in many
cases this coalescence occurs among complex zeroes, their
proximity to the real frequency axis constitutes these de-
generacies practically indistinguishable from the EPD-
CPAs; thus allowing us to witness a broadening of the
absorbance which maintains the quartic lineshape as in
the case of EPD-CPAs.
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FIG. 1. (a) The input signal from port 1 of vector network
analyzer (VNA) is splitted into two signals by a T- junction
and then modulated by IQ modulators both in amplitude and
phase. The two circulators direct the input signals into the
microwave network and the output signals into ports 2 and
3 for measurement. (b) Ring network. (c) Tetrahedron net-
work. The network is coupled via kink antennas to a resonator
which, in turn, is inductively coupled to a ring antenna which
includes a short-circuited nonlinear diode (see inset of (a)).

NL-CPA protocol – We assume that the nonlinear
mechanism is local, i.e., it depends on the magnitude of
the scattering field |ψn0

| ≡ |⟨n0|ψ⟩| at a specific position
|n0⟩ associated with the position of a nonlinear defect (we
use Dirac notation and represent all operators in a local
orthonormal basis {|n⟩}). We do not impose any con-
straints on the functional form of the nonlinearity which

we generically represent as ν = ν
(
|ψn0 |

2
)
. By neglecting

excitation of higher harmonics, the wave operator may be
represented in Fourier space by the following system of
coupled nonlinear algebraic equations,(

H(ω) + ν
(
|ψn0 |

2
)
|n0⟩ ⟨n0|

)
|ψ⟩ = iD

∣∣s+〉 , (1)

where H(ω) is an N × N matrix that describes the dy-
namics inside the scattering system in the absence of
nonlinear mechanisms, the N × L0 matrix D describes
the coupling of the L0 transmission lines (TL) with the
system, and |s+⟩ is the L0−dimensional vector that de-
scribes the incident wavefront in a flux-normalized basis.
Wave-continuity requires |s−⟩ = DT |ψ⟩+K |s+⟩, where
K = KT is the L0×L0 direct scattering matrix satisfying
unitarity KK† = 1. Imposing zero-outgoing scattering
conditions, |s−⟩ = 0, enables us to re-express Eq. (1) as,

M̃ |ψ⟩ = 0; M̃ =
(
M + ν

(
|ψn0 |

2
)
|n0⟩ ⟨n0|

)
, (2)

where M = H(ω) + iDK†DT (see SM [42]). We intro-
duce the (N − 1)×N filtering matrix, F with its defin-
ing properties, FTF + |n0⟩ ⟨n0| = IN , FFT = IN−1 and
F |n0⟩ = 0 to decouple the nonlinear element from the
remaining |n⟩, n ̸= n0. The NL-CPA algorithm consists
of the following steps:

Step 1: Insert the identity matrix related to F above
into Eq. (2) and isolate the nonlinear terms,

MFTF |ψ⟩ = −ψn0

(
M |n0⟩+ ν

(
|ψn0 |

2
)
|n0⟩

)
. (3)

Step 2a: Apply F to Eq. (3) and invert to solve for
the field on the linear elements in terms of the nonlinear
contributions,

F |ψ⟩ = −ψn0

(
FMFT

)−1
FM |n0⟩ . (4)

Step 2b: Apply ⟨n0| to Eq. (3), to isolate the nonlinear
part of the scattering field,

M̃n0n0
ψn0

=
(
ν(|ψn0

|2) + α1

)
ψn0

= −⟨n0|MFTF |ψ⟩ = α0ψn0

(5)
where in the third equality we have inserted Eq. (4).
Above, we have introduced the variables α1 ≡ ⟨n0|M |n0⟩
and α0 ≡ ⟨n0|MFT

(
FMFT

)−1
FM |n0⟩ (involving

only linear modeling elements).

Step 3: Solve for |ψn0
|2 ̸= 0 given the functional form

of the nonlinearity,

|ψn0
|2 = ν−1 (α0 − α1) . (6)

A critical condition for the physicality of the solution is
that |ψn0 |

2 ∈ R+, identified by a single parameter sweep
in ω, as opposed to the unaided 2L0 parameter sweep in
relative amplitudes and phases of |s+⟩ and ω. Between
Eq. (4) and Eq. (6) the CPA scattering field has been
obtained up to an arbitrary global phase, |ψNL−CPA⟩ =
FTF |ψ⟩ + ψn0

|n0⟩. The continuity relation and zero-
outgoing scattering conditions, immediately provides the
input wave,

∣∣s+NL−CPA

〉
= −K†DT |ψNL−CPA⟩.

Experimental setup – The microwave network is
formed by coaxial cables (bonds) connected by n =
1, · · · , N T-junctions (vertices). A local lossy (saturable)
nonlinearity is incorporated at the N -th vertex, by sub-
stituting the T-junction with a dielectric cylindrical res-
onator. The bonds are inductively coupled to the res-
onator by transforming the cable ends into “kink” anten-
nas. Subsequently, this resonator is inductively coupled
to a metallic ring, which is positioned above its center and
is short-circuited to a diode. The kink antennas generate
an EM field that is confined within the resonator and in-
duces a current in the diode. High currents generated by
strong fields, activate a nonlinear response of the diode
which leads to a shift in the resonator’s frequency.

The excitation signal is injected into port 1 of the
VNA, evenly divided into two channels by a T-junction,
and subsequently routed through IQ-modulators which
control the amplitude and phase of the input signals (I1,
I2). The shaped wavefront is directed towards two circu-
lators which separate the input and output signals. The
latter are directed to port 2 (O1) and 3 (O2) of the VNA
for processing. The experimental setup is shown in Fig. 1.
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FIG. 2. (a) Absorption measurements (color scale) versus
frequency Re(f) and power P1. Red circles represent calcu-
lated complex zeros of the nonlinear scattering process as a
function of input power P1. (b) The same plot as in (a) for
broadband absorbance. The theoretical analysis of complex
zeroes (red circles) indicates the existence of two nearby NL-
CPAs that bifurcate from a complex-zero EPD occurring in
proximity to the real frequency axis. (c) The relative output
signal O = 1− A versus the frequency detuning δf from the
maximum absorption conditions corresponding to case (b).
The blue (green) line is the experiment (theory). The red
dashed (dotted) line is the best fit with slope 3 (slope 3.5) ap-
proximating a quartic lineshape expected for an EPD-CPA.
The orange dashed line corresponds to a Lorentzian lineshape
(slope 2) and is drawn for comparison. (d) Parametric evolu-
tion of the complex zero modes, versus the input power P1:
(d1) the real part Re(f) of complex zero frequency; (d2) its
imaginary part Im(f) (the small values signify proximity to
the real frequency axis); (d3) input power P2; and (d4) rela-
tive phase ϕ. The degeneracy of the complex frequencies and
the corresponding modes occurs at the same value of P1 (ver-
tical blue dashed line) signifying a complex zero NL-EPD.

The efficiency of our NL-CPA protocol is evaluated
by the measured absorption A = 1 − O, where O ≡
|O1|2+|O2|2
|I1|2+|I2|2 is the total relative output signal. In our

experiment, we have used the VNA and the IQ mod-
ulators to tune four external parameters for the de-
sign of NL-CPA wavefronts: the incident frequency f ∈
[6.25, 6.45]GHz, the relative phase of the injected field
amplitudes ϕ = ϕ1 − ϕ2 ∈ [0◦, 360◦] at channels 1 and 2
and their corresponding input power P1 (channel 1) and
P2 (channel 2) with P1,2 ∈ [−45, 5] dBm.

Implementation – The theoretical modeling of the
network platform and the NL-CPA protocol implemen-
tation can be found in the SM [42].

Intensity manipulation of the CPA frequency. We first
demonstrate the nonlinear CPA modality associated with
the intensity manipulation of the CPA frequency. For
this purpose, we have used the ring network (N=2) of
Fig. 1 (b) where this modality is accessible in the avail-
able power and frequency range of our VNA. Figure 2(a)

reports the parametric evolution of the complex zeroes of
the nonlinear scattering process (red circles) versus the
input power P1. The NL-CPA occurs when a complex
zero crosses the real frequency axis at f cpa ≈ 6.397GHz,
with input power P cpa

1 ≈ −16.10 dBm, relative phase
ϕcpa ≈ 97◦ and power ratio Rcpa ≡ P cpa

1 /P cpa
2 ≈ 2.9.

