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While many materials exhibit a complex, hysteretic response to external driving, there has been
a surge of interest in how the complex dynamics of internal materials states can be understood and
designed to process and store information. We consider a system of connected rubber balloons that
can be described by a Preisach model of non-interacting hysterons under pressure control, but for
which the hysterons become coupled under volume control. We study this system by exploring the
possible transition graphs, as well as by introducing a configuration space approach which tracks
the volumes of each balloon. Changes in the transition graphs turn out to be related to changes in
the topology of the configuration space of the balloons, providing a particularly geometric view of
how transition graphs can be designed, as well as additional information on the existence of hidden
metastable states. This class of systems is more general than just balloons.

I. INTRODUCTION

Many systems in condensed matter, such as amorphous
media [1–5], crumpled paper [6, 7], corrugated sheets [8],
multistable origami [9, 10] and mechanical metamaterials
[11–15], exhibit “memory” encoded by the configurations
of internal states. These systems are often modeled as
a collection of primordial, bistable elements called hys-
terons, which switch between two states according to the
history of some driving field (Fig.1a). The sequence of
how individual hysterons switch states gives rise to im-
portant collective effects such as return point memory
[16]. The Preisach model of non-interacting hysterons
is the prototypical model for describing how individual
hysterons lead to collective hysteresis [17]. When inter-
actions between hysterons are introduced, however, the
range of behavior expands dramatically: one sees multi-
periodic orbits [1, 2], scrambling and avalanches [8, 18],
transient memory [12, 16], and the ability to mimic finite-
state machines [19].

In this paper, we will consider a particular class of
interacting hysteron systems based on inflating rubber
balloons. In many types of balloons, the pressure de-
pends non-monotonically on the volume [20], and conse-
quently balloons at constant pressure can exhibit bista-
bility and be modeled as hysterons. When several bal-
loons are joined in parallel to share a common volume
of air, however, the total pressure becomes dependent on
the state of the other balloons, introducing an effective
global interaction between hysterons. We will show that
this interacting hysteron system has an alternate descrip-
tion, rooted in the geometry of a system of curves in a
configuration space parameterized by the volumes of the
individual balloons. Tuning the response of individual
balloons changes the topology of the configuration space
curves through a process of bifurcation-mediated recom-
bination. Different topological classes of configuration
spaces correspond to different possible transition graphs
that can be realized.

∗ gmuhaxhe@syr.edu

While balloons are interesting in their own right, hav-
ing a number of applications to medicinal surgery [21–
23], automobile air bags, pneumatic actuation and shape
morphing [24–26], and soft robotics [27–29], here we
think of them as a prototype for an entire class of systems
which also includes bistable origami [9] and mechanical
beams [19] under fixed strain.
The common element is that the bistability of the indi-

vidual hysterons is governed by a smooth energy. In the
case of balloons, this means that the pressure is uniquely
determined by the volume; for buckled beams this will
mean that the force is determined uniquely by the dis-
placement of the central beam. Our approach provides
an intriguing link between two seemingly distinct meth-
ods to study the complex behavior of designed materials:
transition graphs induced by hysteretic state changes,
and the bifurcations of smooth configuration spaces. In-
deed, we will explicitly show how to obtain transition
graphs using our configuration space approach.
In Sec. II, we briefly discuss non-monotonic inflation

in balloons and interpret this through non-interacting
hysterons when the balloons are held at constant pres-
sure and globally interacting hysterons when the balloons
have a constant, shared volume. In Sec. III we will de-
fine and derive the configuration space for interacting
balloons and develop our understanding of how the con-
figuration space topology changes through bifurcations.
Finally, in Sec. IV, we demonstrate the connection ex-
plicitly.

