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Abstract. Numerical solvers of partial differential equations (PDEs)
have been widely employed for simulating physical systems. However,
the computational cost remains a major bottleneck in various scientific
and engineering applications, which has motivated the development of
reduced-order models (ROMs). Recently, machine-learning-based ROMs
have gained significant popularity and are promising for addressing some
limitations of traditional ROM methods, especially for advection domi-
nated systems. In this chapter, we focus on a particular framework known
as Latent Space Dynamics Identification (LaSDI), which transforms the
high-fidelity data, governed by a PDE, to simpler and low-dimensional
latent-space data, governed by ordinary differential equations (ODEs).
These ODEs can be learned and subsequently interpolated to make ROM
predictions. Each building block of LaSDI can be easily modulated de-
pending on the application, which makes the LaSDI framework highly
flexible. In particular, we present strategies to enforce the laws of ther-
modynamics into LaSDI models (tLaSDI), enhance robustness in the
presence of noise through the weak form (WLaSDI), select high-fidelity
training data efficiently through active learning (gLaSDI, GPLaSDI), and
quantify the ROM prediction uncertainty through Gaussian processes
(GPLaSDI). We demonstrate the performance of different LaSDI ap-
proaches on Burgers equation, a non-linear heat conduction problem, and
a plasma physics problem, showing that LaSDI algorithms can achieve
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relative errors of less than a few percent and up to thousands of times
speed-ups.

Keywords: Reduce-Order-Modeling · Auto-encoder · Latent–Space Iden-
tification · Partial Differential Equation · Active Learning

1 Introduction

In recent years, there has been an impressive growth in the development of nu-
merical simulation methods to comprehend physical phenomena, resulting in
enhanced accuracy and level of sophistication. Alongside this, there have been
substantial advancements in computational hardware, making it more power-
ful and cost-effective. Consequently, numerical simulations have become widely
adopted in numerous areas, such as engineering design, digital twins, decision-
making processes [58, 38, 2, 12, 75], and a range of fields including aerospace,
automotive, electronics, physics, and biology. [20, 23, 44, 54, 57, 71, 70, 63].

In the realms of engineering and physics, computational simulations fre-
quently involve the resolution of partial differential equations (PDEs) using
various numerical approaches, such as finite difference/volume/element meth-
ods, particle methods, and others. Although these techniques are known for
their precision and ability to produce detailed simulations when implemented
appropriately, they require substantial computational resources. This becomes
particularly true in complex, time-sensitive multiscale problems that deal with
intricate physical phenomenons (for instance, turbulent fluid flows, the dynamics
of plasma in fusion devices, and astrodynamic flows) on high resolution grids and
meshes. As a result, conducting numerous high-fidelity simulations with these
advanced solvers can present considerable computational challenges, especially
in scenarios involving uncertainty quantification [6, 64, 67], inverse problems
[6, 26, 24, 67], design optimization [73, 74], and optimal control [18].

The computational challenges in high-fidelity simulations have led to the cre-
ation of reduced-order models (ROMs). ROMs aim to streamline the complex
calculations of the full-order model (the detailed high-fidelity simulation) by re-
ducing the complexity of the problem. While the accuracy of ROMs may slightly
drop compared to the full-order-model, they can be considerably faster which
makes them very attractive in situations where a small compromise in accuracy
is acceptable. Many ROM methods are based on projecting data snapshots from
the full-order model.

Methods like proper orthogonal decomposition (POD), the reduced basis
method, and the balanced truncation method, which are linear projection tech-
niques, have become increasingly popular in the field of reduced-order modeling
(ROM) [5, 60, 62]. These approaches have demonstrated effectiveness in a range
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of applications, including fluid dynamics [46, 17, 65, 36, 19, 16, 51, 43]. Re-
cently, non-linear projection techniques [41, 40, 47, 22], particularly those using
auto-encoders [34, 21], have started to gain traction as an alternative, as these
methods achieved higher performance in problems characterized by dominant
advection [41, 25, 31].

Projection-based ROM methods driven by data are broadly divided into two
categories: intrusive and non-intrusive. Intrusive ROMs, which are informed by
the underlying physics, need direct access to the governing equations [60, 22,
40, 47, 17, 36, 19, 43, 50]. This aspect contributes to the sturdiness of their
predictions and often requires a smaller amount of data from the full-order
model (FOM). However, they also necessitate access to the FOM solver and
specific details of implementation, like the discretized residual of the PDE. On
the other hand, non-intrusive ROMs do not depend on the governing equations
and are solely based on data-driven methods. These typically employ interpola-
tion techniques to associate parameters with their respective ROM predictions
[69, 49, 15, 45]. Being entirely black-box in nature, however, these methods of-
ten lack interpretability and robustness, sometimes facing challenges in accurate
generalization and showing limitations in performance.

To address these issues, newer strategies are integrating projection methods
with latent space dynamics learning. In these approaches, the latent space is
considered as a dynamical system governed by a set of ordinary differential
equations (ODEs). By precisely identifying these ODEs, it becomes possible to
forecast the dynamics within the latent space and then map them back into the
space of full-order solutions.

Several techniques have been developed to learn governing equations from
data, including the popular method known as Sparse Identification of Non-
Linear Dynamics (SINDy) [11]. SINDy works by forming a collection of potential
terms for the governing ordinary differential equations (ODEs) and uses linear
regression to calculate the relevant coefficients. This approach has been widely
used and laid the groundwork for the development of various SINDy-based al-
gorithms including both regression-based [61, 53, 52, 10, 39, 68, 35] and neural
network approaches [27, 14, 9, 66].

Champion et al. [13] introduced a method to identify sets of governing ODEs
directly in the latent space of an auto-encoder. Although this method shows
promise, the identified ODEs are not parameterized based on simulation param-
eters, which limits its applicability across different scenarios. Conversely, Bai
and Peng suggested a similar technique [4], but with a linear projection using
proper orthogonal decomposition (POD), and they incorporated parameteriza-
tion of the latent space ODEs. This enhancement allows for ROM predictions
at any point in the parameter space. However, their approach faces challenges
when applied to advection-dominated problems due to the limitations of POD.

More recently, a framework originally proposed by Fries et al. [25], Latent
Space Dynamics Identification (LaSDI) was proposed. Building on the work of
Champion et al. and Bai and Peng, the main idea of the LaSDI algorithm is
to identify the sets of ODEs governing the auto-encoder latent space, each cor-
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responding to one training data point from the full-order model (FOM). Then,
the coefficients of each set of ODEs are interpolated with respect to the FOM
parameters, which allows for estimating the set of latent space governing equa-
tions for any new parameter in the parameter space. Integrating the ODEs and
passing them to the decoder allows to reconstruct the ROM prediction. This
initial work laid the foundation for many follow-up LaSDI-based algorithms
[25, 31, 8, 7, 32, 72]. Directly building on LaSDI [25], Greedy-LaSDI (gLaSDI)
[31] introduced additional constrains to the auto-encoder training loss, enhancing
the model’s robustness. gLaSDI also introduced a novel active learning strategy,
based on the PDE residual error (intrusive ROM), to acquire additional FOM
data during training where it is the most needed. Subsequently, Gaussian Pro-
cess LaSDI (GPLaSDI) was also introduced [8]. GPLaSDI builds on the elements
introduced in gLaSDI, but also employs Gaussian process for interpolating the
latent space governing ODEs. This allows for a purely data-driven active learn-
ing strategy (non-intrusive ROM), as well as predicting meaningful confidence
bounds over the ROM predictions. More recently, WLaSDI [72], short for Weak
form-LaSDI introduced a weak formulation to accurately learn the ODE dynam-
ics of the latent space in the presence of substantial noise. Intriguingly, even when
there is no noise, using WLaSDI yields a more accurate ROM in many cases.
Thermodynamics-LaSDI (tLaSDI) [56] was also proposed, and introduces phys-
ical constrains to enforce the first and second laws of thermodynamics within
the latent space, for enhanced accuracy.