The experimental investigation, has been guided by
the prediction of our NL-CPA theory which allowed
to confine the large parameter space to a smaller do-
main. A maximum absorbance of A∗ = 99.998% oc-
curs at frequency f∗ ≈ 6.391GHz for a wavefront with
P ∗
1 ≈ −17.67 dBm, R∗ ≡ P ∗

1 /P
∗
2 ≈ 2.2, and ϕ∗ ≈ 97◦

(For detailed comparison between theory and experi-
ment, see SM Figs. S1,S2 [42]). The small discrepancies
between the predicted NL-CPA wavefront and the exper-
imental results are associated with the measuring preci-
sion of the electrical permittivity of the coaxial cables
and the uncertainty in the parameters used to model the
lossy nonlinearity [42]. Figure 2(a) reports the measured
absorbance A versus frequency f and injected power P1

(for fixed R∗ and phase ϕ∗). This example demonstrates
a narrowband ∼ 20MHz absorption with A ≥ 95%.

Intensity manipulation of absorbance band-width by
NL-EPDs. An example where the injected power levels
are employed as an external parameter for reconfiguring
the absorbance bandwidth is shown in Fig. 2(b). For the
previous ring-graph configuration, we find a broadband
∼ 50MHz high absorbance (A > 95%) for increased in-
jected powers. The experimental parameters of the wave-
front that results in a peak absorbance A∗ ≈ 99.55%
are f∗ ≈ 6.34GHz with P ∗

1 ≈ −3.5 dBm, R∗ ≈ 5.5 and
ϕ∗ ≈ 66◦. In this parameter range, the NL-CPA pro-
tocol predicted two NL-CPAs (a) at f cpa ≈ 6.346 GHz
with P cpa

1 ≈ −3.6 dBm, power ratio Rcpa ≈ 6.3 and rel-
ative phase ϕcpa ≈ 120◦; and (b) at f cpa ≈ 6.327GHz
with P cpa

1 ≈ −2.3 dBm, Rcpa ≈ 6.6 and ϕcpa ≈ 136◦.
The phase discrepancy between the experimental and the
theoretical values is associated with the precision of the
extracted experimental parameters of the network. It
turns out that the wavefront phase is the most sensitive
among all other characteristics of the optimal wavefront
(see SM and Figs. S1,S2 [42]).

We have also analyzed the shape of the absorption
spectrum in the vicinity of f∗. In Fig. 2(c) we report
the measured relative outgoing signal O = 1 − A versus
δf ≡ f − f∗ (blue line) in a double-logarithmic fash-
ion. We find a cubic power-law scaling O ∼ (δf)3 (see
dashed red line) which is distinct from the traditional
Lorentzian quadratic behavior. The latter is shown for
comparison with a dashed orange line. In the same fig-
ure, we also present the scaling of the theoretical result
(green line) and find that O ∼ (δf)3.5 which is reminis-
cent of the quartic scaling occurring in the case of EPD-
CPAs. In fact, by tracing the theoretically evaluated NL-
CPAs in the complex frequency domain we have identi-
fied an EPD of the scattering zeroes (see red circles in Fig.
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FIG. 3. Measured absorption (color scale) versus input frequency Re(f) and power P1 for (a) narrowband and (b) broadband
NL-CPA. The red circles in both (a,b) are the theoretically calculated trajectories of the complex zeroes as P1 varies. In
(b), two NL-CPAs, close to one-another, emanate from a complex zero EPD occuring in the proximity of the real-frequency
axis (Im(fEPD) ∼ 10−4). For all practical purposes, these two NL-CPAs form an EPD-CPA. (c) The relative output signal
(O = 1 − A) versus the frequency detuning δf at P cpa

1 . The blue (green) line indicates the experimental (theoretical) scaling
of O versus detuning from f∗ (fEPD). The red dotted line indicates the best power-law fit with slope 3.5 (close to quartic
behavior expected for EPD-CPAs). A quadratic (Lorentzian) scaling is shown (orange dashed line) for comparison.

2(b)) occurring at fEPD ≈ (6.335 + i · 0.0075) GHz with
PEPD
1 ≈ −1.18 dBm, REPD ≈ 8.6 and ϕEPD ≈ 131◦.

The small imaginary part of the complex zeroes-EPD
signifies its proximity to the real frequency axis and jus-
tifies the fact that the experimental absorption lineshape
demonstrates broadband characteristics similar to the
one predicted for an EPD-CPA [26–28].

To further examine the nature of the complex-zero de-
generacy, we examined in detail the parametric evolution
(versus input power P1) of the complex frequency, ampli-
tudes, and relative phases of the complex-zero modes, see
Figs. 2(d1)-(d4). All these parameters coalesce simulta-
neously at the same input power signifying the formation
of a complex- zero NL-EPD.

Generalization to Complex Networks. Next, we im-
plement the NL-CPA protocol to a tetrahedron network
(N = 4), see Fig. 1 (c). In the absence of nonlineari-
ties, and for incommensurate bond lengths, this network
shows many typical features of wave chaos [43–45]; thus
offering a platform for simulating real-world scattering
environments.

Using the NL-CPA protocol we have predicted the for-
mation of a NL-CPA by tracing the trajectory of the com-
plex zeroes (red circles) of the nonlinear scattering pro-
cess and identifying the point at which it crosses the real
axis. The wavefront parameters that we have found are
(f cpa, P cpa

1 ) ≈ (6.369GHz,−6.6 dBm) for input power
ratio Rcpa ≈ 5.96 and relative phase ϕcpa ≈ 191◦. Again,
these estimations allowed us to reduce the parameter
space in our experimental implementation. We have
found that an optimal absorption of A∗ ≈ 99.97% occurs
at f∗ ≈ 6.371GHz with injected power P ∗

1 ≈ −5.09 dBm,
power ratio R∗ ≈ 6.03 and relative phase ϕ∗ ≈ 207◦ be-
tween the two injected wavefronts. Figure 3(a) shows the
measured absorbance (color-grade) versus incident power
P1 and frequency f for fixed relative power ratio R∗ and
relative phase ϕ∗ (see SM Figs. S3(a,b), S4(a1-d1) [42]).

We have also identified broadband absorption scenar-

ios in a tetrahedron network (bandwidth ≈ 20MHz as op-
posed to ≈ 6.3MHz in the previous case, for A > 95%).
An example is reported in Fig. 3(b) where we show
the measured absorbance (color scale) for varying in-
cident frequency and injected power P1 (fixed relative
power R∗ ≈ 0.45 and relative phase ϕ∗ ≈ 301◦). At
f∗ ≈ 6.39GHz and P ∗

1 ≈ −19.05 dBm the absorbance
acquires its maximum value A∗ ≈ 99.93%. In compari-
son, the NL-CPA protocol predicted the existence of two
nearby NL-CPA wavefronts. These correspond to the
wavefront parameters for which the complex zeroes (red
circles) cross the real frequency axis in Fig. 3(b) while
varying P1: (a) at f

cpa ≈ 6.397GHz with P cpa
1 ≈ −19.24

dBm, Rcpa ≈ 0.68, and ϕcpa ≈ 377.8◦; and (b) at
f ≈ 6.396GHz with P cpa

1 = −19.13 dBm, Rcpa ≈ 0.71,
and ϕcpa ≈ 376.4◦. Further analysis and comparison be-
tween theory and experimental data is provided in the
SM [42], see Figs. S3(c,d) and Figs. S4(a2-d2). The de-
generacy occurs slightly above the real plane (imaginary
part of complex EPD zero ∼ 10−4) which is completely
untraceable in the experiment; thus emulating the be-
havior of an actual NL-CPA EPD. The exact parame-
ters of the complex-zero NL-EPD are fEPD ≈ (6.396 +
0.00027i)GHz, PEPD