II. HISTORY-DEPENDENT BEHAVIOR OF
BALLOONS

It is well-known that in a typical rubber balloon, the
pressure depends on the inflated volume of the balloon
non-monotonically according to a function p(V ) which
is, itself, the derivative of an energy [20, 30]. At a crit-
ical volume, V+, the pressure obtains a local maximum.
Above V+, the pressure decreases until a higher volume,
V−, after which it rises again. In party balloons, this
is experienced as the balloon becoming easier to inflate
after some air has been put into the balloon. Were we
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FIG. 1. (a) Schematic of a single hysteron showing its two
stable configurations, 0 and 1. (b) The pressure-volume curve
for a rubber balloon showing that there is a jump between two
different volumes at given threshold pressure.

to inflate the balloon at constant pressure, it would ex-
hibit a sudden increase in volume at a critical pressure
p(V+) = P+ and, upon deflation, a sudden decrease in
volume at a lower pressure, p(V−) = P−. Thus, a single
balloon can exhibit hysteresis and a state can be assigned
to each balloon (Fig. 1).

A. Pressure control

When N non-identical balloons are connected to a
pump held at constant pressure, the total volume of air
used to inflate the balloons, VT , will also show hysteresis
as a function of the pressure. To describe this behavior,
we can use a Preisach model of independent hysterons
[17], which we briefly describe here for completeness.
The Preisach model consists of N independent hysterons.
Each hysteron can be in one of two distinct states, which
we call 0 and 1. A hysteron transitions from state 0 to 1
when the driving field reaches a threshold value, H+ and
from 1 to 0 at a threshold value of H− < H+ (Fig. 1a)
[31–33]. The state of the hysteron between the lower and
upper threshold then depends on the history of the driv-
ing. When a collection of hysterons have a distribution
of lower and upper thresholds, they exhibit return-point
memory [34–37].

Because of the hysteresis of traditional, rubber party
balloons, the transitions they exhibit at constant pres-
sure are also hysteretic, allowing us to assign a balloon a
state, 0 or 1, based on the pressure history experienced
by that balloon (Fig. 1b). Note that many balloons also
exhibit different curves when inflated and deflated, and
their behavior is further complicated by plastic deforma-
tions that soften them after repeated cycles of inflation
and deflation [38, 39]. In this paper, however, we will
ignore these potential complications and assume our bal-
loons are made of an elastic material with the same in-
flation and deflation curves. Extending this analysis to
balloons with different behavior under inflation and de-
flation pathways will be explored elsewhere.

We consider a system of N balloons and assume that
the nth balloon has transition pressures at Pn− < Pn+

(Fig. 1b). We choose to label the balloons, with no loss
of generality, such that P1+ > P2+ > · · · > PN+; then it
becomes clear that all of the possible transitions between
states of N balloons is determined only by the order of
the local minima, Pn−.
As is standard, we can construct transition graphs as

follows: [18]

i) Start from the lowest collective state (0, 0, · · · , 0),
and determine its “up” transition by finding

min
n

Pn+

This indicates that the (0, 0, · · · , 0) state has a link
to the state in which the first balloon to transition
has transitioned to the state 1.

ii) For each new collective state, determine the “up”
transition by finding

min
n0

Pn0+

and the “down” transition by finding

max
n1

Pn1− ,

where the index n0 spans hysterons in state 0 and
n1 spans hysterons in state 1. These are used to
generate new links to the states that can now be
reached by the transitions of individual balloons at
the given pressures.

iii) Stop when all possible transitions have been ac-
counted for.

For N balloons, there are, in principle, N ! possible tran-
sition graphs. These are shown explicitly for 2 and 3
balloons in Fig. 2. It is interesting to notice that though
there are N ! different transition graphs, the number of
graph topologies – that is, graphs having the same num-
ber and arrangement of vertices, edges, and loops – can
be fewer. For three balloons, for example, there are only
5 topologically distinct transition graphs (Fig. 2).

B. Volume control

We now turn our attention to a system of N balloons
sharing a single reservoir of air (Fig. 3), so that the

system satisfies the constraint
∑N

n=1 Vn = VT . Rather
than controlling the internal pressure, we then consider
the behavior of the system as VT is changed.
If we are to follow the analogy between balloons and

magnetic materials, the volume-controlled system is anal-
ogous to fixing the magnetization and asking for the mag-
netic field that produced it. Reflecting on the graph in
Fig. 1a, however, shows that the field associated with
a given magnetization in a single hysteron is not even
single-valued. However, even though single balloons are
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FIG. 2. (a-b) Transition graphs for 2 and (c-h) 3 balloons
under constant pressure. Black (darker) arrows indicate tran-
sitions involving an increasing pressure while orange (lighter)
ones are transitions to lower pressure.