In this chapter, we provide a comprehensive review of LaSDI algorithms.
First, We go through the key LaSDI building blocks (sections 2.1, 2.2, 2.3, 2.6,
2.7 and 2.8) and also introduce elements more specific to WLaSDI (section 2.4),
tLaSDI (section 2.5), gLaSDI (section 3.1) and GPLaSDI (section 3.2). Finally,
We present results demonstrating the performance of the different LaSDI meth-
ods on various examples (sections 4.1, 4.2 and 4.3). Note that in this chapter,
the term LaSDI usually refers the set of different LaSDI algorithms, but may
(when specified) also refer to the original LaSDI paper [25].

2 Latent Space Dynamics Identification

2.1 Governing Equation of Physical Systems

In this chapter, we consider physical phenomenons described by governing PDEs
with the following form:

∂u

∂t
= f(u, t, x |µµµ) (t, x) ∈ [0, tmax]×Ω

u(t = 0, x |µµµ) = u0(x |µµµ) µµµ ∈ D
(1)

In Equation (1), the solution u may represent either a scalar or vector field
over the time-space domain [0, tmax] × Ω. The spatial domain Ω can be of
any dimension, and the differential operator f might include a mix of linear
and/or non-linear combinations of spatial derivatives and source terms. The
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governing equations, along with their initial and boundary conditions, are in-
fluenced by a set of parameters, represented by a vector µµµ. The parameter
space is designated as D ⊆ Rnµ and can have any dimension (for instance, a
2D-parameter space with nµ = 2 is considered in subsequent sections). For a
specific parameter vector µµµ(i) ∈ D, it’s assumed that we can access the corre-
sponding discretized solution of Equation (1), denoted as U(i). Here, U(i) is a
matrix composed of sequential snapshots u

(i)
n at each time step n, arranged as

U(i) = [u
(i)
0 , . . . ,u

(i)
Nt

]⊤ ∈ R(Nt+1)×Nu . This solution is acquired either through a
full-order model solver or an experiment. In this chapter, all the FOM solutions
are compiled into a 3rd order tensor dataset U ∈ RNµ×(Nt+1)×Nu , where Nt and
Nu are the number of time steps and degrees of freedom, respectively, and Nµ

is the number of available FOM solutions.

2.2 Auto-encoders

An auto-encoder [34, 28] is a type of neural network specifically tailored for
compressing large datasets by diminishing their dimensions through nonlinear
transformation. It comprises two interconnected neural networks: the encoder,
labeled as ϕe and parameterized by θθθenc, and the decoder, labeled as ϕd and
parameterized by θθθdec. The encoder processes an input data snapshot u(i)

n ∈ RNu

and generates a compressed version z
(i)
n ∈ RNz in a latent space. Here, Nz

denotes the latent dimension, i.e., the number of variables in the latent space.
This number is chosen based on design preferences, typically ensuring Nz << Nu.
Similar to the matrix U(i), we concatenate the latent representations at each time
step into a matrix Z(i) = [z

(i)
0 , . . . , z

(i)
Nt

]⊤ ∈ R(Nt+1)×Nz . The latent variables for
each time step and for each parameter µµµ(i) are compiled into a third-order tensor
Z ∈ RNµ×(Nt+1)×Nz , similar in structure to the tensor U. The decoder takes each
z
(i)
n as input and generates a reconstructed version of u(i)

n , denoted as û
(i)
n .

z(i)n = ϕe(u
(i)
n |θθθenc)

û(i)
n = ϕd(z

(i)
n |θθθdec)

(2)

θθθenc and θθθdec are learned using a numerical optimization algorithm that mini-
mizes the L2 norm of the difference between the set of input solutions U and
the set of reconstructed solutions Û. The reconstruction loss is defined as:

LAE(θθθenc, θθθdec) = ||U− Û||22

=
1

Nµ

Nµ∑
i=1

(
1

Nt + 1

Nt∑
n=0

||u(i)
n − ϕd(ϕe(u

(i)
n |θθθenc) |θθθdec)||22

) (3)

It should be noted that the auto-encoder acts as a non-linear data projection.
Alternatively, a linear projection method, such as POD, may be employed. This
option alleviates the cost of training an auto-encoder, but it may result in lower
accuracy, especially for advection-dominated problems. A more detailed com-
parison between auto-encoders and POD is outlined in LaSDI [25] and WLaSDI
[72].
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2.3 Identification of Latent Space Dynamics

The encoder’s role is to compress high-dimensional physical data, such as so-
lutions of PDEs that span both space and time, into a more compact array of
discrete and abstract latent variables, defined over the time dimension. As a
result, the latent space can effectively be viewed as a dynamical system, but
now governed by ordinary differential equations (ODEs). This feature is a key
element in LaSDI algorithms. For each discrete time step, the behavior of the
latent variables within this latent space can be represented by a specific equation
form. At each time step, the dynamics of the latent variables in the latent space
can be described by an equation of the following form:

Ż(i) = ψDI(Z
(i) |µµµ(i)) (4)

where ψDI represents a Dynamics Identification (DI) function governing the
latent space dynamics, which can be defined as a system of ODEs and identified
using the Sparse Identification of Nonlinear Dynamics (SINDy) method [11].
SINDy involves creating a library, ΘΘΘ(Z(i)) ∈ R(Nt+1)×Nl , which is composed of
Nl linear and nonlinear potential terms that could be part of the ODEs. This
method is based on the premise that the time derivatives of Z, denoted as Ż,
can be represented as a linear combination of these selected terms. Consequently,
the equation that describes the system’s behavior on the right-hand side can be
estimated in the following manner:

Ż(i) ≈ ΘΘΘ(Z(i)) ·Ξ(i)⊤ (5)

where Ξ(i) ∈ RNz×Nl denotes an ODE coefficient matrix associated with µµµ(i).
The selection of terms in ΘΘΘ(·) is a design choice. To capture the latent space
dynamics more accurately, it may be desirable to include a broad variety of
terms, although this may lead to sets of ODE more challenging and longer to
solve numerically. ΘΘΘ(·) can be written explicitly as:

ΘΘΘ(Z(i)) =


b0(z

(i)
0 ) b1(z

(i)
0 ) b2(z

(i)
0 ) . . .

...
...

...
b0(z

(i)
Nt

) b1(z
(i)
Nt

) b2(z
(i)
Nt

) . . .


(Nt+1)×Nl

(6)

where bq are basis functions that output arbitrary linear and/or non-linear trans-
formations of each terms in z

(i)
n = [z

(i)
n,1, . . . , z

(i)
n,Nz

] to build the SINDy library.

z
(i)
n,j represents the jth latent variable for parameterµµµ(i) at time step n. Sparse lin-

ear regressions are performed between ΘΘΘ(Z(i)) and dz(i):,j /dt for each j ∈ [[1, Nz]].
The resulting coefficients associated with each SINDy term are stored in a vector
ξξξ
(i)
j = [ξ

(i)
j,1, . . . , ξ

(i)
j,Nl

] ∈ RNl . The system of SINDy regressions can be expressed
as:

dz
(i)
:,j

dt
=


ż
(i)
0,j
...