1 ≈ −19 dBm, REPD ≈ 0.69,and
ϕEPD ≈ 376.2◦. We have confirmed that at this point
the complex-zero modes form an EPD, by analyzing the
parametric evolution of their complex frequencies, P2,
and relative phase ϕ that characterize them versus the
injected power P1. All of them coalesce at PEPD

1 as ex-
pected for an EPD (for a detailed description of the NL-
EPD modes see SM Fig. S5 [42]). Further confirmation of
the EPD was provided by analyzing the lineshape of the
absorbance in the proximity of the (quasi-)degeneracy,
see Fig. 3(c). Similar to the previous case of the ring-
graph, we find that the scaling of the relative outgoing
signal with respect to the detuning δf is best fitted by a
super-Lorentzian power-law O ∼ (δf)3.5 which resembles
the quartic line-shape expected for an EPD-CPA [26].
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Conclusions - We have developed a NL-CPA proto-
col that is generically applicable to any scattering setup.
The scheme utilizes the nonlinear light-matter interac-
tions as a reconfigurable knob to tailor the features of
the absorption spectrum through external power control.
We have implemented our proposal using microwave net-
works of coaxial cables and demonstrated a variety of
new modalities due to the nonlinearity: Control in the
creation/annihilation of NL-CPAs, their frequencies, and
band-width manipulation for which high absorption oc-
curs. The latter is achieved in the proximity of zero-
EPDs of the scattering process. Our results establish
NL-CPA protocols as a versatile scheme for the creation
of hot (or cold)- spots in reverberate environments.
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Alù, “Coherent perfect absorption in chaotic optical mi-
croresonators for efficient modal control,” arXiv preprint
arXiv:2211.08727 (2022).
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tures of Chaos (Springer Series in Synergetics, 2018).

[46] Do Hyeok Jeon, Mattis Reisner, Fabrice Mortessagne,
Tsampikos Kottos, and Ulrich Kuhl, “Non-hermitian
CT-symmetric spectral protection of nonlinear defect
modes,” Phys. Rev. Lett. 125, 113901 (2020).

[47] DN Christodoulides, TH Coskun, and RI Joseph, “In-
coherent spatial solitons in saturable nonlinear media,”
Opt Lett. 22, 1080–2 (1997).

[48] Claire Bourquard, Abel Faure-Beaulieu, and Nicolas
Noiray, “Whistling of deep cavities subject to turbulent
grazing flow: intermittently unstable aeroacoustic feed-
back,” J. Fluid Mech. 909, A19 (2021).

[49] Cheng-Zhen Wang, Rodion Kononchuk, Ulrich Kuhl,
and Tsampikos Kottos, “Loss-induced violation of the
fundamental transmittance-asymmetry bound in nonlin-
ear complex wave systems,” Phys. Rev. Lett. 131, 123801
(2023).

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.093901
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.093901
https://www.science.org/doi/10.1126/science.abj1028
https://doi.org/10.1038/s41467-022-27990-w
https://doi.org/10.1038/s41467-022-27990-w
http://dx.doi.org/ 10.1103/PhysRevResearch.2.043422
http://dx.doi.org/ 10.1103/PhysRevResearch.2.043422
http://dx.doi.org/ 10.1103/PhysRevApplied.17.024027
https://doi.org/10.1002/lpor.202000471
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.044101
https://arxiv.org/abs/2211.08727
https://arxiv.org/abs/2211.08727
https://arxiv.org/abs/2305.00906
https://arxiv.org/abs/2305.00906
https://www.nature.com/articles/s41586-019-0971-3
https://www.nature.com/articles/s41586-019-0971-3
https://arxiv.org/abs/2305.02786
https://arxiv.org/abs/2305.02786
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.203904
https://opg.optica.org/ol/abstract.cfm?uri=ol-38-24-5252
https://opg.optica.org/ol/abstract.cfm?uri=ol-38-24-5252
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.063850
https://www.science.org/doi/10.1126/sciadv.aat6539
https://www.science.org/doi/10.1126/sciadv.aat6539
https://www.nature.com/articles/s42005-021-00782-2
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.4794
https://iopscience.iop.org/article/10.1088/0959-7174/14/1/013/pdf
https://link.springer.com/book/10.1007/978-3-319-97580-1
https://link.springer.com/book/10.1007/978-3-319-97580-1
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.113901
http://dx.doi.org/ 10.1364/ol.22.001080
http://dx.doi.org/10.1017/jfm.2020.984
http://dx.doi.org/10.1103/PhysRevLett.131.123801
http://dx.doi.org/10.1103/PhysRevLett.131.123801


S1

Supplemental Material for manuscript:
Nonlinearity-induced Scattering Zero Degeneracies for Spectral

Management of Coherent Perfect Absorption in Complex Systems

Cheng-Zhen Wang1, John Guillamon1, William Tuxbury1, Ulrich Kuhl2, and Tsampikos Kottos1
1 Wave Transport in Complex Systems Lab, Department of Physics, Wesleyan University, Middletown, CT-06459,

USA
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THEORETICAL MODEL

Networks

The transport characteristics of the system are mod-
eled by a fusion of two primary components: the first
component is a metric graph model of one dimensional
wires supporting only one propagating mode connected
by vertices–this model demonstrates wave chaotic scat-
tering statistics; the second component are the steady
state solutions of a set of nonlinear coupled mode theory
equations to model the nonlinear cavity mode response
of the resonator. We will consider a microwave graph
with N vertices (or nodes), of which L0 of them are con-
nected to transmission lines (TL). The coupling to the
TL is described by the N ×L0 matrix D with elements 1
(0) when a vertex is connected (not connected) to a TL.
For example, in the case where the 1st and 2nd vertices
are connected to TL, with the N −2 other vertices being
internal vertices, the transpose coupling matrix takes the
form

DT =

[
1 0 · · · 0
0 1 · · · 0

]
. (S1)

Bonds (or edges) are one-dimensional connections be-
tween vertices, where the position on each bond from ver-
tex µ to β can be defined as xµβ , with xµβ = 0 on vertex
µ and xµβ = Lµβ on vertex β, and xβµ = Lµβ − xµβ . To
account for how the bonds connect the vertices, we will
introduce the symmetric N × N matrix A which takes
entries of 1 for connected vertices and 0 otherwise, with
all diagonal elements set to zero as we do not allow self-
connected vertices. In addition to the A matrix, we also
use another symmetric N ×N matrix, L, which contains
the bond lengths for the connections between the ver-
tices. For a simple fully connected tetrahedron graph,
they take the following form:

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ; L =


0 L12 L13 L14

L21 0 L23 L24

L31 L32 0 L34

L41 L42 L43 0

 . (S2)

Note that Lµβ = Lβµ. Finally, throughout the
manuscript, we will be assuming that the nonlinearity
is located at vertex n0 = N .

Linear Wave Network Theory and CPA conditions

First we address the wave propagation at the linear
subspace of the networks. The one-dimensional bonds
can model the coax cables where the microwaves propa-
gate. The wave equation that describes the electric po-
tential difference ψµβ(xµ,β) at position xµ,β along the
Lµ,β−bond is given as

d2

dxµβ2
ψµβ (xµβ) +

ω2ϵ

c2
ψµβ (xµβ) = 0 , (S3)

where ϵ is the dielectric constant of the coaxial cables,
ω = 2πf is the angular frequency with f the frequency
and c is the speed of light in vacuum. The wave number
is k =

√
ϵω/c. It is convenient to define the wave at a

vertex µ as ψµ,β(xµ,β = 0) = ψµ = ϕµ where we have
introduced the vertex field Φ = (ϕ1, ϕ2, · · · , ϕN )T .
The solutions of the above Eq. (S3) must be supple-

mented with the appropriate boundary conditions at the
vertices. First, we consider wave continuity at each ver-
tex, i.e., ψµβ (xµβ = 0) = ϕµ for any bond that connects
the vertex µ with any vertex β. Using the vertex scat-
tering field Φ we write the wave at each bond as

ψµβ (xµβ) = ϕµ
sin k (Lµβ − xµβ)

sin kLµβ
+ ϕβ

sin kxµβ
sin kLµβ

. (S4)

Next, we impose current conservation at each vertex.
This condition takes the form∑
β

d

dxµβ
ψµβ (xµβ = 0) +

∑
µ=1,2

δµ,α
d

dxµ
ψµ (xµ = 0) = 0.

