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Abstract

This paper studies robust and distributionally robust optimization based on the ex-
tended φ-divergence under the Fundamental Risk Quadrangle framework. We present the
primal and dual representations of the quadrangle elements: risk, deviation, regret, error,
and statistic. The framework provides an interpretation of portfolio optimization, classi-
fication and regression as robust optimization. We furnish illustrative examples demon-
strating that many common problems are included in this framework. The φ-divergence
risk measure used in distributionally robust optimization is a special case. We conduct a
case study to visualize the risk envelope.
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1 Introduction

1.1 Demonstrating Examples

We start the introduction with two demonstrating examples.

Example A The first is an interpretation of Markowitz portfolio optimization [Markowitz,
1952], Large Margin Distribution Machine [Zhang and Zhou, 2014], and least squares regression
as robust loss minimization. Robust optimization in this study refers to minimizing the maxi-
mum weighted loss, where the weight comes from an uncertainty set. For the first example, we
define the uncertainty set QR

φ,β of random variables Q as a Euclidean ball of radius
√
β centered

at 1 with expected value of 1 :

QR
φ,β = {Q ∈ L2 : E[Q] = 1,E[φ(Q)] ≤ β}, φ(x) = (x− 1)2. (1.1)

Set QR
φ,β will appear in portfolio optimization, classification, and regression problems. Denote

by σ(X) the standard deviation of a random variable X. Consider a random portfolio loss
X(w) = wT l, where w ∈ Rd is a vector of portfolio weights and l is a random vector of
negative asset returns. Let 1 = (1, . . . , 1)⊤ ∈ Rd. As an example of the general equivalence in
Section 8, the following two problems

have the same optimal objective function value and the set of solution vectors:

Markowitz portfolio optimization

min
1⊤w=1

E[X(w)] +
√
βσ(X(w)), (1.2)

Robust expected loss minimization

min
1⊤w=1

max
Q∈QR

φ,β

E[QX(w)] . (1.3)

Problem (1.3) is the robust version of the expected loss minimization problem min1⊤w=1 E[X(w)].
The following is an interpretation of the Large Margin Distribution Machine classification

algorithm as a robust optimization. Consider an attribute (random vector of features) X, label
Y, and decision vector w. The margin is defined by L(w, b) = Y (w⊤X − b). Denote by γ(w)
a regularization term. The following two problems have the same optimal objective function
value and the set of solution vectors:

Large Margin Distribution Machine

min
w,b

E[−L(w, b)] +
√
βσ(−L(w, b)) + γ(w),

(1.4)

Robust expected margin maximization

min
w,b

max
Q∈QR

φ,β

E[−QL(w, b)] + γ(w) . (1.5)

Problem (1.5) is the regularized robust version of the expected margin maximization problem
maxw E[L(w, b)].

The following is an interpretation of least squares regression as robust optimization. Con-
sider a dependent variable (regressant) Y , a vector of regressors (factors) X = (X1, . . . , Xd),
a class of functions F , and an intercept C ∈ R. The regression residual is defined by Zf =
Y − f(X)−C, and the residual without the intercept C is defined by Z̄f = Y − f(X). Denote
by ∥X∥2 the Euclidean norm of a random variable X. The following two problems have the
same optimal solution (f, C):
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Least squares regression

min
f∈F ,C∈R

||Zf ||2 , (1.6)

Deviation minimization

min
f∈F

max
Q∈QR

φ,β

E[QZ̄f ]− E[Z̄f ] (1.7)

calculate C = E[Z̄f ] . (1.8)

The considered approach is based on the Fundamental Risk Quadrangle (FRQ) framework
[Rockafellar and Uryasev, 2013] connecting different measures associated with risk and uncer-
tainty. The basic elements forming a risk quadrangle are four functionals of a random variable
X, error E(X), regret V(X), deviation D(X), and risk R(X). Statistic S(X) binds these four
functionals. The quadrangle elements satisfy the following relations

V(X) = E(X) + E[X] , R(X) = D(X) + E[X] , (1.9)

argmin
C∈R

{C + V(X − C)} = S(X) = argmin
C∈R

{E(X − C)} , (1.10)

R(X) = min
C∈R

{C + V(X − C)}, D(X) = min
C∈R

E(X − C) . (1.11)

A regression problem minimizes an error E(Zf ) of the residual Zf and estimates the conditional
statistic S(Y |X). A portfolio optimization problem minimizes risk R(X) or deviation D(X) of
the portfolio loss X (minimization of risk is equivalent to the minimization of deviation with the
expectation constraint). Regret V(X) is an anti-utility function frequently used in stochastic
optimization.