ż
(i)
Nt,j

 = ΘΘΘ(Z(i)) · ξξξ(i)⊤j (7)



A Comprehensive LaSDI Review for Reduced Order Modelling 7

Each set of coefficients ξξξ(i)j is compiled into a coefficient matrix Ξ(i) =

[ξξξ
(i)⊤
1 , . . . , ξξξ

(i)⊤
Nz

]⊤ ∈ RNz×Nl . Since a unique set of ODEs controls the dynam-
ics within the latent space for each parameter vector µµµ(i) ∈ D, several SINDy
regressions are conducted simultaneously to identify the respective sets of ODE
coefficients Ξ(i), where i ∈ [[1, Nµ]]. The ensemble of ODE coefficient matrices
Ξ = [Ξ(1), . . . ,Ξ(Nµ)] ∈ RNµ×Nz×Nl , corresponding to each ODE system, is
learned by minimizing the mean-squared-error loss specific to SINDy.

LSINDy(Ξ) = ||Ż− ˙̂
Z||22

=
1

Nµ

Nµ∑
i=1

(
1

Nz

Nz∑
j=1

∣∣∣∣∣∣∣∣dz(i):,j

dt
−ΘΘΘ(Z(i)) · ξξξ(i)⊤j

∣∣∣∣∣∣∣∣2
2

) (8)

The time derivatives ż(i)n,j may be computed using a finite difference [8] or, alter-
natively, using the chain rule [25, 31]:

∂z
(i)
n

∂t
=
∂z

(i)
n

∂u
(i)
n

· ∂u
(i)
n

∂t
= ∇uϕe(u

(i)
n |θθθenc) · u̇(i)

n (9)

The aforementioned approach is a local DI method where each parameter has its
own coefficient matrix. During testing, the local SINDy of training parameters
can be exploited to estimate the SINDy associated with the testing parameter.
More details will be presented in Section 2.7. Alternatively, a global DI approach
can also be adopted in which only one coefficient matrix is employed to model
the latent space dynamics for all parameters.

2.4 Weak-form Identification

The coefficient matrix Ξ(i) = [ξξξ
(i)⊤
1 , . . . , ξξξ

(i)⊤
Nz

]⊤ referenced in equation (5) can
alternatively be determined using weak-form equation learning methods. This
approach replaces the need to directly approximate pointwise derivatives from
data (in the presence of noise, this is a particularly challenging task). Instead,
the variance-reduction nature of the weak-form facilitates a more robust and
accurate system recovery. In this section, we present WLaSDI [72], a direct ex-
tension of LaSDI [25] that leverages the weak-form equation learning technique.

We begin by transforming equation (7) into the weak-form through multipli-
cation by an absolutely continuous test function ϕ(t) : R → R and integrating it
over the time domain:∫ tb

ta

dz
(i)
:,j

dt
· ϕ(t)dt =

∫ tb

ta

ϕ(t) ·ΘΘΘ(Z(i)) · ξξξ(i)⊤j dt

Integration by parts yields:

ϕ(tb)z
(i)
tb,j

− ϕ(ta)z
(i)
ta,j

−
∫ tb

ta

z
(i)
:,j · ϕ′(t)dt =

∫ tb

ta

ϕ(t) ·ΘΘΘ(Z(i)) · ξξξ(i)⊤j dt
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Choosing ϕ to be compactly supported in (ta, tb), i.e., ϕ(tb) = ϕ(ta) = 0, we
have:

−
∫ tb

ta

z
(i)
:,j · ϕ′(t)dt =

∫ tb

ta

ϕ(t) ·ΘΘΘ(Z(i)) · ξξξ(i)⊤j dt. (10)

We use the trapezoidal rule to discretize the integrals in equation (10) numer-
ically and assume that observations of the system’s state have a uniform time
step of∆t.1 Let {ϕk}Nk

m=1 be the set of compactly supported test functions placed
uniformly along the time domain, we define the test function matrices:

Φkn = ∆tϕk(tn), Φ ∈ RNk×(Nt+1)

Φ̇kn = ∆tϕ′k(tn), Φ̇ ∈ RNk×(Nt+1) (11)

From there, we have
G(i) := ΦΘΘΘ(Z(i)) ∈ RNk×Nl

b
(i)
j := −(Φ̇z

(i)
:,j )

⊤ ∈ RNk
(12)

for z(i):,j = [z
(i)
0,j , · · · , z

(i)
Nt,j

]⊤ and j ∈ [[1, Nz]]. By solving the least square problem,

we identify the coefficient vector ξξξ(i)⊤j subject to:

minimize
ξξξ
(i)
j ∈RNl

∥∥∥G(i)ξξξ
(i)⊤
j − b

(i)
j

∥∥∥2
2

(13)

The weak-SINDy loss can then be defined as:

LSINDy(Ξ) =
1

Nµ

Nµ∑
i=1

(
1

Nz

Nz∑
j=1

∥∥∥G(i)ξξξ
(i)⊤
j − b

(i)
j

∥∥∥2
2

)
(14)

The test functions employed in weak-form equation learning include high order
polynomial or C∞ bump functions. For further details about how to choose these
test functions, please refer to [10, 52, 53].

2.5 Thermodynamics-informed Latent Space Dynamics
Identification (tLaSDI)

tLaSDI [56] utilizes a neural network-based model to embed the General Equa-
tion for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) formal-
ism [29, 55] into the latent space dynamics. The GENERIC formalism is a math-
ematical framework that covers both conservative and dissipative systems, offer-
ing a general description of beyond-equilibrium thermodynamic systems. This
formalism models dynamical systems through four key functions – the scalar
functions E and S that representing the system’s total energy and entropy, re-
spectively, and two matrix-valued functions, L and M , referred to as the Poisson
and friction matrices, respectively.

1It is possible to use a non-uniform time interval, but this necessitates modifications
to the test function matrices.
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ż = L(z)∇E(z)+M(z)∇S(z) s.t.


L(z)∇S(z) =M(z)∇E(z) = 0

L(z) = −L(z)⊤

M(z) is symmetric and positive semi-definite
(15)

The degeneracy and structural conditions ensure the first and second laws of
thermodynamics, i.e., the properties of energy conservation and non-decreasing
entropy, d

dtE(z) = 0 and d
dtS(z) ≥ 0.

GFINNs Several neural network-based models were proposed to incorporate
the GENERIC formalism [33, 48, 76]. While other alternatives are equally appli-
cable, tLaSDI utilizes the model proposed in [76], namely, GENERIC Formalism
Informed Neural Networks (GFINNs). We direct readers to refer to [76] for more
details. The GFINNs consists of 4 neural networks – ENN, SNN, LNN and MNN
– that represent E, S, L and M in equation (15), respectively. These neural net-
works are constructed to exactly satisfy the degeneracy conditions in (15) while
also being sufficiently expressive to capture the underlying dynamics from data.
We denote the GFINNs by ϕG( · |θθθG), where θθθG represents the neural network
parameters in the model.

We note that GFINNs are global DI model and do not have parameter de-
pendence. Instead, tLaSDI lets the network parameters of the encoder and the
decoder depend on parameters by employing hypernetworks [30].