(S5)

Finally, the CPA condition is satisfied by enforcing
only incoming wave forms on the TLs

ψµ (xµ) = Iµδµαe
−ikxµ , (S6)

where Iµ is the amplitude of the injected wave at vertex µ
and the subscript α = 1, 2 indicates the TL. The position
xµ ∈ [0,∞) at the TL is xµ = 0 at the µ-vertex where
the TL is connected. Note that by excluding a counter-
propagating wave Rµδµαe

ikxµ , we ensure that there are
no outgoing waves (CPA-condition).
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Modeling of nonlinear resonator

Next, we want to evaluate the field at the edge-points
of the three kink-antennas that are closer to the nonlinear
resonator. To this end, we first calculate the scattering
field ã(t) at the nonlinear resonator. We use a Temporal
Coupled Mode Theory modeling to describe the coupling
between the kink antennas and the resonator

i
d

dt
ã (t) =

(
Ω− i

2
DRD

T
R

)
ã (t) + iDRS̃

+

|S̃−⟩ = K |S̃+⟩+DT
Rã(t) . (S7)

where for simplicity of the modeling we assume that
K = −I3 (no direct coupling between the antennas)
and DR = (γl1 , γl2 , γl3) describes the coupling of the
resonator to the three kink antennas. Each of these
antennas is connected to a corresponding ln-vertex of
the remaining graph. The non-linear resonant frequency
Ω = ω0 − 1

2ν(|ã|
2) models the combined resonator-diode

system, where ω0 is the linear angular frequency of the
resonator in the absence of the coupling with the ring-
diode and might also include radiative (or/and Ohmic)
linear losses.

We assume that the scattering process does not ex-
cite higher harmonics. In this respect, the field at the
resonator and the three antennas take the form

ã (t) = ϕN · e−iωt; |S̃±⟩ = |s±⟩ · e−iωt , (S8)

where |s±⟩ = (s±l1 , s
±
l2
, s±l3)

T is a three-dimensional vector
that describes the amplitudes of incoming (+) and out-
going (-) waves from the antennas to the resonator. The
indices ln label the kink-antenna that is attached to the
vertex ln of the graph. Substituting the above expres-
sions in Eqs. (S7) we get the following equations that
describe the steady-state scattering fields(

ω − Ω+ i
2DRD

T
R

)
ϕN = iDR |s+⟩ , (S9)

|s−⟩ = −I |s+⟩+DT
RϕN . (S10)

We proceed by considering the coupling strengths be-
tween the resonator and the three kink-antennas as fit-
ting parameters. Using Eq. (S10), we express the wave
at the origin point of the cable antennas (proximity to
the resonator), as

ϕ
(l)
N = s+l + s−l = γlϕN , (S11)

where the index l = ln labels the kink-antenna that is at-
tached to the vertex l of the graph. The field at a generic
position xNl ∈ [0, LNl] at the cables of the kink antennas
(LN,l are the lengths of the kink-antennas) can be gener-
ally expressed as a combination of counter-propagating
waves. We have

ψl,N (xlN ) = s+l e
−ikxNl + s−l e

ikxNl (S12)

Using Eqs. (S11,S12) we write the field amplitude at
the position xN,l = LN,l (endpoint/vertex of the kink-
antenna that connects to the rest of the graph) as

ϕl = −2is+l sin(kLNl) + γle
−ikLNlϕN , l ̸= N (S13)

which allows us to solve for the coefficients s+l in terms
of the field amplitudes ϕl. We have:

s+l = i
csc (kLNl)

2

[
ϕl − γle

−ikLNlϕN
]

(S14)

Hybrid nonlinear resonator-network modeling

By combining Eqs. (S4)-(S6) from the linear subnet-
work with Eq. (S13) from the coupled mode theory anal-
ysis above, we arrive to the following set of equations(

H(N−1) − iFDDTFT
)
FΦ = −ϕN · Y , (S15)

where D is the N × L0 graph-TL coupling matrix Eq.
(S1), F is a (N − 1) × N filtered matrix, with elements
Fij = δi,j and M (N−1) is the (N − 1) × (N − 1) matrix
with elements

H
(N−1)
µ,β =

{
−
∑

γ ̸=µAµγ cot(kLµγ) if µ = β

Aµβ csc(kLµβ) if µ ̸= β
(S16)

where µ, β = 1, · · · , N − 1 and γ = 1, · · · , N . The
(N − 1) dimensional vector Y has elements Yµ =
δµ,lnγln csc (kLNln). It should be noted that Eq. (S15)
involves only the linear sub-network i.e. it excludes the
nonlinear vertex N .

Furthermore, the wave amplitude ϕN at the nonlinear
resonator, can be expressed in terms of the field ampli-
tudes ϕln at the ln-vertices using Eq. (S9) where the
components s+l of the vector |s+⟩ are substituted from
Eq. (S14). We have[(

Ω− i
DT

RDR

2
− ω

)
+

1

2

∑
ln

γln csc (kLN,ln) e
−ikLNln

]
ϕN

=
1

2

∑
ln

γln csc (kLN,ln)ϕln =
1

2
Y T · F · Φ (S17)

In fact, Eqs. (S15,S17) can be combined and written
in a compact form that follows the formulation of the
main text (see Eq. (2) in the main text). In our case the
matrix M̃ takes the form

M̃ =

([
H(N−1) Y
Y T HNN

]
− iDDT

)
+ ν(|ϕN |2) |N⟩⟨N |

(S18)
where (|N⟩⟨N |)ij = δN,j , and HNN = 2(ω − ω0) +
iDRD

T
R −

∑
ln

[
γln csc(kLNln)e

−ikLNln

]
.
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From Eq. (S15) we can evaluate the field amplitudes at the vertices of the linear subnetwork. We have

FΦ = −
(
H(N−1) − iFDDTFT

)−1

· Y · ϕN (S19)

in analogy with Eq. (4) of the main text.
By substituting the expression FΦ from Eq. (S19) to

the right side of Eq. (S17) we come up with the equiva-
lent expression of Eq. (5). Specifically, we have

ν(|ϕN |2) = 2

[(
ω0 − ω − i

DT
RDR

2

)
+

1

2

∑
ln

γln csc (kLN,ln) e
−ikLNln

]
+ Y T

(
H(N−1) − iFDDTFT

)−1

· Y (S20)

which allows us to evaluate the field intensity |ϕN |2 at the
nonlinear resonator (as a function of the incident wave
angular frequency ω = ck). The accepted solutions have
to satisfy the following physical conditions

0 < |ϕN |2 ∈ R, k ∈ R. (S21)

Equations (S19,S20) are crucial for evaluating the CPA
wavefront. Specifically, Eq. (S19) allows us to evaluate
the relative phase and amplitude of the incident wave-
front that results in a CPA. For example, if the leads are
attached at a set of vertices {µ}, then from continuity
at these vertices we get that Iµ = ϕµ = ⟨µ|FΦ⟩ ∝ ϕN
(we always assume that the leads are attached to linear
vertices). Therefore, the relative amplitude and phase of
the injected wavefront are independent of the field ϕN at
the nonlinear resonator. Finally, the amplitude of these
injected wavefronts is also evaluated by Eq. (S19) by sub-
stituting the magnitude of ϕN (associated with a CPA
frequency) from the solution of Eq. (S20). The global
(undetermined phase) is irrelevant for the CPA solution.

Up to this point, we did not specify the form ν(·) of
the nonlinear interaction. There are various options that
we can adopt. For example, a Kerr nonlinearity assumes
that ν(|ϕN |2) = χk|ϕN |2, while a saturable nonlinearity
assumes that ν(|ϕN |2) = z1/[1+α|ϕN |2] with χk, α, and
z1 being parameters that characterize the specific non-
linear mechanism. We point out that the above form
of the saturable nonlinearity is typical for a variety of
wave systems ranging from microwaves[46], optics[47] to
acoustics[48]. It turns out that the nonlinear diode that
we have used is best described by the saturable nonlin-
earity [46] (see last section).