FIG. 3. Schematic of the connected system of balloons sharing
constant total volume

hysteretic at constant pressure, their pressure is a func-
tion of their volume (Fig. 1b). This property is shared by
many systems of realistic hysterons such as origami bel-
lows [9], elastic conical shells [29], and buckling beams
[40]. A critical consequence is that the branch of the
pressure-volume curve with negative slope (the dashed
curve in Fig. 1), which is unstable under pressure con-
trol, becomes accessible under volume control.

To simplify the analysis while capturing the essential
features, we assume that we can approximate the pres-
sure of a single balloon as a linear function of the volume
(Fig. 4a), and keeping the N-shape of the curve. We will
show later that this approximation works well for quali-
tative analysis since the important aspects of the curve
are kept. Thus, the pressure of the jth balloon will be
approximated by

pj = Vjgj + hj , (1)

where

gj =

{
−mj , if sj = 1/2,
mj , otherwise

(2)

and

hj =

 0, if sj = 0
2mjaj if sj = 1/2
2mj(aj − bj) if sj = 1

. (3)

Notice that aj and bj are the volume values at which a
balloon switches states, while mj is the slope of the lines.
At constant volume, a system of N balloons will equalize
their pressure, p, at the shared total volume VT .

pn(Vn) = p (4)
N∑

n=1

Vn = VT , (5)

for all balloons i and j.
Using Eqs. (1), (4) and (5), we can write the total

volume as a function of the volume of a single balloon i
and the states of the other balloons in the system.

Vtotal =

n∑
j=1

(
Vi

gi
gj

+
hi − hj

gj

)
(6)

From this, identify the switching fields for each hysteron
i,

V ±
total,i =

n∑
j=1

(
V ±
i

gi
gj

+
hi − hj

gj

)
(7)

where V +
i , and V −

i are the ‘bare’ switching fields, i.e.
the individual volume values at which the ith hysteron
switches its state (ai and bi in Fig. 4). The volume,
V ±
total,i, on the other hand, is the total volume value at

which hysteron i changes state. When these switching
field values are only dependent on the collective state
s = {s1, s2, ..., sn}, and not other aspects of the driving
history, the system can be described as a system of in-
teracting hysterons [41, 42]. We can also rewrite Eq. (6)
to write the individual volumes as a function of the total
volume,

Vi =
Vtotal −

∑
j

hi−hj

gj∑
j gi/gj

. (8)

Under pressure control, the collective state of the sys-
tem after a transition was always stable, now the stabil-
ity of an individual balloon depends on the state of the
other balloons. The procedure for determining transition
graphs is then modified by an additional step which we
adapt from Ref. [18]: once a transition is made from a
collective state S to a new collective state S′ at a critical
total volume VC , we check whether this critical volume
lies within the range

V −(S′) < VC < V +(S′), (9)
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where

V +(S′) = min
i+

V +
total,i+

(10)

V −(S′) = max
i−

V −
total,i−

, (11)

where i+ runs over hysterons in states 0 and 1/2 while i−
runs over hysterons in states 1/2 and 1. If VC is within
that range, then the state S′ is a stable one. Otherwise,
if say, VC > V +(S′), then one of the hysterons is un-
stable and has to switch up, and we have to move to a
new collective state S′′. We then repeat to check whether
V −(S′′) < VC < V +(S′′), and keep doing so until we
have a reached a stable state [18].

Cases where more than one hysteron changes state at
a critical volume signify the existence of avalanches as
seen in Fig. 4 and is a hallmark of interacting hysterons
[8, 18, 43].