The hypernetwork is a neural network that takes a parameter µµµ(i) as input
and outputs the network parameters of another neural network. In tLaSDI, two
distinct hypernetworks ϕhyp

e ( · |θθθhyp
enc ) and ϕhyp

d ( · |θθθhyp
dec ) are utilized to output the

network parameters of the encoder and decoder. The network parameters for
encoder and decoder at parameter µµµ(i) are denoted as θθθ(i)enc := ϕhyp

e (µµµ(i)|θθθhyp
enc )

and θθθ(i)dec := ϕhyp
d (µµµ(i)|θθθhyp

dec ), respectively.
In tLaSDI, the GFINNs can be trained by minimizing the model and inte-

gration losses, respectively LMOD and LINT:

LMOD(θθθ
hyp
enc , θθθ

hyp
dec , θθθG) =

1

Nµ(Nt + 1)

Nµ∑
i=1

Nt∑
n=0

(∥∥∥ż(i)n − ϕG(z
(i)
n |θθθG)

∥∥∥2
2

+
∥∥∥u̇(i)

n −∇zϕd(z
(i)
n |θθθ(i)dec)ϕG(z

(i)
n |θθθG)

∥∥∥2
2

) (16)

LINT(θθθ
hyp
enc , θθθG) =

1

NµNt

Nµ∑
i=1

Nt−1∑
n=0

∥∥∥∥z(i)n+1 − z(i)n −
∫ tn+1

tn

ϕG(z
(i) |θθθG)dt

∥∥∥∥2
2

(17)

The derivative ż
(i)
n is computed using equation (9), and the integral in the inte-

gration loss (equation (17)) is approximated by employing a numerical integrator
(e.g., Runge-Kutta methods).
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2.6 Training Loss

In LaSDI [25], the auto-encoder and SINDy are trained separately. Hower, for
enhanced accuracy and robustness when identifying the latent space dynamics,
in gLaSDI [31], the auto-encoder and SINDy are trained simultaneously. gLaSDI
also introduced an additional loss term: the mean-squared-error of the velocity,
computed through the chain rule:

˙̂u(i)
n =

∂û
(i)
n

∂z
(i)
n

· ∂z
(i)
n

∂t
= ∇zϕd(ϕe(u

(i)
n |θθθenc) |θθθdec) ·ΘΘΘ(Z(i)) ·Ξ(i)⊤ (18)

LVEL(θθθenc, θθθdec,Ξ) = ||U̇− ˙̂
U||22 (19)

In GPLaSDI [8], a penalty is also added to the SINDy coefficients. This enforce
smaller values of the ODE coefficients, which leads to better conditioned ODEs.
The LaSDI training loss, weighted with hyperparameters β1, β2, β3 and β4 is:

L(θθθenc, θθθdec,Ξ) = β1LAE(θθθenc, θθθdec) + β2LSINDy(Ξ)

+ β3LVEL(θθθenc, θθθdec,Ξ) + β4||Ξ||22
(20)

where LSINDy may be either the vanilla SINDy loss (equation (8)) or the weak
SINDy loss (equation (14)). In tLaSDI, the latent space dynamics is not learned
through SINDy, so the training loss has a slightly different (yet equivalent) for-
malism:

L(θθθhyp
enc , θθθ

hyp
dec , θθθG) = λ1LAE(θθθ

hyp
enc , θθθ

hyp
dec ) + λ2LMOD(θθθ

hyp
enc , θθθ

hyp
dec , θθθG)

+ λ3LINT(θθθ
hyp
enc , θθθG) + λ4LJAC(θθθ

hyp
enc , θθθ

hyp
dec )

(21)

where λ1, λ2, λ3 and λ4 are hyperparameters (analog to β1, β2, β3 and β4 in
equation (20)). The first and second terms of LMOD are analog to LSINDy and
LVEL in the gLaSDI training loss, respectively. Furthermore, the Jacobian loss
LJAC is defined as

LJAC(θθθ
hyp
enc , θθθ

hyp
dec ) =

1

Nµ(Nt + 1)

Nµ∑
i=1

Nt∑
n=0

∥∥∥∥(I −∇zϕd(z
(i)
n |θθθ(i)dec)∇uϕe(u

(i)
n |θθθ(i)enc)

)
u̇(i)
n

∥∥∥∥2
2

(22)
The loss components are based on the error estimates of ROM approximation
provided in [56].

2.7 Parameterized Latent Space Dynamics Interpolation

The auto-encoder learns a latent space dynamical representation of each training
parameter. In the local Dynamics Identification (DI) approach, a set of SINDy’s
or weak-SINDy’s learns the ODEs governing the latent space dynamics of train-
ing parameters. However, the set of ODE coefficients associated with a new
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parameter µµµ(∗) (distinct from the set of training parameters µµµ(i) ∈ D) remains
unknown. It can be estimated by finding an interpolant ψ : µµµ(∗) 7→ Ξ(∗) of the
learned ODE coefficients, given µµµ(i) ∈ D and Ξ(i), i ∈ [[1, Nµ]]. Several inter-
polants have been proposed in the literature, and we briefly cover three of them
here, RBF interpolation, as used in LaSDI [25], k−NN, as used in gLaSDI [31],
and Gaussian process regression (GP), as introduced in GPLaSDI [8].

RBF Interpolation Let us consider a domain DDI ⊆ D. DDI may be a subset
of the parameter space (local Dynamics Identification), or the full space (global
Dynamics Identification). The interpolated ODE coefficient matrix Ξ(∗) can be
expressed as:

Ξ(∗) =
∑

µµµ(i)∈DDI

wiψi(d(µµµ
(∗),µµµ(i))) (23)

ψi is a radial basis function (RBF). For example in LaSDI [25], a multiquadric
function is used:

ψi(d(µµµ
(∗),µµµ(i))) =

√
d(µµµ(∗),µµµ(i))2

ϵ
+ 1 (24)

d(µµµ(∗),µµµ(i)) is the euclidian distance between µµµ(∗) and µµµ(i), ϵ is a length-scale
typically chosen as the average distance between each µµµ(i) ∈ DDI and the co-
efficients wi are computed by solving a linear system depending on the set of
matrices Ξ(i) associated with each parameter µµµ(i) ∈ DDI.

k−Nearest-Neighbours Interpolation Similarly to RBF interpolation, in
k−NN interpolation, the ODE coefficient matrix can be written as:

Ξ(∗) =
∑

i∈Nk(µµµ(∗))

ψi(µµµ
(∗),µµµ(i))Ξ(i) (25)

Nk(µµµ
(∗)) is the set of indices of the k-nearest-neighbours of µµµ(∗) (i.e. associated

with k training parameters µµµ(i)). The interpolation basis ψi are defined as:

ψi(µµµ
(∗),µµµ(i)) =

||µµµ(∗) −µµµ(i)||−2
M∑

j∈Nk(µµµ(∗)) ||µµµ(∗) −µµµ(j)||−2
M

(26)

where || · ||M is the Mahalanobis distance. Here, partition of unity is satisfied
(
∑

i ψi(µµµ
(∗),µµµ(i)) = 1) and convexity preservation is guaranteed [31].

Gaussian Process Regression In a Gaussian process regression [59], the fit-
ting function is stochastic and is assumed to follow a prior Gaussian probability
distribution:

ψ ∼ N (0, k(µµµ,µµµ)) (27)

k(·, ·) is an arbitrary covariance kernel, function of the input data (i.e. the set
of parameters µµµ(i)) and some trainable hyper-parameters. In GPLaSDI [8], the
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kernel is chosen as a squared-exponential function. Using both Bayes’ Rule and
the sum and product rules of probability, it can be shown that the predictive
distribution of the interpolated set of ODE coefficients, Ξ(∗), follows a Gaussian
distribution:

p(Ξ(∗)|µµµ(∗),µµµ,Ξ) = N (Ξ(∗)|m(∗), s(∗)2) (28)

m(∗) and s(∗) are the predictive mean and standard deviation, which depend on
µµµ(∗), µµµ, Ξ, and the kernel function. It should be emphasized that unlike RBF and
k−NN regression, Ξ(∗) is here not deterministic and may thus take an infinity of
possible values. Since it follows a Gaussian distribution, we may only consider
its most likely value, the mean (m(∗)), with some confidence interval defined by
s(∗).