NL-CPA WAVEFRONT SHAPING PROTOCOL
IN COUPLED MODE THEORY

In the main text of the paper we have experimentally
established an efficient wavefront shaping protocol appli-
cable to achieve CPA using as a testbed, networks of cou-

pled coaxial cables consisting of a single nonlinear vertex.
In the previous section of the Supplementary Materials,
we have detailed the implemented protocol for the special
case of networks. The developed algorithmic protocol,
however, is generic and independent of the specific sys-
tem framework. To demonstrate this generality, we turn
to Coupled Mode Theory (CMT) to describe a cavity con-
sisting of weakly coupled resonances, of which one, n0, is
endowed with a known nonlinear mechanism ν

(
|ψn0 |2

)
,

where we have used the notation ψn0 ≡ ⟨n0|ψ⟩. The
CMT equations read

i
d

dt
|Ψ⟩ = Heff|Ψ⟩+ ν|n0⟩⟨n0|Ψ⟩+ iD|S+⟩ (S22a)

∣∣S−〉 = DT |Ψ⟩ −
∣∣S+

〉
(S22b)

The first equation describes internal dynamics of the
time-dependent scattering field |Ψ⟩ in the cavity with
respect to a time-dependent incident waveform |S+⟩ in-
jected atM leads whose coupling to the cavity is encoded
in the purely real N×M coupling matrix D. The N×N
effective Hamiltonian Heff = H0 +Σ describes dynamics
of the linear part of the isolated system together with the
self-energy correction due to its coupling with the envi-
ronment, Σ = ∆− iΓ, where the real part ∆ is associated
with a resonant shift and the imaginary part Γ = 1

2DD
T

describes losses from energy leaking out to the leads [1].
The specific form of Σ depends on the nature of the leads.
Meanwhile, the basis modes of the isolated resonances are
denoted by |n⟩, therefore, the term ν|n0⟩⟨n0| indicates
the presence of a local nonlinear element associated with
the amplitude of the nth0 isolated resonance. The sec-
ond equation describes continuity of the field at each of
the lead ports with respect to the time-dependent outgo-
ing waveform |S−⟩. To develop the NL-CPA wavefront
shaping protocol in CMT, we perform a separation of
variables on the previous time-domain equations of mo-
tion, neglecting higher-order harmonics, |Ψ⟩ = e−iωt|ψ⟩
and |S±⟩ = e−iωt|s±⟩, where ω is the driving frequency
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of the incident wave. In terms of the time-independent
scattering field and wavefronts, we have the nonlinear
CMT equations of motion in the frequency domain.

(H − ν|n0⟩⟨n0|) |ψ⟩ = iD|s+⟩; H = ωIN −Heff

(S23a)

|s−⟩ = DT |ψ⟩ − |s+⟩ (S23b)

where IN is the N ×N identity matrix.
Similar to the approach taken in the main text, we in-

troduce the (N − 1)×N filtering matrix F , which serves
to extract the linear components of |ψ⟩, with the follow-
ing defining properties,

FTF + |n0⟩⟨n0| ≡ IN , (S24a)

FFT ≡ IN−1, (S24b)

F |n0⟩ ≡ 0 (S24c)

Explicitly, the elements of the filtering matrix may be

represented, Fij =

{
δi,j , i < n0
δi,j+1 i ≥ n0

.

We now proceed with formulating the nonlinear wave-
front shaping protocol by imposing CPA scattering condi-
tions corresponding to zero outgoing wavefront, |s−⟩ = 0
in eq. (S23b). Inserting the simplified continuity equa-
tion into eq. (S23a) and re-arranging, we have,

M̃ |ψ⟩ = 0; M̃ ≡ (M − ν|n0⟩⟨n0|) , (S25)

where M = ωIN − H̃eff = H − iDDT and H̃eff ≡
Heff + iDDT is the effective Hamiltonian with a time-
reversed self-energy correction. Notably, Eq. (S25) has
an identical form to Eq. (2) in the main text with the

only nonlinear component of M̃ being its n0 − th diag-
onal element, ⟨n0|M̃ |n0⟩ = ω − ε̃n0

− ν
(
|ψn0

|2
)
, where

ε̃n0 ≡ ⟨n0|H̃eff|n0⟩, therefore the sub-matrix FM̃FT con-
tains purely linear elements. Employing property (S24a)
of the filtering matrix, we separate the linear and non-
linear parts of Eq. (S25),

MFTF |ψ⟩ = −ψn0M̃ |n0⟩ (S26)

which is Eq. (3) of the main text. By multiplying

Eq. (S26) by
(
FMFT

)−1
F and re-arranging, we can

solve for the linear part of the field in terms of the non-
linear part of the scattering field (see Eq. (4) of the main
text),

F |ψ⟩ = −ψn0

(
FMFT

)−1
FM |n0⟩ (S27)

where on the right-hand side we have again involved
property Eq. (S24c). Then, by multiplying Eq. (S26)
with the inner product of ⟨n0| and using property (S24c),
we are able to isolate the nonlinear part of the scattering
field,

⟨n0|MFTF |ψ⟩+ ψn0
(ω − ε̃n0

− ν) = 0 . (S28)

Inserting the result for the linear part of the field from
eq. (S27) into this expression, and assuming ψn0 ̸= 0
which cancels, we have the outcome,

⟨n0|MFT
(
FMFT

)−1
FM |n0⟩+(ω−ε̃n0−ν) = 0 (S29)

which reproduces Eq. (5) of the main text and can be
used to solve for the field intensity corresponding to the
nonlinear resonance and, therefore, the field amplitude
up to an arbitrary global phase,

ν(|ψn0 |2) = ⟨n0|MFT
(
FMFT

)−1
FM |n0⟩+ (ω − ε̃n0) .

(S30)
Therefore, NL-CPA scattering conditions can be identi-
fied from a single-parameter search in ω, whenever the so-
lution for |ψn0

|2 from Eq. (S30) is real and positive. The
result for the nonlinear part of the field can then be re-
inserted into Eq. (S27) to obtain the rest of the NL-CPA
field. Lastly, owing to the simplicity of the CPA scatter-
ing conditions, the incident NL-CPA wavefront can easily
be acquired, |s+⟩ = DT |ψ⟩ = DTFTF |ψ⟩+ ψn0

DT |n0⟩.

GENERAL SOLUTION AND EVALUATION OF
ABSORBANCE

In the previous section, the generic merit of our NL-
CPA protocol was demonstrated by justifying its appli-
cability in the abstract framework of CMT. As it turns
out, the notation introduced is also useful to establish
an analytic solution to the general scattering problem,
irrespective of the scattering conditions (e.g., CPA), for
systems consisting of a single local nonlinear element. To
this end, we again proceed by employing properties of the
filtering matrix to isolate the nonlinear part of the field.
Inserting Eq. (S24a) into Eq. (S23a) and re-arranging the
terms, we have,

(ωIN −Heff)F
TF |ψ⟩ =

ψn0
Heff|n0⟩+ ψn0

(ν − ω)|n0⟩+ iD|s+⟩ .
(S31)

Defining the filtered Green function as G̃ ≡[
F (ωIN −Heff)F

T
]−1

, we multiply Eq. (S31) by

G̃F and, utilizing property (S24c), we obtain the linear
part of the scattering field,

F |ψ⟩ = ψn0
G̃FHeff|n0⟩+ iG̃FD|s+⟩ . (S32)

Then, by multiplying Eq. (S31) by ⟨n0|, we can isolate
the nonlinear part of the field,

−⟨n0|HeffF
TF |ψ⟩ = ψn0

(εn0
+ ν − ω) + i⟨n0|D|s+⟩

(S33)
where εn0 ≡ ⟨n0|Heff|n0⟩. Inserting the linear part (S32)
to this result, we have the succinct relation,

β0 = ψn0(ν + β1) , (S34a)
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where the coefficients are defined,

β0 ≡ −i⟨n0|
(
HeffF

T G̃F + IN
)
D|s+⟩ (S34b)

β1 ≡ ⟨n0|HeffF
T G̃FHeff|n0⟩ − (ω − εn0

) . (S34c)

Computing the norm-squared of Eq. (S34a) and solving
for zero, denoting I ≡ |ψn0

|2,

I|ν(I)|2 + 2IRe [β∗
1ν(I)] + I|β1|2 − |β0|2 = 0 . (S35)

Which may be solved using Cardano’s formula once an
explicit form of the nonlinearity is specified and Eq. (S35)
is expressed as a cubic polynomial in I,

aI3 + bI2 + cI + d = 0 . (S36)

In case of a Kerr-type nonlinearity of the form ν(I) = χI,
the coefficients of Eq. (S36) are given by,

a = |χ|2; b = 2Re [β∗
1χ] ; c = |β1|2; d = −|β0|2 .