A noticeable difference between the interacting system
of balloons and the non-interacting one, as seen from
the transition graph in Fig. 4, is the occurrence of the
state s = 1/2 in the interacting system of balloons, which
arises from the descending branch of the pressure. This
has an obvious effect on what we can observe physically
as well. While in the pressure controlled system, there
are sudden jumps in the volumes of individual balloons
[30], the state switching in the volume controlled case
does not always involve discontinuous jumps in the vol-
umes. Instead, transitions from 0 to 1/2 or 1/2 to 1 are
characterized by incremental changes in the volume, ex-
cept in the case of avalanches. For all the examples in
this paper, when there occurs a discontinuous jump in
the state of the system there is only a single stable state
it could land in. In general, however, it is impossible
to rule out the existence of multiple stable states during
avalanches.

In the next section we demonstrate an alternative
pathway to understand the behavior of these systems by
tracing the bifurcations of a suitably defined configura-
tion space. Such a configuration space for the linearly
approximated system from Fig. 4 is shown in Fig. 5,
and details on obtaining it are given in the next section.
We believe this might provide a new angle to explore
these kinds of systems, as well as uncover new behavior
not easily seen with models of interacting hysterons.

III. THE CONFIGURATION SPACE OF N
BALLOONS SHARING A VOLUME

A system ofN balloons sharing a constant total volume
of air, VT , will equalize their pressure, p. We denote the
state of the system with an N + 1 dimensional vector,
v = (V1, · · · , VN , p), satisfying the Eqs. (4) and (5).
To study the solutions of those equations, we define the

0 0 0 1/2 0 1 1 0 1 1/2 1 1
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b)
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FIG. 4. (a) The PV curves of two balloons used to obtain the
transition graph under a volume controlled inflation shown in
(b), where thicker arrows indicate an avalanche.

V1

V2

(0,0)
(1/2,0)

(1,0)

(0,1) (1/2,1)
(0,1)

FIG. 5. The configuration space for the two balloons from
Fig. 4. The dashed gray contour line indicates the constant
volume value at which the avalanche occurs, where the system
jumps from the state (1,0) to (0,1), while the dashed (dark)
blue indicates an unstable solution.

vectors

F(v) =


p1(V1)− p

...
pn(Vn)− p
V1 + ...+ Vn

 , and B =

 0
...
VT

 . (12)

Then the system of equations takes the compact form,
Fα(v) = Bα where α ranges from 1 to N +1 and indexes
the components of F and B. Equations of this type oc-
cur in a number of contexts, but particularly in bar-joint
mechanisms in which bars of fixed length are connected
by freely rotating joints.
First, whenever the Jacobian of the map Fα(v) is full

rank, the system has (possibly many) isolated solutions,
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FIG. 6. The configuration space for two balloons inflated
under volume control with different pressure versus volume
curve combinations. The branch point is shown in (b), where
we can see the conic shape of the configuration space at the
branch point, and a small deviation from the critical value
of the control parameter shows the two hyperbolas formed, in
(a) and (c). The diagonal lines shown are contours of constant
total volume values. The pressure-volume curves are distin-
guished through the order of pressure maxima (P1+ > P2+).
Red (solid) denotes stable solutions while blue (dashed) de-
notes unstable ones.

v(VT ). When sweeping over possible values of VT , these
solutions trace out curves, as seen in Fig. 6 with stable
solutions drawn as solid curves and unstable solutions
drawn as dashed curves. In Fig. 6, we have used the
smooth pressure from Fig. 1b. In analogy with mecha-
nisms, we will refer to as the configuration space of the
N balloons. The diagonal light gray lines of constant VT

are provided as a guide to the eye.