Note that in practice, it may be cumbersome to perform the GP inference
over the entire matrix of coefficients Ξ(∗) altogether. Instead, we train a separate
GP for each ODE coefficient term in Ξ(∗). More details on GP regression and
inference can be found in [8, 59].

2.8 Predicting Solutions

Once the auto-encoder has been properly trained and the latent space governing
ODEs have been learned (section 2.2, 2.3, 2.4 and 2.6), ROM prediction for an
arbitrary test parameter µµµ(∗) is straightforward and can be made through the
following steps:

1. Estimate Ξ(∗) by interpolating the set of learned ODE coefficients using
one of the interpolator introduced in section 2.7. If using GP regression, in-
lieu of Ξ(∗), a sample from the predictive distribution may be used: Ξ(d) ∼
N (Ξ(∗)|m(∗), s(∗)2), d ∈ [[1, Ns]], with Ns an arbitrary number of samples.

2. Build and solve the set of ODEs associated with µµµ(∗) (equation (5)) using
a standard numerical integrator. The initial condition z

(∗)
0 can be computed

using the encoder (z(∗)0 = ϕe(u
(∗)
0 |θθθenc)), where u

(∗)
0 is a function of µµµ(∗).

The approximate latent-space solution is noted Z̃(∗).
3. Make a forward pass through the decoder to map the ROM prediction back

into the full-order space. Ũ(∗) = ϕd(Z̃
(∗) |θθθdec)

Note that if using GP regression to interpolate the latent space governing equa-
tions, step 1, 2 and 3 may be repeated for a finite number of samples. The
ROM prediction can then be taken as the average prediction over all the sam-
ples (Ũ(∗) ≡ E[Ũ(∗)]). Similarly, the standard deviation V[Ũ(∗)]1/2 can also be
computed to estimate prediction uncertainty. In tLaSDI, the prediction do not
involve interpolation methods as GFINN is a global DI model independent of
parameters. The tLaSDI prediction for a test parameter µµµ(∗) can be conducted
through the following analog steps:

1. Evaluate the network parameters of the encoder and decoder using corre-
sponding hypernetworks, i.e., θθθ(∗)enc := ϕhyp

e (µµµ(∗)|θθθhyp
enc ) and θθθ(∗)dec := ϕhyp

d (µµµ(∗)|θθθhyp
dec ).
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2. Solve the latent space dynamics (equation (15)) represented by GFINNs us-
ing a numerical integrator. The initial condition is given by z

(∗)
0 = ϕe(u

(∗)
0 |θθθ(∗)enc).

The approximate solution is denoted as Z̃(∗).
3. Use the decoder to return the prediction in the full-order space, i.e., Ũ(∗) =

ϕd(Z̃
(∗) |θθθ(∗)dec).

3 Greedy Sampling

One key aspect of LaSDI algorithms is to train an auto-encoder and learn the
governing dynamics in the latent space. To that end, choosing the appropriate
training data is crucial. In LaSDI [25] and WLaSDI [72], each FOM solution data
point is associated with equispaced parameters µµµ(i), located on a grid within
the parameter space D. While this approach is simple, easy to implement, and
may provide satisfactory performance, more sophisticated approaches have been
proposed in gLaSDI [31] and GPLaSDI [8]. In these two papers, an active learning
strategy is employed, where instead of having access to the entire training dataset
upfront, the training data is collected on the fly. This allows for collecting only
the data that is the most needed while maximizing model performances. In this
section, we present the key aspects of these two methods. The general greedy
sampling framework is described in algorithm 1

3.1 Residual-Based Greedy Sampling (gLaSDI)

For a given test parameter, the ROM prediction error may be estimated using
the time-averaged PDE residual of the FOM governing equation:

eRES(Ũ
(∗)) =

1

Nts

Nts∑
n=1

||r(ũ(∗)
n , ũ

(∗)
n−1|µµµ(∗))||2 (29)

r refers to the discretized residual of the governing PDE (equation (1)). Nts is
the number of time steps used to estimate the residual. When r is expensive to
evaluate, it may be desirable to evaluate the residual only at a handfull of time
steps, and we may thus consider Nts ≪ Nt.

In gLaSDI [31], the training process is initialized using a limited number (Nµ)
of training FOM simulations. The training is then paused every Nup epochs, and
the (current) LaSDI model is used to make predictions at a finite number of test
parameters µµµ(∗) ∈ Dh (Dh is a discretized representation of the parameter space).
Each prediction Ũ(∗) is plugged into equation (29) to compute the residual error,
and the next sampling parameter can be selected as the one associated with the
ROM solution yielding the largest residual:

µµµ(Nµ+1) = arg max
µµµ(∗)∈Dh

[
eRES(Ũ

(∗))
]

(30)

A high-fidelity simulation can then be run for parameter µµµ(Nµ+1), and the re-
sulting solution is added to the training dataset before resuming the training
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process. This operation may be repeated until the budget for running FOM sim-
ulations has been exhausted, or the ROM predictions have become sufficiently
accurate. The residual-based greedy sampling is also employed in tLaSDI [56]
following the algorithm proposed in [31].

3.2 Uncertainty-Based Greedy Sampling (GPLaSDI)

As described in section 2.8, when using GP interpolation, the uncertainty in the
latent space dynamics may be propagated through the decoder, and the ROM
prediction variance can be computed for any time step n:

V[ũ(∗)
n ] =

1

Ns

Ns∑
d=1

(ϕdec(z̃
(∗,d)
n |θθθdec)− E[ũ(∗)

n ])2 (31)

z̃
(∗,d)
n represent the latent space dynamics solved for a sampled ODE coefficient

matrix Ξ(d) (equation (28)). The variance at each time step can be computed and
the variance across time and space is written V[Ũ(∗)] = [V[ũ(∗)

0 ], . . . ,V[ũ(∗)
Nt

]].
An uncertainty based strategy for picking the next sampling parameterµµµ(Nµ+1)

can now easily be implemented. The general approach is very similar to the
residual-based greedy sampling strategy presented in section 3.1, but instead of
picking the parameter yielding the largest residual error, we pick the parameter
yielding the largest ROM variance (at any point in time and space):

µµµ(Nµ+1) = arg max
µµµ(∗)∈Dh

[
max
(t,x)

V[Ũ(∗)]
]

(32)

Note that in order to properly quantify the ROM variance (V[Ũ(∗)]), for each
µµµ(∗) ∈ Dh, the GP predictive distribution needs to be sampled Ns times, and the
corresponding ODE needs to be solved and fed to the decoder. Therefore, this
approach requires more ROM prediction than the residual-based greedy sampling
approach. However, this approach does not require to evaluate the PDE residual
at any time. Thus, GPLaSDI is non-intrusive and may be particularly suitable
when the residual is difficult to implement, expensive to evaluate, or simply
unknown (e.g. legacy codes for high-fidelity simulations).