(S37a)
Meanwhile, in case of a saturable-type nonlinearity of the
form ν(I) = z1− z0

1+αI = δ+χI
1+αI with δ ≡ z1− z0, χ ≡ z1α

and Re[α] > 0, the coefficients of Eq. (S36) take the more
complicated form,

a = |χ|2 + 2Re[β∗
1χα

∗] + |αβ1|2,
b = 2Re[δ∗χ+ β∗

1(χ+ δα∗)] + 2Re[α]|β1|2 − |αβ0|2,
c = |δ|2 + 2Re[β∗

1δ] + |β1|2 − 2Re[α]|β0|2,
d = −|β0|2 .

(S37b)
Once the coefficients of the cubic polynomial are ob-
tained, Cardano’s formula provides the roots k ∈
{0, 1, 2}, via

Ik = − 1

3a

(
b+ ζkC +

∆0

ζkC

)
. (S38a)

Where ζ ≡ −1+i
√
3

2 = ei
2π
3 is the primitive 3rd root of

unity and the constants ∆0,∆1 and C are provided by,

∆0 ≡ b2 − 3ac,

∆1 ≡ 2b3 − 9abc+ 27a2d,

C ≡

(
∆1 ±

√
∆2

1 − 4∆3
0

2

)
.

(S38b)

Once physical solutions are recovered, corresponding to
real and positive roots Ik, ν(I) can be evaluated for the
respective incident frequency ω and wavefront |s+⟩. With
ν now known, a conventional linear approach becomes
applicable, specifically (S23a) provides the scattering
field,

|ψ⟩ = iG{ω,|s+⟩}D
∣∣s+〉 (S39)

G{ω,|s+⟩} ≡ [ωIN −Heff − ν|n0⟩⟨n0|]−1
(S40)

Then from Eq. S39, Eq. S23b provides the corresponding
output wavefront,∣∣s−〉 = S{ω,|s+⟩}

∣∣s+〉 , (S41)

where the nonlinear scattering function,

S{ω,|s+⟩} ≡ −IN + iDTG{ω,|s+⟩}D (S42)

is dependent on the driving frequency of the incident
wave as well as its amplitude and relative phase at each of
the ports. Eventually, the absorbance can be evaluated
as:

A = 1− ⟨s−|s−⟩
⟨s+|s+⟩

(S43)

NONLINEAR CPA AND EP CPA IN RING
GRAPH

In Fig. S1, we present experimental and theoretical
plots of absorption as a function of frequency and input
power. Specifically, Fig. S1(a) shows the experimental
results for narrow-band CPA, for fixed injected power
ratio R∗ ≈ 2.2 and relative phase ϕ∗ ≈ 97◦– see also
Fig. 2(a) of the main text. The associated numerical cal-
culation of absorbance (see Fig. S1(b)) uses a wave with
fixed injected power ratio Rcpa ≈ 2.9 and relative phase
ϕcpa ≈ 97◦– see also main text – associated with the NL-
CPA wavefront that was evaluated using our protocol.
Similarly, Fig. S1(c) is the experimental results for

a wide-band CPA, where the injected wavefront has
fixed injected power ratio R∗ ≈ 5.5 and relative phase
ϕ∗ ≈ 66◦– see also Fig. 2(b) of the main text. The anal-
ogous theoretical analysis is shown in Fig. S1(d), demon-
strating a similar behavior as our experimental data. The
calculation has been performed using a fixed injected rel-
ative power Rcpa ≈ 6.3, and relative phase ϕcpa ≈ 120◦.
These values correspond to the optimal wavefront – see
also main text – and have been evaluated using our NL-
CPA protocol.
To confirm the existence of NL-CPA and its corre-

sponding wavefront, we analyzed the outgoing relative
signals O = 1−A against each of the remaining parame-
ters, fixing the rest of them at their NL-CPA values. Fig-
ures S2(a1)-(d1) show the experimental measurements
(blue solid line) of O versus frequency f , input powers
P1 and P2 from channels 1 and 2 (IQ-modulator 1 and
2, respectively), and the relative phase ϕ between chan-
nel 1 and channel 2, respectively. At the same figures,
we also report the theoretical results (red dashed lines)
derived using the two NL-CPA wavefronts predicted by
our protocol. The analogous parametric analysis for the
broadband NL-CPA scenario is illustrated in Figs. S2
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(a) (b) (c) (d)

FIG. S1. (a) Experimentally measured absorbance as a function of input frequency and power P1 controlled by the IQ
modulator 1. The peak absorption is A∗ = 99.998% occurring at P ∗

1 ≈ −17.67 dBm, P ∗
2 ≈ −21.09 dBm, a relative phase of

ϕ∗ ≈ 97◦, and a frequency of f∗ ≈ 6.391GHz. The experimental wavefront maintained the optimal values of the power ratio
R∗ ≈ 2.2 and relative phase ϕ∗ ≈ 97◦. (b) Theoretically calculated absorbance versus frequency f and input power P1 using a
fixed power ratio Rcpa ≈ 2.9 and relative phase ϕcpa ≈ 97◦ that corresponds to the optimal wavefront profile evaluated from
the NL-CPA protocol. The other theoretical NL-CPA conditions are P cpa

1 ≈ −16.1 dBm, P cpa
2 ≈ −20.67 dBm, and frequency

of fcpa ≈ 6.397GHz. (c) Experimentally measured absorbance of a broadband NL-CPA state, versus frequency and input
power P1. The peak absorption is A∗ = 99.55% at frequency f∗ ≈ 6.34 GHz, with P ∗

1 ≈ −3.5 dBm, P ∗
2 ≈ −10.90 dBm,

and relative phase ϕ∗
1 = 66◦. The associated wavefront used in these measurements is characterized by a fixed power ratio

R∗ ≈ 5.5 and relative phase ϕ∗
1 ≈ 66◦. (d) The same as (b) for a broadband NL-CPA scenario using a wavefront with fixed

power ratio Rcpa ≈ 6.3 and relative phase ϕcpa ≈ 120◦. The NL-CPA state corresponds to input powers P cpa
1 ≈ −3.6 dBm

and P cpa
2 ≈ −11.6 dBm, and a relative phase of ϕcpa ≈ 120◦ and occur at frequency fcpa ≈ 6.34GHz. The CPA point in all

subfigures is marked with a red arrow. In subfigure (d) we indicate with an additional green arrow the position of the second
(case (b) of main text) NL-CPA.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

FIG. S2. (a1)-(d1) Outgoing signal versus frequency (a1), input power P1 (b1), input power P2 (c1), and relative phase ϕ1

(d1) for the narrow-band CPA. The solid blue lines are the experimental measurements, while the red dashed lines are the
theoretical results. For each plot, we fix the three remaining wavefront parameters at the NL-CPA conditions (see figure caption
of Fig. S1a-b). (a2)-(d2) The same analysis as in the upper row, but now for the broadband NL-CPA scenario. The red and
green dashed-lines correspond to different wavefront (fixed) parameters associated with each (quasi-degenerate) NL-CPAs (see
green and red arrows in Fig. S1d) that have been found using our NL-CPA protocol (see text). The grey-dashed line with circle
markers corresponds to the wavefront of the case (a) of the main text in case the lengths of the ring graph has varies by less
than ±2mm.