The following mean quadrangle (Example 1, Rockafellar and Uryasev [2013]) relates Markowitz
portfolio optimization, Large Margin Distribution Machine and least squares regression.

Mean Quadrangle

R(X) = E[X] + λσ(X) = safety margin tail risk,

V(X) = E[X] + λ ∥X∥2 = L2-regret, scaled,

D(X) = λσ(X) = standard deviation, scaled,

E(X) = λ ∥X∥2 = L2-error, scaled,

S(X) = E[X] = mean.

The interpretation of (1.3) and (1.7) as a robust optimization is obtained from the dual repre-
sentation of risk and deviation in the following mean quadrangle

R(X) = max
Q∈QR

φ,β

E[QX],

V(X) = max
Q∈QV

φ,β

E[QX],

D(X) = max
Q∈QR

φ,β

E[QX]− E[X],

E(X) = max
Q∈QV

φ,β

E[QX]− E[X],

S(X) = E[X],
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where QR
φ,β is defined in (1.1) and the uncertainty set QV

φ,β of random variables Q removes the
condition E[Q] = 1 in (1.1)

QV
φ,β = {Q ∈ L2 : E[φ(Q)] ≤ β}, φ(x) = (x− 1)2. (1.12)

Example B The next example shows the relation between CVaR optimization [Rockafel-
lar and Uryasev, 2000], ν-support vector machine [Schölkopf et al., 2000], quantile regression
[Koenker and Bassett Jr, 1978] and robust optimization. Let ν = 1− α. The equivalence of ν-
SVM and CVaR optimization was studied by Gotoh and Takeda [2004]; Takeda and Sugiyama
[2008]. Define the uncertainty set QR

φ,β

QR
φ,β = {Q ∈ L2 | E[Q] = 1,E[φ(Q)] ≤ β}, φ(x) =

{
0, x ∈ [0, 1

1−α
]

+∞, otherwise
. (1.13)

QR
φ,β will appear in portfolio optimization, classification, and regression problems. Similarly

to Example A, in each of the following three pairs of problems, the optimizations on the left
and right have the same optimal objective function value and the set of solution vectors:

CVaR portfolio optimization

min
1Tw=1

CVaRα(X(w)) , (1.14)

Robust loss minimization

min
1Tw=1

max
Q∈QR

φ,β

E[QX(w)] , (1.15)

ν-SVM

min
w,b

CVaRα(−L(w, b)) + γ(w), (1.16)

Robust expected margin maximization

min
w

max
Q∈QR

φ,β

E[−QL(w, b)] + γ(w) . (1.17)

Quantile regression

min
f∈F ,C∈R

Eα(Zf ) , (1.18)

Deviation minimization

min
f∈F

max
Q∈QR

φ,β

E[QZ̄f ]− E[Z̄f ] (1.19)

calculate C ∈ VaRα[Z̄f ] , (1.20)

where X+ = max{0, X}, X− = max{0,−X}, and E(X) =
[

α
1−α

X+ + X−

]
is the normalized

Koenker-Bassett error.
CVaR portfolio optimization, ν-SVM, and quantile regression are connected by the quantile

quadrangle (Example 2, Rockafellar and Uryasev [2013]). The interpretation as robust opti-
mization is obtained from the dual representation, which is presented below together with the
primal representation.