4 Application

We now briefly summarize results and examples originally introduced in [25,
31, 72, 8, 56], and cover in particular the 1D Burgers equation (section 4.1),
the non-linear heat equation (section 4.2), and a two-stream plasma instability
problem (section 4.3). In each of the following section, the error metric used is
the maximum relative error defined as:

e(Ũ(∗),U(∗)) = max
n

(
||ũ(∗)

n − u
(∗)
n ||2

||u(∗)
n ||2

)
, (33)

where the quantities with a tilde are predictions.
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Algorithm 1 Auto-encoder Training with Greedy Sampling
1: while h < Nepoch do
2: Compute Z = ϕenc(U |θθθenc) and Û = ϕdec(Z |θθθdec) (eq. (2))
3: Compute L(θθθenc, θθθdec,Ξ), and update θθθenc, θθθdec, and Ξ using gradient descent
4: if h mod Nup ≡ 0 then
5: Interpolate Ξ using RBF, k−NN or GP interpolation (section 2.7)
6: for µµµ(∗) ∈ Dh do
7: if Residual-Based Greedy Sampling then
8: Compute Ũ(∗) and eRES(Ũ

(∗)) (eq. (29))
9: end if

10: if Variance-Based Greedy Sampling then
11: Compute V[Ũ(∗)]) (eq. (31))
12: end if
13: end for
14: Find µµµ(Nµ+1) using eq. (30) or eq. (32)
15: Collect U(Nµ+1) using FOM solver
16: Update dataset U = [U(1), . . . ,U(Nµ),U(Nµ+1)] and Nµ = Nµ + 1
17: end if
18: Update h = h+ 1
19: end while

4.1 1D Burgers Equation

In this first application, we use a simple benchmark problem to compare the
different LaSDI algorithms introduced in the previous two sections. We consider
the following inviscid 1D Burgers equation:

∂u

∂t
+ u

∂u

∂x
= 0 (t, x) ∈ [0, 1]× [−3, 3]

u(t, x = 3) = u(t, x = −3)

(34)

The initial condition is parameterized by µµµ = {a,w} ∈ D, and the parameter
space is defined as D = [0.7, 0.9]× [0.9, 1.1]:

u(t = 0, x |µµµ) = a exp

(
− x2

2w2

)
µµµ = {a,w} (35)

The parameter space is discretized into a square grid Dh with a stepping of ∆a =
∆w = 0.01, resulting in a total of 441 grid points (21 values in each dimension).
The high-fidelity solver employs a classic backward Euler time integration, and
a finite difference discretization in space (∆x = 6 · 10−3 and ∆t = 10−3).

LaSDI vs. gLaSDI We first compare the performances of LaSDI trained with
pre-selected data, or data selected on the fly using residual-based greedy sam-
pling (gLaSDI) [31]. For the encoder, we employ a 1001-100-5 fully-connected
hidden layers/hidden units architecture (Nz = 5), with sigmoid activation func-
tions, and a symmetric architecture for the decoder. The loss hyperparameters
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are taken as β1 = 1, β2 = 0.1, β3 = 0.1 and β4 = 0. We also consider 50, 000
training epochs, with a Nup = 2000 greedy sampling rate. The SINDy library is
restricted to linear terms and the ODE coefficients are interpolated with k−NN
interpolation (k = 1 and k = 3 are employed during gLaSDI training and evalu-
ation, respectively, and k = 4 is employed for LaSDI). The four corner parame-
ters of D are used to generate the initial training data points (µµµ(1) = {0.7, 0.9},
µµµ(2) = {0.9, 0.9}, µµµ(3) = {0.7, 1.1} and µµµ(4) = {0.9, 1.1}) At the end of the
training, a total of 25 training data points are being used.

Figure 1 shows a comparison between LaSDI and gLaSDI maximum relative
error across the parameter space. Both achieve excellent accuracy: at most 4.5%
error for LaSDI (trained on a 5× 5 parameter grid), and at most 1.9% error for
gLaSDI. Since gLaSDI selects training data based on the worst residual error,
areas of the parameter space yielding large prediction errors will eventually con-
centrate more data, helping to capture the correct physics more accurately and
faster.
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Fig. 1: 1D Burgers Equation – Maximum relative error (%) using LaSDI on
a pre-selected uniform training grid, and using gLaSDI (residual-based) active
learning. The black boxes represent the parameters corresponding to the training
FOM datapoints (and the red boxes represent the four initialization training
points, in the gLaSDI case).

GPLaSDI vs. gLaSDI We now compare the performance of variance-based
greedy sampling (GPLaSDI) and residual-based greedy sampling (gLaSDI). We
consider a similar auto-encoder architecture as in the previous experiment (1001-
100-5-100-1001), and use β1 = 1, β2 = 0.1, β3 = 0 and β4 = 10−6 for the loss
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hyperparameters. Like earlier, we restrict the SINDy library to linear terms
only. Since GPLaSDI employs Gaussian processes for interpolating the latent
space ODEs, we also interpolate the latent space ODEs in gLaSDI with GPs
for a more fair comparison. Even if GPs are employed along with gLaSDI here,
the uncertainty information is not exploited and the additional training data
is selected solely through the residual error (as in the previous experiment). In
GPLaSDI, we employ Ns = 20 ODE samples to compute the ROM prediction
variance, and train both models for Nepoch = 28, 000 epochs with sampling rate
Nup = 2000 (13 training data points are collected on the fly, along with the 4
initialization corner points).

Figure 2 shows a comparison between GPLaSDI and gLaSDI. Both cases
achieve very similar performance (at most 4.8% and 5% error for GPLaSDI
and gLaSDI respectively). One might expect gLaSDI to perform generally bet-
ter than GPLaSDI, because the former has direct access to physics information
(through the PDE residual), while GPLaSDI is purely data-driven. Here how-
ever, GPLaSDI is able to achieve similar performance than gLaSDI. This indi-
cates that in the present case, sampling new data for parameters yielding the
largest ROM variance or the largest residual error is equivalent. Figure 3 shows
the maximum ROM standard deviation across time and space, for each param-
eter of the discretized parameter space. There is a strong correlation between
GPLaSDI’s maximum relative error and maximum standard deviation, which is
consistent with the expectation that reducing the prediction uncertainty should
also reduce the error.

LaSDI vs. Weak-LaSDI In this experiment, we evaluate the performance
of LaSDI and WLaSDI, comparing them under a fixed number of training data
points. Active learning is intentionally excluded, as the primary goal is to demon-
strate the robustness of the weak-form in comparison with the strong form. A
shallow-masked auto-encoder architecture is utilized [42] for the nonlinear ROM
creation. The training data contains 9 high-fidelity simulations (of the inviscid
Burgers’ equation) corresponding to the combination of each value of a and w
where a = [0.7, 0.8, 0.9] and w = [0.9, 1.0, 1.1]. We consider 2 cases: Figure 4
illustrates the difference between LaSDI and WLaSDI without any added noise,
whereas Figure 5 demonstrates the difference between LaSDI and WLaSDI with
10% added Gaussian white noise. The ODE coefficients governing the latent
space dynamics are interpolated using Radial basis function interpolation. To
ensure a fair comparison, the type of radial basis function and the radius are
kept consistent between LaSDI and WLaSDI. Note that in both cases, the rel-
ative error is bounded below by the error of the autoencoder. Exploring better
autoencoder architecture may lead to improvements. In the noise-free case, the
projection error introduced by the autoencoder is about 3% across the parameter
space. Meanwhile, for the noisy case, it is about 5%.