(a2)-(d2). The experimental deeps (demonstrating opti-
mal CPA conditions) typically fall within the parameter

domain where the two NL-CPAs are predicted (red and
green dashed lines corresponding to cases (a) and (b),
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(a) (b) (c) (d)Absorption:99.93% (Experiment) Absorption:100% (Theory)Absorption:99.97% (Experiment) Absorption:100% (Theory)

FIG. S3. (a) Experimentally measured absorption profile for narrow-band NL-CPA as a function of input frequency and power
P1 from IQ modulator 1, achieving a peak absorption of 99.97%. The corresponding parameters include P cpa

1 = −5.09 dBm,
P cpa
2 = −12.90 dBm, a relative phase of ϕcpa

1 = 207◦, and a frequency of fcpa = 6.371GHz. It should be noted that we maintain a
constant ratio between P1 and P2 as the power is varied. (The CPA point in this subfigure, as well as in subsequent subfigures
are marked with black arrows.) (b) Theoretically calculated absorption profile for narrowband NL-CPA using the hybrid
model, achieving a peak absorption of 100%. The theoretical NL-CPA conditions are characterized by P cpa

1 = −6.6 dBm,
P cpa
2 = −14.35 dBm, a relative phase of ϕcpa

1 = 191◦, and a frequency of fcpa = 6.369GHz. (c) Experimentally measured
absorption profile of a broadband NL-CPA state, where the peak absorption recorded is 99.93%. The associated wavefronts
have P ∗

1 ≈ −19.05 dBm, P ∗
2 ≈ −15.6 dBm, a relative phase of ϕ∗

1 ≈ 301◦, and a frequency f∗ ≈ 6.39GHz. (d) Theoretical
analysis of the broadband NL-CPA state, where the predicted peak absorption achieves 100%, with the corresponding input
powers as P cpa

1 = −19.24 dBm and P cpa
2 = −17.79 dBm, a relative phase of ϕcpa

1 = 377.8◦, and a frequency of fcpa = 6.397GHz.

respectively, in the main text). The relative phase dis-
crepancy between the experimental and the theoretical
results, where the maximum absorption occurs, is asso-
ciated with the measurement precision of the measured
lengths. For example, a small variation of the lengths
of the network by less than ±2mm can shift the emitted
signal dip close to the experimental findings without af-
fecting the nice agreement of the other optimal wavefront
parameters (see grey-dotted lines with circle markers in
Fig. S2 (a2)-(d2) where we have used the CPA wavefront
associated with the case (a) of the main text ).

NL-CPA AND ZERO-EPDS IN TETRAHEDRON
GRAPH

We have repeated the same analysis as above for the
case of a tetrahedron graph. Two graph configurations
[42] have been used such that a narrow-band and a broad-
band NL-CPA can be examined in detail within the range
of frequency and power variation that is available by our
VNA.

The first configuration depicts a narrow-band NL-CPA
scenario and it is shown in Fig. S3(a) (experiment) and
Fig. S3(b) (theory). In each of these two figures, we
kept the power ratio R and relative phase ϕ of the in-
jected wavefront fixed and varied the P1 and the in-
jected frequency f . The fixed parameters R,ϕ have been
chosen to match the ones corresponding to the maxi-
mum absorption scenario (R∗ ≈ 6.03 and ϕ∗ ≈ 207◦

with maximum absorption A∗ = 99.97% for the experi-
ment and Rcpa ≈ 5.96 and ϕcpa ≈ 191◦ for the theory).
The narrow-band NL-CPA occurs at P ∗

1 ≈ −5.09dBm

and frequency f∗ ≈ 6.371GHz for the experiment and
P cpa
1 ≈ −6.6dBm and f cpa ≈ 6.369GHz for the theory.

The comparison between the theoretical and the exper-
imental results confirms the efficiency of our NL-CPA
protocol and establishes the fact that the injected power
can be used as an external tuning knob for achieving
CPA. The small differences between theoretical and ex-
perimental parameters are associated with the accuracy
of the extraction of the experimental parameters (electri-
cal lengths of the graph and the T-junctions, evaluation
of the electrical permittivity etc.).

The graph configuration in Fig. S3(c), depicts a broad-
band NL-CPA scenario which again highlights power-
dependent absorption, peaking at A∗ ≈ 99.93%. The
corresponding theoretical results are shown in Fig. S3(d)
and agree well with the observed experimental data. We
remind that in this case, our protocol has been identi-
fied two (quasi-degenerate) NL-CPAs (see Fig. 4(b) and
related discussion in the main text). As previously, the
wavefront used in these cases maintains a fixed injected
power ratio R and relative phase ϕ corresponding to the
values associated with the optimal configuration: for the
experimental analysis we used R∗ ≈ 0.45 and ϕ∗ ≈ 301◦

while for the theoretical calculations, we have used the
parameters associated with the NL-CPA of case (a) of
the main text which corresponds to Rcpa ≈ 0.68 and
ϕcpa ≈ 377.8◦.

To confirm the existence of the NL-CPAs and their cor-
responding wavefront against the predictions of our pro-
tocol, we analyzed the relative outgoing signal O = 1−A
against each of the four parameters, maintaining the re-
maining parameters at their NL-CPA values. Figs. S4(a)-
(d) show the experimentally measured O (blue solid
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(a2) (b2) (c2) (d2)

(a1) (b1) (c1) (d1)

FIG. S4. Relative outgoing signal (O = 1−A) versus frequency (a1,a2), input power P1 (b1,b2), input power P2 (c1,c2), and
relative phase ϕ1 (d1,d2) for the narrow-band (upper row) and broadband (lower row) CPA respectively. For each plot, we fix
the three remaining parameters taken to be at the NL-CPA conditions (see text). The solid blue lines are the experimental
results while the dashed lines are the NL-CPA wavefronts predicted by our algorithm. The green and red dashed lines in the
lower row are the theoretical results for the absorbance evaluated using two different wavefronts (case (a) and case (b) of the
main text) associated with each (quasi-degenerate) NL-CPA that have been found using our algorithm.

lines) versus frequency f , input powers P1 and P2 and the
relative phase ϕ of the injected waves, from TLs 1 and 2,
respectively. At the same figures, we also report the the-
oretically evaluated outgoing relative signal O using the
parameters (see main text) for each of the two NL-CPAs
predicted by our algorithm (red and green dashed lines).
Due to the proximity of the two NL-CPAs there is hardly
visible any difference between them. The excellent agree-
ment between theoretical results and experimental data
reconfirms the applicability of our NL-CPA algorithm to
predict the appropriate optimal wavefronts that lead to
extreme absorption.

We have scrutinized further the complex-zero EPD by
analyzing its dependence on the input wavefront param-
eters i.e. their real and imaginary frequency, injected
power P2, and relative phase of the incident waves at
TLs 1 and 2, versus the incident power P1 from the TL
1. These results are shown in Figs. S5(a-d) and illus-
trate a degeneracy of the two zero modes at the same P1

value. This EPD is displaced from the real frequency axis
by I(f) ∼ 10−4, which for all practical purposes, is in-
significant. As a result, we were able to witness a super-
quadratic scaling O ∼ (δf)α with a best fitting power
α = 3.5 which resembles the expected quartic line-shape
of EPD-CPA [26] (see Fig. 4(c) of the main text).

EXPERIMENTAL IMPLEMENTATION OF THE
LOSSY NON-LINEAR VERTEX

The nonlinear vertex consists of a cylindrical resonator
(ceramics ZrSnTiO with permittivity ϵ ≈ 36, height
5mm, diameter 8mm, resonance frequency around

f
(R)
0 ≈ 6.885GHz and a line width γ ≈ 1.7MHz) which
is inductively coupled to a metallic ring (diameter 3mm)
that is short- circuited to a diode (detector Schottky
diode SMS 7630-079LF, from Skyworks), see inset of
Fig. 1(a) of the main text.