Fig. 6 also makes apparent, however, that there can
exist degenerate points for which the Jacobian of Fα,
Jαβ(v) = ∂Fα/∂vβ , is not full rank. For example, a
stable and unstable solution can meet at a saddle-node
bifurcation, which changes the number of distinct states
the system can occupy for a given VT . However, we also
see transcritical bifurcations, such as in Fig. 6b, which
are points where two solutions exchange stability. In the
example shown in Fig. 6b, such a point has the appear-
ance, and is sometimes called, a branch point. As VT is
tuned through a branch point, the system chooses, essen-
tially randomly, which branch to follow. Notice, however,
that the transcritical point in Fig. 6b distinguishes two
different ways of connecting the configuration space and,
consequently, two different physical behaviors. Fig. 6a
shows a situation in which the configuration space has
two components, but where increasing VT results in con-

V2

V1

FIG. 7. The configuration space for two balloons inflated
under volume control showing the avalanche that occurs at a
critical constant volume value. The red (solid) curve indicates
a stable solution while blue (dashed) indicates an unstable
one. The thicker red curve is the path that the system follows
upon inflation. The purple arrow indicates the discontinuous
jump that the system undergoes

tinuous inflation as the system follows the stable branch
from one corner of the plot to the other. In 6c, however,
the configuration space is connected into one component,
and now a continuously increasing VT would lead to a
discontinuous jump at a critical volume and, upon defla-
tion, another discontinuous jump at a lower volume. An
example of one of these jumps is shown in Fig. 7.
Thus, the topology of the configuration space deter-

mines the physical behavior, with a branch point sepa-
rating the two regimes of behavior. Finally, note that
it is the functions pn(Vn) that determine what kind of
physical behavior is seen, with the branch point occur-
ring precisely when the two local minima are at the same
pressure. It is a simple consequence of the implicit func-
tion theorem that changes in the topology of the config-
uration space cannot occur except in the presence of a
bifurcation. These arguments are outlined in great de-
tail for mechanisms in Ref. [44] and we do not reproduce
them all here.
These observations motivate a search for critical points

of Fα(v). To find these, we solve

det(∂Fα/∂vβ) =

N∑
n=1

 N∏
m̸=n

p′m(Vm)

 = 0. (13)

and Eq. (12) simultaneously. Both the saddle-node bi-
furcations for which stable and unstable branches meet
as well as the transcritical bifurcation in Fig 6b oc-
cur as solutions to these equations. Thus, it would
be useful to isolate the branch points. To do this, we
treat the total volume, which parametrizes the curves
of the configuration space, as a parameter. The state
of the system is now described by an augmented vector
ṽ = (V1, · · · , VN , p, VT ); thus, the system of equations
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now has N + 2 degrees of freedom but only N + 1 con-
straints. We know that there will be zero modes [45],
defined as the elements of the right null space of the aug-
mented Jacobian,

Jαi(v)δvi = 0. (14)

Now, critical points vc at which the augmented Jacobian
fails to be full rank are characterized by self-stresses [44–
46], defined as elements of the left null space,

σαJαi(vc) = 0. (15)

The augmented Jacobian can be written as the (N+1)×
(N + 2) matrix,

J =


p′1(V1) 0 · · · 0 0 −1

0 p′2(V2) · · · 0 0 −1
...

...
. . .

...
...

...
0 0 · · · p′n(Vn) 0 −1
1 1 · · · 1 −1 0

 .

(16)
It is now explicit that its rank drops by one every time
two pressure derivatives are simultaneously zero for some
value of v that is an equilibrium solution of the system.
When the maxima and minima of the pressure occur at
the same volume in each balloon, this can only happen
when Pi− = Pj− for balloons i and j.

We show that the critical points of the augmented Ja-
cobian are, indeed, the branch points observed in the
balloon configuration space. We start by expanding
Fα(v + δv) for small changes in volumes,

Jαiδvi +
1

2

∂2Fα(vc)

∂vi∂vj
δviδvj +O(δv3) = 0 (17)

Writing a formal series expansion, δv = δv(1)+δv(2)+...,

and substituting this into Eq. (17), one finds that δv
(1)
i

is a zero mode of the Jacobian satisfying [47],

1

2
σ(n)
α

∂2Fα(vc)

∂vi∂vj
δv

(1)
i δv

(1)
j = 0, (18)

where σ
(n)
α is a basis for the self stresses at the critical

point.
We assume that all critical points are isolated and that

each critical point has only one self stress, which is true
as long as no more than two pressure derivatives are si-
multaneously zero at that critical point. Then, we choose
a basis for the zero modes at the critical point, we call

that basis ηn,i, and we write δv
(1)
i = cnηn,i, so that,

Qnmcncm = 0, (19)

where the matrix Qnm is given by

Qnm = ηn,iηm,jσ
(1)
α ∂Fα(vc)/∂vi∂vj . (20)