Quantile Quadrangle

Rα(X) = CVaRβ(X) = max
Q∈QR

φ,β

E[QX],

Vα(X) =
1

1− β
E[X+] = max

Q∈QV
φ,β

E[QX],

Dα(X) = CVaRα(X)− E[X] = max
Q∈QR

φ,β

E[QX]− E[X],

Eα(X) = E
[ α

1− α
X+ +X−

]
= max

Q∈QV
φ,β

E[QX],

Sα(X) = VaRα(X) ,
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where the uncertainty set QV
φ,β is defined by

QV
φ,β = {Q ∈ L2 : E[φ(Q)] ≤ β}, φ(x) =

{
0, x ∈ [0, 1

1−α
]

+∞, otherwise
. (1.21)

The robust representations (1.15), (1.17), (1.19) are implied by the dual representations of risk
and deviation in the quantile quadrangle.

Distributionally robust optimization minimizes the maximum expected loss, where the ex-
pectation is taken under any probability measure from an uncertainty set. Ben-Tal et al. [2013]
studies the uncertainty set such that the φ-divergence [Csiszár, 1963; Morimoto, 1963] between
the alternative measure P and the reference measure P0, denoted by Dφ(P ||P0), is not larger
than a chosen value. We show that the dual formulations (1.15), (1.17), (1.19) in Example B can
be interpreted as distributionally robust optimization, while the dual formulations (1.3), (1.5),
(1.7) in Example A cannot be interpreted as such. The interpretation is based on the equivalent
representation of risk and deviation measure in quantile quadrangle as distributionally robust
expectation and distributionally robust deviation from expectation, respectively,

Rα(X) = max
P∈Pφ,β

EP [X] (1.22)

Dα(X) = max
P∈Pφ,β

EP [X]− EX, (1.23)

where Pφ,β is an uncertainty set of probability measures with φ(x) defined in (1.21)

Pφ,β = {P ∈ P(Σ) : Dφ(P ||P0) ≤ β}.

The demonstrated relations are examples of a general framework, under which many other
connections are revealed. For a general class of functions φ(x), called the extended divergence
function (see Definition 2.8), we derive the dual and primal representation of the risk quad-
rangle. Gotoh and Uryasev [2017] studies classification as risk minimization problem. The
primal representation facilitates optimization problem statements. The dual representation
of quadrangle elements provides an interpretation of portfolio optimization, classification and
regression as robust optimization. The dual representation of regular risk measure is studied
in Rockafellar and Uryasev [2013]. The dualization of coherent regret is studied in Sun et al.
[2020]; Rockafellar [2020]; Fröhlich and Williamson [2022a,b]; Rockafellar [2023]. We apply the
theorem in Sun et al. [2020] to prove certainty equivalence relation between dual regret measure
and dual risk measure.

Furthermore, for a subclass of functions called divergence function (see Definition 2.9),
we provide an interpretation of portfolio optimization, classification and regression as distri-
butionally robust optimization. The risk measure in relevant risk quadrangle is proposed in
Ahmadi-Javid [2011]. The dual representation of the risk measure is a special case of the rep-
resentation of coherent risk measure in Proposition 4.1 in Artzner et al. [1999]. Shapiro [2017]
studies distributionally robust optimization considering the law-invariant risk measures.

1.2 Paper Contributions

We propose an extended φ-divergence quadrangle and prove regularity of the quadrangle in dual
representation (Section 3). We derive the primal representation of the quadrangle elements:
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risk, regret, deviation, error, and statistic (Section 4). The dual representation provides an
interpretation of portfolio optimization, classification, and regression problems as a robust
optimization (Section 8). Compared with existing literature, this is a first study on robust
interpretation of classification and regression. The envelopes for these three problems are
identical, even if the envelopes are not defined by an extended φ-divergence, which can be of
independent interest.

A specific case of the extended φ-divergence quadrangle called φ-divergence quadrangle
(Section 3) provides an interpretation of portfolio optimization, classification, and regression
problem as distributionally robust optimization (Section 8). The extension of such quadrangles
builds a connection of well-known risk and error measures with distributionally robust opti-
mization. For example, the χ2-divergence risk measure is the second-order superquantile risk
measure (Example 7), and the extended χ2-divergence risk measure is safety margin tail risk
used in Markowitz portfolio optimization (Example 2).

Additionally, we recover the underlying φ-divergence from quadrangle elements (Section
6). We study optimality conditions in primal and dual optimization problem (Section 5).
We provide various examples for demonstrating the approach (Section 7). We visualize risk
identifiers for Markowitz portfolio optimisation, Large Margin Distribution Machine and least
squares regression (Section 9). The code for the case study is available for downloading.