The coupling between the ring and the resonator oc-
curs via the resonator’s z-directional magnetic field com-
ponent that is excited by the injected signal. The latter
induces a current at the ring and subsequently a voltage
across the diode whose magnitude is controlled by the
magnitude of the magnetic field. The magnitude of this
voltage defines the state of the diode: the “on” state is
associated with high voltage (high incident field power)
and leads to high nonlinearities; the “off” state is associ-
ated with low voltage (low incident power) and leads to
low nonlinearities. The nonlinear resonator is designed
to operate at 6.1-6.5GHz.

The resonator-ring structure is coupled with the rest of
the graph via three “kink” antennas [see Fig. 1(b)]. This
nonlinear construction has been already used to realize
topological limiters in a coupled resonator waveguide ar-
ray [46], while more recently it has been used to analyze
asymmetric transport due to nonlinearities [49].
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(a)

(b)

(c)

(d)

FIG. S5. The same plot as in Fig. 2(d) of the main text. The
sub-figures demonstrate the dependence of the theoretically
calculated wavefront parameters associated with a scattering
zero, versus the input intensity from channel 1 (P1 = |I1|2):
(a) the real part of frequency (Re(f)), (b) imaginary part of
frequency (Im(f)), (c) input wave intensity from channel 2
(P2 = |I2|2), and (d) relative phase ϕ between the injected
waves at the two TLs. The dashed (solid) lines indicate the
same zero-mode in all subfigures. These modes, coalesce at
the same parameter values (light blue dashed line) forming
an NL-EPD. Notice that the formed EPD is displaced from
the real frequency axis by I(f) ∼ 10−4.

MODELING AND CHARACTERIZATION OF
THE LOSSY NON-LINEAR VERTEX

We have characterized the nonlinear resonator (i.e. the
form of the saturable nonlinearity ν(|ϕN |2)) and its cou-
pling constants with three kink antennas by comparing
the transmission measurements with the corresponding
expressions from coupled-mode theory that describes a
three-port scattering set-up (see inset in Fig. 1a). Below

we follow the methodology used in and also Ref. [49].

Combining Eqs. (S9) together, we get the 3 × 3 scat-
tering parameters

S = −1 + iDT
R

1

ω − Ω+ i
2DRDT

R

DR (S44)

where Ω = 2π
(
f0 + z0 − z1

1+α|ϕN |2

)
and f0 ≈ 6.4GHz is

the linear resonant frequency of the resonator-ring sys-
tem. The constant z0 − z1 accounts mainly for losses
(radiative and/or Ohmic) due to the presence of the ring
which might be different for weak and strong input pow-
ers. From the experimental point of view, two of the
TLs have been connected with the VNA while in each
measurement the third port is coupled to a 50Ohm ter-
minator.

For weak input powers (e.g. ∼ −25dBm), α|ϕN |2 ≈ 0
and the transmission from TL m to n (m,n = 1, 2, 3)
takes the form

|Snm|2 =
4γ2nγ

2
m

[4π(f − f0 − Re(z))]2 + [
∑3

l=1 γ
2
l − 4πIm(z)]2

,

(S45)

where z = z0 − z1. The maximum value of |Snm|2 oc-
curs at fmax = f0 + Re(z). Therefore, the measure-
ment of |Snm(fmax)|2 can be used for extracting f0 (we
consider Re(z) = 0 for simplicity) together with the

Im(z) =
∑3

l=1 γ2
l

4π ± γnγm

2π|Snm(fmax)| . Substituting these into

Eq. (S45), allows us to express the scattering parameters
in terms of γl’s. The latter are extracted via a direct
fitting with the measured |Snm(f)|2 versus f . This anal-
ysis allows us to evaluate also Im(z) which satisfy the

constraint Im(z) ≤ (
∑3

l=1 γ2
l )−γ2

n

4π . The latter bound is
enforced by the requirement that the reflectance, which
in the weak incident power limit takes the form,

|Snn|2 = 1−
4γ2n

[(∑3
l=1 γ

2
l

)
− γ2n − 4πIm(z)

]
[4π(f − f0 − Im(z))]2 +

[(∑3
l=1 γ

2
l

)
− 4πIm(z)

]2 (S46)

must be bounded from above by unity.

The extraction of z0 is achieved by performing a sim-
ilar analysis of the transmission and reflection spec-
tra for strong input powers. Since now z̃1

1+χs|a|2 ≈ 0,

Eqs. (S45,S46) will need to be modified by substituting
z → z0. By repeating the same procedure as previously,
we extract z0 which together with the previous knowl-
edge about z = z0 − z1 allows us to get also z1. Finally,
the nonlinear coefficient α has been estimated by a best-

fitting analysis for a set of experimental scattering data
that we have collected for intermediate values of incident
power.

The above analysis led to the following best fitting
values for the saturable nonlinearity: z0 = (−87.5 −
40.8536i) MHz, z1 = (−87.5 − 32.5189) MHz, γ21 = 89.5
MHz,γ22 = 88.5 MHz,γ23 = 64.7 MHz, α = (3 + 1.5i) ·
109(mW·s)−1. And we should note that, we adjusted
these parameters for the ring and tetrahedron graph fit-
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FIG. S6. Schematics of (a) ring graph and (b) tetrahedron
graph.

tings in order to get relatively better fitting for specific
configuration and frequency ranges.

EXPERIMENTAL CONFIGURATION OF RING
NETWORK

For the ring network sketched in Fig. S6 (a), the upper
arm cable of the ring has a geometric length Lupper

13 =
291mm, while the lower arm cable has length Llower

13 =
339mm. The left cable antenna has length L23 = 277
mm. Note that in each arm length we have included
an additional geometric length of 9mm that estimates
the effective length introduced by the T-junction. The
measurement precision for the cable lengths is ±2mm.
The extracted cable refractive index is n = 1.212+0.001i.

Theoretical modeling parameters for ring net-
work –. The best-fitting parameters for the ring net-
work configuration were identified by comparing our ex-
perimental scattering parameters with the results from
the modeling for the frequency range of interest. We
extracted Lupper

13 = 286.23mm, Llower
13 = 319mm, and

L23 = 282.2 mm, with cable refractive index n = 1.212+
0.001i. We have further refined the nonlinear resonator
parameters (see previous section) such that f0 = 6.3933
GHz, z0 = −87.5− 41.5943i MHz, z1 = −87.5− 33.6641i
MHz, α = (2 + 1.5i) · 109(mW·s)−1, γ21 = 78.4 MHz,
γ22 = 89.2 MHz, γ23 = 82.8 MHz.
Experimental configuration of tetrahedron net-
work –. The tetrahedron network shown in Fig. S6(b)
is characterized by the following geometric length con-
figuration: L14 = 770 mm, L15 = 18 mm, L24 = 18
mm, L26 = 328 mm, L34 = 289 mm, L36 = 339 mm,
L56 = 291 mm, L35 = 942 mm (including also an esti-
mation for the length of the phase shifter), with cable
refractive index n = 1.212 + 0.001i. Note that in each
Lij we have included an additional geometric length of
9mm that estimates the effective length introduced by
any T-junction attached to a cable. The measurement
precision for the cable lengths is ±2mm.
Theoretical modeling parameters for tetrahedron
network – . Following the same procedure as for
the modeling of the ring network we have identified
L14 = 760.2 mm, L15 = 20.2 mm, L24 = 20.2 mm,
L26 = 341.2 mm, L34 = 309 mm, L36 = 334.4 mm,
L56 = 291.9 mm, L35 = 969.6 mm, with cable refrac-
tive index n = 1.212 + 0.001i. We have further refined
the nonlinear resonator parameters (see the previous sec-
tion) such that f0 = 6.3933 GHz, z0 = −70.73− 35.047i
MHz, z1 = −70.73− 27.46i MHz, α = (0.7558+ 1.411i) ·
109(mW·s)−1, γ21 = 82.0 MHz, γ22 = 78.0 MHz, γ23 = 62.5
MHz. We have also allowed for small variations between
these parameters and the one used for narrow-band CPA
modeling.
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