Now we can understand the behavior of the system
near a critical point of the augmented Jacobian. Under

the assumptions that we have made, if the matrix Qnm

is either positive or negative definite, we have a “rigid
system.” That is, there are no non-trivial solutions to
the system. It is not clear that this situation can even
occur with N balloons. With a combination of mixed
positive and negative eigenvalues, however, the geome-
try of the configuration space at the critical point is that
of pair of lines meeting at the branch point and tangent
to the solutions of Eq. (19). We might now ask what
happens if we perturb the pressure curves, pn(Vn), near
such a branch point. Clearly this perturbation must sep-
arate the branches (since there will no longer be a branch
point); this is precisely what we see in Fig. (6). A de-
tailed proof that the branch breaks into one of two hy-
perbolas can be found in Ref. [44].
Finally, in Fig. 8 we show all of the 6 possible config-

uration spaces of 3 balloons. As the number of balloons
increases, it appears that the number of individual config-
uration space components also increases. As the relative
pressure curves of the balloons are adjusted, these loops
join or separate from each other to create different infla-
tion paths. As is the case with two balloons, the topol-
ogy of these configuration spaces changes through branch
points, which occur when two of the balloons pressure
derivatives are equal to zero simultaneously for a value
v that also solves Eqs. (4) and (5). A small perturba-
tion to the pressure curves, once again, results in two
hyperbolas forming after the separation of the two meet-
ing branches. That is true, in fact, for a system of any
number of balloons as long as only two balloons’ pres-
sure derivatives are zero at some value v. The analysis
is slightly more complicated when more than two are si-
multaneously zero.
Taken together, we see that by manipulating the me-

chanical properties of individual balloons, we can control
the order of their inflation or introduce hysteresis. Be-
cause of this hysteresis, the history of a single parameter,
VT , can be used to determine one of several potential in-
flation states of the N balloons.

IV. FROM CONFIGURATION SPACES BACK
TO TRANSITION GRAPHS

Finally, we point out that the configuration space ap-
proach provides a relatively straightforward route to re-
constructing the transition graphs. To begin, it is inter-
esting to note that both the Preisach and the ’volume-
control’ transition graphs as well as the configuration
spaces change topology when the local minima of pn(Vn)
change order. Interestingly, in the case of three balloons,
there were only five distinct Preisach transition graphs
as two of them were identical by a symmetry; this prop-
erty is shared by the configuration spaces as well: there
are only five topologically distinct configuration spaces
in Fig. 8.
Indeed, it turns out that the transition graphs can be

reconstructed from the configuration spaces. To begin,
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(a) (b)

(c) (d)

(e) (f)

V1
V2

V3

FIG. 8. The configuration space for a three balloons system
with various pressure curves minima. Two of the configura-
tion spaces, (b) and (c), have the same topology, namely, they
have the same number of components.

consider two balloons with the simplified piecewise-linear
pressure curves in Fig. 4a, for which the configuration
space is given by piece-wise linear curves in 5. Since
the states of the transition graphs are labeled by which
branch individual balloons reside and these are, conse-
quently, represented entirely by the slope of pn(Vn), tran-
sitions from one set to another are represented by changes
in slope in Fig. 5. In this case, it is straightforward to
read off the state of the balloons directly from the slope
of the configuration space.

More generally, the property that pn(Vn) is a well-
defined function means that we can always unambigu-
ously assign a state to the nth balloon only based on its
volume relative to Vn− and Vn+. The space (V1, · · · , VN )
decomposes into regions, each of which is associated with
a unique state of the system in the transition graph. Sim-
ple transitions occur when the trajectory of the system
leaves one state’s domain and enters another. This can
be determined whether the trajectories are straight or
curved, as seen in Fig. 9. There, we have color coded
the regions of the configuration space corresponding to
each possible system state to show the relative easiness of
constructing the transition graphs off of the space itself.

