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Tunable subdiffusion in the Caputo fractional standard map
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The Caputo fractional standard map (C-fSM) is a two-dimensional nonlinear map with memory
given in action-angle variables (I,6). It is parameterized by K and « € (1,2] which control the
strength of nonlinearity and the fractional order of the Caputo derivative, respectively. In this
work we perform a scaling study of the average squared action <I 2> along strongly chaotic orbits,
i.e. when K > 1. We numerically prove that <Iz> ox n* with 0 < p(a) < 1, for large enough discrete
times n. That is, we demonstrate that the C-fSM displays subdiffusion for 1 < o < 2. Specifically,
we show that diffusion is suppressed for o — 1 since p(1) = 0, while standard diffusion is recovered
for o = 2 where p(2) = 1. We describe our numerical results with a phenomenological analytical
estimation. We also contrast the C-fSM with the Riemann-Liouville fSM and Chirikov’s standard

map.

PACS numbers:

I. PRELIMINARIES

By replacing the second order derivative in the equa-
tion of motion of the kicked rotor

ﬁ+K'(€)§:6 L i) =0 (1)
dt2 Sin < T i =

by fractional operators (fractional derivatives, frac-
tional integrals or fractional integro-differential opera-
tors), fractional versions of the kicked rotor are obtained.
The kicked rotor represents a free rotating stick in an in-
homogeneous field that is periodically switched on in in-
stantaneous pulses, see e.g. [1]. In Eq. [@), 6 € [0,2n]
is the angular position of the stick, K is the kicking
strength, T is the kicking period, and § is Dirac’s delta
function. Among the several fractional kicked rotors
(fKRs) reported in the literature we can mention: the
Riemann-Liouville fKR [2, [3]

o S A
thﬁ—i—Ksm(H)ZO(S(T—(j—i—e)):O, l<a<2,
=

(2)
where € — 04, the Caputo fKR [4, [5]

o , — [t .
Oth9—|—Ksm(9)jZO(5<T—(]+e)>_0, l<a<2,

(3)
where ¢ — 0+, the Hadamard fKR [d], the Erdelyi-Kober
fKR [7], and the Hilfer fKR [§]. Above [9, [10],

oDy 0(t) = D"oZy" “0(t)
O(r)dr

1 dm /f e o<
- - - | /7 o= m
T(m —a)dt™ Jo (t —71)e—m+1’ a=

0“D}O(t) = oI{' " D(t)
B 1 /t DMO(r)dr
) Jo (

- T(m-—a t — 7)a-m+l’

m—1<a<m,

with D* = d™/dt™, oZ;"f(t) is a fractional integral
given by

oI F(t) = ﬁ/o (t = 7)o f(r)dr,

and I' is the Gamma function.

All the fKRs listed above, have stroboscopic versions
which are two-dimensional nonlinear maps with mem-
ory given in action-angle variables (I,6). These maps
are named as fractional standard maps (fSMs), in resem-
blance with Chirikov’s standard map (CSM) [11]:

Iy =1, — Ksin(6,),

Oni1 = 0pn + Iy, mod(27); (4)

which is the stroboscopic version of the standard kicked
rotor of Eq. (Il). Here and below, T is set to one.

As far as we know, the first two fSMs reported in the
literature are the Riemann-Liouville fSM (RL-fSM) [2,13],

Ih41 =1, — Ksin(0,),
_ 1 5 v (5)
Op+1 = o) E Ii1Vy(n—i41), mod(2m),
«
i=0

and the Caputo fSM (C-fSM) [4, ],

InJrl = In
n—1
K . . .
a1 ; VZ(n—i+1)sin(6;) +sin(6,) | ,
en—i-l = 971 + I
K

" T(a) ; Vo (n—i+1)sin(f;), mod(2m).

(6)
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FIG. 1: Average squared action <I’21>im
(IO7K) =

as a function of n for (a) (lo,K) =

(102,10%), (b) (Io, K) = (10%,10%), and (c)

(10%,10%). Several values of a are considered, as indicated in panel (c). Red-dashed lines correspond to Eq. (@).

Blue-dashed lines are Eq. ([{0). The average is taken over M = 200 orbits with initial random phases in the interval 0 < 0y < 27.

Here, 1 < a < 2 is assumed and

VEm) =mo* — (m —1)27F

Both, the RL-fSM and the C-fSM are parameterized by
K and « which control the strength of nonlinearity and
the fractional order of the derivative, respectively. For
«a = 2, both the RL-fSM and the C-fSM reproduce the
CSM [5, [11].