For Figure 4, the depicted results show the maximum relative error across
the parameter space when employing LaSDI and WLaSDI without any noise.
In the case of LaSDI, the error varies between 3% and 14%, while WLaSDI
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Fig. 2: 1D Burgers Equation – Maximum relative error (%) using GPLaSDI and
using gLaSDI
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Fig. 3: 1D Burgers Equation – Maximum Predictive Variance

demonstrates a lower error, remaining below 4% (nearly achieving the minimum
possible error, given the autoencoder architecture limitations). Figure 5 depicts
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the same comparison, but for data with 10% noise. In the noisy scenario, LaSDI
frequently returns values with errors in excess of 1000% (any value exceeding
1000% is capped at 1000% in Figure 5), whereas WLaSDI maintains a more
controlled error, staying below 7%. In these instances, the strong form requires
approximately 0.03 seconds, while the weak-form computation takes about 0.3
seconds. Therefore, for a tenfold increase in computation time, the error is re-
duced by two to three orders of magnitude (at the 10% noise level).

The perturbations in the data introduced by the noise propagate through the
encoder, making it challenging to approximate the time derivative of the latent
space. By eliminating the need to approximate the pointwise derivative as well
as leveraging the variance-reduction nature of the integral, the weak form allows
for more accurate identification of the governing ODEs.

Given its robustness against noise, WLaSDI is particularly well suited for
building numerical models based solely on experimental data2 especially when
combined with GPLaSDI for efficient data sampling.
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Fig. 4: 1D Burgers Equation – Maximum relative error (%) using LaSDI and
using WLaSDI (no noise case). Note that this error is bounded below by the
autoencoder projection error, which is about 3% across the parameter space in
this case.

2 Note that the weak version of SDI methods would also be effective in attempting
to find a ROM from models with a stochastic component, like a Particle-In-Cell
simulation.
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Fig. 5: 1D Burgers Equation – Maximum relative error (%) using LaSDI and
using WLaSDI with 10% added noise. The relative error is bounded below by
the autoencoder projection error, which is about 5% across the parameter space.

tLaSDI vs. gLaSDI In this last experiment, we compare the performance of
tLaSDI and gLaSDI utilizing different temporal and parameter domains, specif-
ically (t, x) ∈ [0, 2] × [−3, 3], D = [0.7, 0.8] × [0.9, 1.0]. Due to the extended
temporal domain, the solutions exhibit stiff behaviors as time approaches the
final time (t = 2). The training data are discretized with the spatial and time
spacing ∆x = 6/200, ∆t = 2/200, which are subsampled from the high-fidelity
data with ∆x = 6 · 10−3 and ∆t = 2 · 10−3. We used the auto-encoder architec-
ture (201-100-10-100-201) for both methods. The sigmoid and ReLU activation
functions are used to train auto-encoders of gLaSDI and tLaSDI respectively. In
tLaSDI, all neural networks within GFINNs consist of 5 layers and 40 neurons
in each hidden layer, and the hyperbolic tangent activation function is employed
to train them. The loss hyperparameters for gLaSDI are set to β1 = 1, β2 = 1,
β3 = 1 and β4 = 0. For tLaSDI, the loss weights λ1 = 10−1, λ2 = 10−7, λ3 = 1
and λ4 = 10−9 are employed. Both methods utilize the residual-based greedy
sampling for 42, 000 training epochs with a sampling rate Nup = 2000. A total
of 21 training data points are collected on the fly, in addition to 4 initial samples
at the corners of parameter space. For gLaSDI, quadratic polynomials are used
for the SINDy library, and the ODE coefficients are interpolated with k−NN
interpolation with k = 1 and k = 5 during training and evaluation, respectively.

Figure 6 depicts a comparison between tLaSDI and gLaSDI in terms of max-
imum relative errors over the parameter domain. Both algorithms achieve high
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prediction accuracy (at most 1.5% for tLaSDI and 6.0% for gLaSDI). The sam-
pled parameters for tLaSDI tend to cluster near the domain boundaries. For both
methods, a higher concentration of training data is observed in regions of large
amplitudes (a) that correspond to the solutions exhibiting stiffer behavior. This
demonstrates that both methods effectively select training data points using the
greedy sampling strategy to accurately predict solutions exhibiting stiff patterns.
The effective prediction performance of tLaSDI is due to its loss function and
incorporation of laws of physics (thermodynamics) in the latent space.

tLaSDI constructs a thermodynamic structure in the latent space dynamics
which provides the neural network based entropy function SNN in the latent
space. Figure 7 illustrates the entropy production rate d

dtSNN(z(t)) with respect
to time. The mean over all the test parameters is reported and the shared area
represents one standard deviation away from the mean. As promised by GFINNs,
we observe that the entropy increases as the rate is always non-negative. The
entropy production rate has the largest value at the final time t = 2, which
happens to be the time where the full-state solution exhibits the stiffest pattern.
See the right of Figure 7 for the tLaSDI prediction at varying times.
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Fig. 6: 1D Burgers Equation – Maximum relative error (%) using tLaSDI and
using gLaSDI
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Fig. 7: 1D Burgers Equation – Left: The mean and one standard deviation away
from the mean of d

dtSNN across the test parameters. Right: The solution predic-
tion by tLaSDI at varying times at µ = (0.75, 1.00) whose corresponding d

dtSNN
are marked in the left figure.

4.2 2D Non-Linear Heat Equation with Residual-based Greedy
Sampling

In this second example, we consider the non-linear heat equation in 2D intro-
duced in gLaSDI [31]:

∂u

∂t
= ∇ · (κ+ αu)∇u (t, x, y) ∈ [0, 0.3]× [0, 1]× [0, 1]

∂u

∂n
= 0 (x, y) ∈ ∂Ω

(36)

The diffusion coefficients are chosen as κ = 0.5 and α = 0.01. The initial condi-
tion is parameterized by µµµ = {a,w} ∈ D, and the parameter space is defined as
D = [1, 1.4]× [4, 4.3]:

u(t = 0, x, y |µµµ) = a sin
(
w
√
x2 + y2

)
+ a µµµ = {a,w} (37)

The parameter space is discretized into a square grid Dh with stepping∆a = 0.02
and ∆w = 0.015, resulting in a total of 441 grid points (21 values in each
dimension). To generate the high-fidelity data, we rely on a finite element code,
MFEM [3], and we discretize the spatial domain with 1024 first-order square
elements. For time integration, we employ a backward Euler scheme (∆t =
5 · 10−3).

The encoder employs a 1089-100-3 fully-connected hidden layers/hidden units
architecture (Nz = 3), with sigmoid activation functions, and a symmetric
architecture for the decoder. The loss hyperparameters are taken as β1 = 1,
β2 = 10−4, β3 = 10−4 and β4 = 0. We also consider 2.5 · 106 training epochs,
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with a Nup = 105 greedy sampling rate. The ODE coefficients are interpolated
with k−NN interpolation (k = 1 and k = 3 are employed during gLaSDI train-
ing and evaluation, respectively, and k = 4 is employed for LaSDI). The four
corner parameters of D are used to generate the initial training data points
(µµµ(1) = {1, 4}, µµµ(2) = {1, 4.3}, µµµ(3) = {1.4, 4} and µµµ(4) = {1.4, 4.3}) At the end
of the training, there are a total of 25 training data points. We compare the
performance of gLaSDI (residual-based greedy sampling) with LaSDI trained on
a 5× 5 uniform parameter grid.