Note that when a trajectory changes from a stable to
unstable branch, the actual system jumps to a new stable

(a) (b)

(c)

(d) (e)

(f)

FIG. 9. (a-b) A smooth configuration space and a correspond-
ing linear approximation for two balloons with states labeled
in the configuration space. State changes occur when the
slopes of the curves change sign. The corresponding transi-
tion graph is shown in (c) which follows the main branch,
avoiding the ‘Garden of Eden’ states which are, nevertheless,
still present in the configuration space. (d-e) A smooth con-
figuration space and corresponding linear approximation for
two balloons after a recombination. The transition graph in
(f) illustrates the hysteresis that the system exhibits.

state, and it must do so along the same plane of constant
VT . When there is only one other stable state, as in
Fig. 5, it is clear that the system jumps to that new
state. As it transitions, it passes along a path that may
take it through one or more other states, tracing out the
sequence of avalanches. For example, at a certain critical
total volume value (the dashed contour line in Fig. 5),
the system must jump from state (1, 0) to (0, 1).

The configuration space picture also provides more in-
formation about how the system finds its ultimate stable
state. One can integrate the pressure functions to deter-
mine the elastic energy of the balloons and, in particular,
the relative energies of all stable states at a specific VT .
Though we do not explore it here, this energy landscape
also contains information about how the balloons find
their ultimate stable state after becoming unstable.

For some values of the total volume, the system can
have more than one stable state, though that state may
not be accessible from the main branch connected to
the deflated state, v = (0, · · · , 0). These are sometimes
called ‘Garden of Eden’ states, which are states that the
system can transition out of but not into them by simply
changing the global driving field [9]. In the configuration
space, they are seen as the loops in Fig. 8 and Fig. 9.
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In the case of balloons, these metastable states can be
accessed by pushing on the larger balloon, forcing the
system to jump into the other branch of solutions while
keeping the total volume constant. ‘Garden of Eden’
states should, in fact, be accessible when the system is
near a branch point. Moreover, the configuration space
can also have loops that are entirely unstable, at least
for three or more balloons. Nevertheless, and perhaps
surprisingly, the joining and separation of the additional
disconnected branches to the main branch plays a crucial
role in determining the transition graphs seen in different
systems.

V. CONCLUSION

As we have seen, systems of balloons can demonstrate
complicated and hysteretic behavior, as described by a
Priesach model [36, 37]. When the balloons share a con-
stant volume of air, the hysterons interact through that
shared volume, and subsequently allow a richer variety of
transition graphs [18]. Because of the descending branch
and the fact that a single balloon’s pressure is a function
of its volume, the transition graphs are more naturally
expressed in terms of three states, 0, 1/2, and 1.
Another natural description for this system is, how-

ever, as a curve in the configuration space of N balloons
described by their respective volumes, v = (V1, · · · , VN ).
Different transition graphs of the interacting hysteron
model of balloons are represented by these curves leav-
ing and entering distinct regions of the volume space.
This gives a geometrical picture of how different transi-
tion graphs are related to each other, as well as providing

another approach to understanding avalanches.

One potential complication that would be difficult
to fold into the configuration space picture is the fact
that some balloons have different inflation and deflation
curves. Even if we only increase the total volume, VT ,
individual balloons can inflate and deflate. Since this ef-
fect occurs to individual balloons and the configuration
space is a function of individual balloon volumes, this
could be incorporated by suitably adjusting the configu-
ration space trajectories according to whether the indi-
vidual balloons inflate or deflate; this is, in turn, related
to the local orientation of the configuration space. This
might change where bifurcations happen but should not
change the overall picture we lay out.

Many systems that have been traditionally described
as interacting hysterons appear to also be in the class of
systems of N balloons. In the case of buckling beams
[40, 42] and bistable origami [9], for example, there is a
continuum of strains for which a stress can be assigned,
σ(γ). These systems, therefore, can be analyzed through
a similar configuration space lens. Thus, this may be
an approach to exploring interacting hysterons in a wide
variety of systems.
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