As compared with the CSM, which presents the generic
transition to chaos (in the context of Kolmogorov—
Arnold -Moser theorem, see e.g. [1]), depending on the
parameter pair (K, «), the RL-fSM and the C-fSM show
richer dynamics: They generate attractors (fixed points,
asymptotically stable periodic trajectories, slow converg-
ing and slow diverging trajectories, ballistic trajecto-
ries, and fractal-like structures) and/or chaotic trajec-
tories B B @ |E

Among several available studies on the RL-fSM and the
C-fSM (see e.g. B, 5, 12, ]), very recently, the squared
average action <Ifl> of the RL-fSM was analyzed in the
regime of K > 1 [14]. There it was shown that, for
strongly chaotic orbits, <I7%> presents normal diffusion
(for sufficiently large times) and, in addition, it does not
depend on «. Indeed, the panorama reported for <I 2>
vs. n for the RL- fSM [14] is equivalent to that of the

CSM ﬂﬁ . | as well as that of the discontinuous standard
map (DSM) ﬂﬁ . both with K > 1. Moreover, an
analytical estlmatlon ﬂﬂ used to get

K2
2 2
<I >RL M =I5+ 7”, (7)

also showed the independence of <I,21> on a.

By following the derivation of Eq. ([7l) we have realized
that the independence of <I7%> on « is due to the ab-
sence of « in the first equation of map (B). That is way
Eq. [@) also describes the dynamics of CSM: note that
the equation for the action is the same in both maps; see

Eqs. @) and ([@). This suggests that (/2) may depend
on « in fractional maps where « appears in the equation
for the action, such as map (@). Unfortunately, by the
use of simple arguments as those used to get Eq. (@) in
Ref. ﬂﬂ], we are not able to get an explicit expression for
(I2) for the C-fSM.

Therefore, the purpose of this work is twofold. First,
we numerically look for the effects of a on (I2) for the
C-fSM, (I2).
expression for < 2>
parameter o.

. Second, we derive a phenomenological

sy Which properly incorporates the

II. ON THE EFFECTS OF o ON (I7)

C-fSM

To ease our numerical analysis, to get curves smoother

than the present <I 2>C wn; V8- 1, in what follows we com-

pute the cumulative-normalized value of <I 2>

1 n
(=5 [ (I i
’n,():O

by averaging over M independent orbits (by randomly
choosing values of 6y in the interval 0 < 6y < 27) for
each combination of parameters (Ip, K, ).

Then, in Fig. @ we plot (I?) as a function of n for
the C- fSM for several values of o in the interval 1 <
a < 2. Moreover, in all panels we include Eq. (@) (as
red-dashed curves) which corresponds to the case v = 2;
so we can contrast the results for the C-fSM with those
for the RL-fSM [14], the CSM [15, [16], and the DSM [13,
|ﬂ] In Fig.Dlwe use three representative parameter pairs
(Io, K): In < K (left panel), Iy = K (central panel), and
Iy > K (right panel).

From Fig. [[l we can clearly observe that « supressess
the action diffusion even at the very first iteration; more-
over, the smaller the value of « the larger the difference

c-tsm’
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FIG. 2: (a) Average squared action <172L>int as a function of n for K = 10? (blue symbols), K = 10* (red symbols), and K = 10°
(black symbols). In all cases Iy = 0. The average is taken over M = 200 orbits with initial random phases in the interval
0 < 6o < 2m. Several values of « are considered; same symbol labeling as in Fig. [Il Dashed lines correspond to Eq. (). (b)
<I§>int /K? vs. n. Same data as in panel (a). (c) <I’2l>im vs. n for K = 10* and Iy = 0. Here the average is taken over M = 100
orbits with initial random phases in the interval 0 < 6y < 2mw. Dashed lines correspond to power-law fittings of the form
<172L>int oc n# in the interval n = [10?,10°). (d) u, from the power-law fittings of panel (c), as a function of «. The red-dashed

line is a linear fit to the data with a > 0.5: p ~ 1.69a.

between <I,%>_n and the red-dashed curves which corre-
spond to normal diffusion. Also, for large iteration times
<1721>im grows proportional to n* with u = p(a); this can
be better observed in Fig.[I{a). In addition, we observe
two scenarios depending on the initial action Iy as com-
pared with K. Specifically, when Iy < K, the curves
<1721>im vs. n are all different for different o and approach
faster the regime <172L>int x nt; see e.g. Fig. [[(a). While
for Iy > K, first, the curves (I7) ~vs. n for different o
fall one on top of the other up to a crossover time n*, after
which (12) __grows proportional to n*; see e.g. Fig.[Mc).

In what follows we concentrate on the case Iy < K to
easily approach the asymptotic regime where <I721>1m x
n*. So, in Fig. B(a) we show (I2) as a function of n
for several values of o and Iy = 0. Here we have used
three values of K: K = 102 (blue symbols), K = 10* (red
symbols), and K = 10° (black symbols). Note that the
contribution of K to (I2) is through the factor K7,
ie. (I2) —oc K7n#, where v should be equal to 2, see
e.g. Eq. [@). We verify this last statement in Fig. 2i(b)
where we plot the same curves of panel (a) but now di-
vided by K? and observe that curves for the same « fall

in

one on top of the other.