Figure 8 illustrates the maximum relative error when using LaSDI and gLaSDI,
with a SINDy library restricted to linear terms only. As already observed with
the 1D Burgers equation example, gLaSDI clearly outperforms LaSDI by select-
ing the most appropriate training data. gLaSDI achieves at most 1.2% maximum
relative error, whereas LaSDI maximum relative error can be as high as 5.7%.
The choice of candidate terms used in the SINDy library is purely arbitrary.
Thus, we do not have to restrict it to linear terms only. Figure 9 shows the max-
imum relative error for the same experiment, but this time using both linear
and quadratic candidate terms in the SINDy library. Interestingly, a slight de-
terioration of performances is noticed (at most 3.1% and 7.1% error for gLaSDI
and LaSDI, respectively). This indicates that while a broader selection of SINDy
candidate terms may theoretically capture the latent space dynamics more ac-
curately, it is not always the case in practice. A simpler set of candidate (e.g.
linear terms) may sometime be sufficient. In fact, increasing the number of SINDy
candidate terms means that more ODE coefficients need to be interpolated, so
the potential for interpolation error increases accordingly. gLaSDI achieves 17×
speed-up (with linear and quadratic SINDy library), and 58× speed-up (with
linear SINDy library only). As a result, restricting the SINDy library to linear
terms not only achieves better performance in this example, it is also faster.
This is not surprising since in the later case, less ODE coefficients need to be
interpolated, and the ODE are simpler to integrate numerically.

4.3 1D-1V Vlasov Equation with Variance-based Greedy Sampling

In this last example, we introduce a GPLaSDI example to showcase the variance
based active learning strategy. We consider the simplified 1D–1V Vlasov–Poisson
equation, for which implementing the residual-based sampling strategy is cum-
bersome:

∂f

∂t
+

∂

∂x
(vf) +

∂

∂v

(
dϕ

dx
f

)
= 0 (t, x, v) ∈ [0, 5]× [0, 2π]× [−7, 7]

d2ϕ

dx2
=

∫
v

fdv

(38)
f is the plasma distribution function, dependant on a spatial coordinate x and a
velocity coordinate v, and ϕ is the electrostatic potential. This model describes
collisionless electrostatic plasma dynamics within a 1-dimensional space, and
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Fig. 8: 2D Non-Linear Heat Equation – Maximum relative error (%) with a
SINDy dictionnary restricted to linear terms, using LaSDI and using gLaSDI
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Fig. 9: 2D Non-Linear Heat Equation – Maximum relative error (%) with a
SINDy dictionnary restricted to linear and quadratic terms, using LaSDI and
using gLaSDI
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is representative of more complex plasma behaviors occuring in nuclear fusion
reactors. Due to the velocity variable, this equation can be seen (and solved) as
a 2D-PDE. The initial condition is a two-stream instability problem described
by the following expression:

f(t = 0, x, v) =
4

πT

[
1+

1

10
cos(kπx)

][
exp

(
− (v − 2)2

2T

)
+exp

(
− (v + 2)2

2T

)]
(39)

We consider two simulation parameters, T ∈ [0.9, 1.1] and k ∈ [1.0, 1.2] (µµµ =
{T, k}). The parameter space is discretized over a 21× 21 grid Dh, with a step
size of ∆T = ∆k = 0.01. The initial training data contains the four corners of the
parameter space (Nµ = 4). To generate the FOM data, we employ HyPar [1], a
conservative finite difference PDE code with a WENO spatial discretization [37]
and the classical fourth–order Runge–Kutta time integration scheme (∆t = 5 ·
10−3). The auto-encoder employs fully connected layers with softplus activation
functions, and Nz = 5 latent space variables. The SINDy library is restricted
to linear and constant terms, which we have found to be sufficient for modeling
the latent space dynamics (in this example, WLaSDI is not used). GPLaSDI is
trained with Nepoch = 6.5 · 105 epochs, and a FOM data sampling rate every
Nup = 5 · 104 epochs (resulting in adding 12 data points during training, for a
total of 16 training points). More details on the models hyperparameters can be
found in [8].

For baseline comparison, we also trained the same model but with pre-
selected training parameters. The 16 training data points are associated with
parameters located along a uniform 4×4 grid. All the training hyperparameters
are kept identical and the baseline model also employs GPs for interpolating
the latent space ODE coefficients. Figure 10 presents the maximum relative er-
ror for each point in the parameter space obtained using GPLaSDI and the
baseline model. With GPLaSDI, the worst maximum relative error is 6.1%, and
in most regions of the parameter space, the error remains within the range of
1.5 − 3.5%. The highest errors are concentrated towards smaller values of k
(typically k < 1.07). Compared to uniform sampling, GPLaSDI outperforms the
baseline model, which achieves a maximum relative error of 7.4%. It is clear that
the variance-based sampling reduces the error faster by selecting data where it
is needed the most.

Figure 11 displays the latent space dynamics, including the predicted and
ground truth values of f , the absolute error, and the predictive standard devi-
ation. The results correspond to the least favorable case (µµµ(∗) = {0.9, 1.04}) at
t = 4. The standard deviation of the reduced-order model (ROM) exhibits qual-
itative similarity to the absolute error, and the error generally falls within about
1-standard-deviation. This shows that GPLaSDI is able to output meaningful
confidence intervals with well quantified uncertainty.

In 20 separate test runs, the FOM requires an average wall clock run–time
of 22.5 seconds when utilizing four cores, and 57.9 seconds when using a single
core. In contrast, the ROM model achieves an average run–time of 1.18 · 10−2

seconds, resulting in a remarkable average speed-up of 4906× (1906× when com-
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pared to the parallel FOM). Note that this speed-up is obtained using the mean
prediction only, and thus does not permits uncertainty quantification (i.e. rather
than sampling multiple times Ξ(d) ∼ N (Ξ(∗)|m(∗), s(∗)2), we take Ξ(∗) = m(∗)).
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Fig. 10: 1D1V Vlasov Equation – Maximum relative error (%) using GPLaSDI
and a uniform training grid (non–greedy).

5 Conclusion

In this chapter, we have summarized the key building blocks that can be used
and interchanged to develop LaSDI-based ROMs. By training an auto-encoder
over high-fidelity data, we can effectively compress complex physics described
by a PDE into simpler latent dynamics described by coupled ODEs. The latent
space dynamics can be identified during the auto-encoder training using SINDy,
Weak-SINDy, or the GENERIC framework. Interpolation can be applied to ex-
ploit the local latent space dynamics of training parameters for the prediction of
testing parameters. Finally, active learning can be employed through either the
residual-based error (gLaSDI for intrusive ROM) or the prediction uncertainty
(GPLaSDI for non-intrusive ROM). LaSDI algorithms achieve remarkable per-
formance, both in terms of accuracy (typically less than a 5-10% maximum
relative error) and efficiency (up to a few thousand times speed-up). The LaSDI
framework can be applied to a wide variety of non-equilibrium physical problems,
as we demonstrated with the Burgers equation, the non-linear heat equation, and
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Fig. 11: 1D1V Vlasov Equation – Prediction for µµµ(∗) = {0.9, 1.04} at t = 4.0.
The figure illustrates the predicted latent space dynamics E[Z̃(∗)] with a 95%
confidence interval, the ROM mean prediction E[f̃ (∗)] and standard deviation
V[f̃ (∗)]1/2, the ground truth, and the absolute error.

the Vlasov equation. Recent development and extension have enabled LaSDI to
be robust against noisy data (WLaSDI), to rigorously respect the laws of ther-
modynamics (tLaSDI), efficiently sample training data (gLaSDI, GPLaSDI), and
provide meaningful prediction confidence intervals (GPLaSDI).
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