Then, to characterize the dependence of u on « in the
asymptotic regime, i.e. where <I721>1m x n*, in Fig.2lc) we
look at large iteration times. There, we perform power-
law fittings of the form <I,21>int o n* in the interval n =
[10%,106]. The values of x obtained from the fittings are
reported in Fig. 2(d). From Fig. 2(d) we can see that
w— 0 for a — 1 while 4 — 1 for a — 2. In addition we

observe that p(a) o « for a > 0.5.

Indeed, by substituting o = 1 into Eq. (6]), since I'(0)
diverges the action remains constant, I, = Iy, so the
action diffusion is fully suppressed and u(a = 1) = 0.
While substituting o = 2 into map (@), since I'(1) = 1
and V#(m) = 0, the equation for to action reduces to
Iny1 = I, — Ksin(0,); so (I2) is described by Eq. (@)
and pu(a = 2) = 1. Therefore, for 1 < a < 2 the C-fSM
shows subdiffusion:

<1721>;m o« K2nM9 with 0 < p(a) <1, (8)

which can be observed for large enough n.
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FIG. 3: (a) f(a) and f(a)/[T(a — 1)]%. f(«) is obtained
from the power-law fittings of the form <I72L>int = Cn" to the
data of Fig. 2(c); i.e. f(a) = 2C[u(a)+ 1][[(a—1)]*/K?, here
with K = 10%. (b) n*(c) for three ratios Ip/K; see Eq. ().

III. HEURISTIC ESTIMATE OF (I2)

C-fSM

In analogy with Eq. (@) and taking into account the
scaling given in Eq. (§]), we surmise

K?  f(e)

2 2B ()
<In>c,fSM IO + 2 [F(a _ 1)]211 ’ (9)
which leads to
K? fla)

(1), =T+ — M@ (10)

2 [M(a=1DPu(a) +1]

Indeed, from the power-law fittings made in Fig. Bl(c) we
can extract f(«), which is plotted in Fig. Bla). Notice
that f(a) ~ 2 for @ < 0.5, while it tends to one for
a — 2, as expected. In Fig. Bla) we also plot the ratio
f(a)/[C(a — 1)]?, which is relevant since it appears in
Eq. @) and together with the power p(«) is one of the
key differences between this equation and Eq. (@) for the
RL-fSM.

In Fig. [l we include Eq. ([I0), as blue-dashed lines and
observe a reasonable good correspondence with the data.
We believe that the correspondence between Eq. (I0) and
the data should improve by increasing the number of or-
bits used in the computation of <1721>1m' Moreover, we also
note an important deviation of the data from Eq. (I0Q) for
very short times, n < 10, where Eq. (I0) completely fails.

IV. DISCUSSION AND CONCLUSIONS

It is relevant to note that Eq. (@) can be used to define
an effective parameter controlling the strength of nonlin-
earity K. in the C-fSM as

K@)
2 2 e [eY
<In>CffSM = IO + f; n“( )7 (11)

with

K(a) = I‘(ivaf(—ai)K' (12)

Indeed, the form of Eq. (1)) is very convenient because
allows a direct comparison with Eq. () which describes
the squared average action of the RL-fSM but also of the
CSM and the DSM. Thus, it is relevant to stress that,
since K (o) o< 1/T(a — 1), K — 0 for @« — 1 while
K. — K for a — 2.

Moreover, from the ratio

{I7) n
n/c-fSM o
13 L n*’ (13)

we can identify the crossover time

I I§ [F(a—1)J?

2 = 2_02
Keff K f(a)

Notice also that Eq. ([T allow us to define the scaling
laws

n*(ly, K,a) =2 (14)

o< Kvifn“7 when [y < K.y,
I? = ~ 12, n<n*
< n>c,fSM ~ Ig_?fan, n> n* when Iy > K.

(15)
Here, n* separates the regime of constant action and the
subdiffusive regime when Iy > K.,. However, note that
since n* oc [['(a — 1)]2, and I'(« — 1) diverges for a — 1,
in practice, the subdiffusive regime may never be ap-
proached for & — 0. As examples, in Fig. B(b) we plot
n*(a) for three ratios Iy/K. Notice that for a ~ 1.05
and Iy/K = 100, n* is already of the order of 107.
Finally, it is relevant to recall that subdiffusive dynam-
ics has already been reported for the CSM, see e.g. ﬂE
20]. Specifically, 1 = 0.9 [1§] and p = 0.25 [19] were
found for the CSM with K = 7 and K = 1.46, re-
spectively. However, the anomalous diffusion shown in
Refs. [18 2] is produced by stickiness around islands of
stability in a mixed phase space. In contrast, the mech-
anism for the anomalous diffusion we report here is com-
pletely different: Anomalous diffusion in the C-fSM is
a consequence of the memory, imposed by the Caputo
fractional derivative, in the equation for the action.
Given that subdiffusion in the C-fSM can continuously
be tuned with the parameter « (from weak subdifussion,
w ~ 1, to strong subdiffusion, u ~ 0), the C-fSM may
serve as a reference model to prove and characterize the
effects of subdiffusion in other dynamical properties of
interest, such as scattering and transport properties.
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