2 Mathematical Preliminaries

This section presents key definitions and notations.

2.1 Functional Space Setting

This section discusses the functional space setting we adopt for further analysis.
Let (Ω,Σ, P0) be a probability space, where P0 is a reference measure, and let R = R∪{+∞}

denote an extended set of real numbers. As can be seen from Section 1, we work with stochastic
convex functionals, elements of the FRQ, which need to be defined on the appropriate space of
random variables, real-valued measurable functions X : Ω → R.

The choice of Lp := Lp(Ω,Σ, P0), p ∈ [1,∞) seems to be reasonable, however, one still has
to be careful since if R : Lp → R is a proper convex risk measure, then either R(·) is finite
valued and continuous on Lp or R(X) = +∞ on a dense set of points X ∈ Lp (cf. [Shapiro
et al., 2014, Proposition 6.8]). Therefore, for some risk measures, it may be even impossible to
find an appropriate space. Moreover, it is not possible to construct a finite valued convex risk
measure on a space larger than L1 (cf. [Shapiro et al., 2014, Proposition 6.31]).

Our study concentrates on so-called φ-divergence risk measures for which the natural choice
of a functional space can be an Orlicz space paired with a divergence function satisfying

φ(0) < +∞, lim
x→+∞

φ(x)

x
= +∞, (2.1)

suggested by Dommel and Pichler [2020] and adopted by Fröhlich and Williamson [2022b].
However, this particular choice of a space excludes important divergence functions such as

the total variation distance (TVD), fitting in the framework of Shapiro [2017], which uses Lp

in general and switches to L∞ for certain divergence functions.
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Of course, the simplest way would be to avoid the complications arising in the infinite-
dimensional setting by working with finite Ω. Then every function X : Ω → R is measurable,
and the space of all such functions can be identified with the Euclidean space. Such an approach
was taken by Bayraksan and Love [2015].

In light of everything mentioned above, we take a safe path by following [Rockafellar and
Uryasev, 2013] in taking L2 as our working space assuming finiteness where needed. This choice
will also allow us to rely on the extensive theory developed for the FRQ in this setting.

2.2 The Fundamental Risk Quadrangle Framework

Let X ∈ L2 be a real-valued random variable. Mathematical expectation and variance of a
random variable X with respect to the reference measure is denoted by E[X], and by V[X].
The set of all probability measures on (Ω,Σ) is denoted by P(Σ).

A functional ρ : L2 → R is called convex if

ρ (λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), ∀ X, Y ∈ L2, λ ∈ [0, 1],

and closed if {
X ∈ L2|ρ(X) ≤ c

}
is a closed set ∀ c <∞.

Next, we introduce the essential elements in the Fundamental Risk Quadrangle Theory.
The framework is proposed in Rockafellar and Uryasev [2013]. Rockafellar and Royset [2015]
relaxes some technical conditions, which we follow in this study. For reader’s convenience, we
put more details on quadrangle theory in Appendix A.

Definition 2.1 (Regular Risk Measure). A closed convex functional R : L2 → R is called a
regular measure of risk if it satisfies:

R(C) = C, ∀ C = const R(X) > E[X], ∀ X ̸= const

Definition 2.2 (Regular Deviation Measure). A closed convex functional D : L2 → R+
is

called a regular measure of deviation if it satisfies:

D(C) = 0, ∀ C = const D(X) > 0, ∀ X ̸= const

Definition 2.3 (Regular Regret Measure). A closed convex functional V : L2 → R is called a
regular measure of regret if it satisfies the following axioms

V(0) = 0, V(X) > E[X], ∀ X ̸= const

Definition 2.4 (Regular Error Measure). A closed convex functional E : L2 → R+
is called a

regular measure of error if it satisfies the following axioms:

E(0) = 0, E(X) > 0, ∀ X ̸= const

Definition 2.5 (Risk Quadrangle). A quartet (R,D,V , E) of measures of risk, deviation, regret,
and error satisfying the following relationships is called a risk quadrangle:

(Q1) error projection: D(X) = inf
C

{
E(X − C)

}
;
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(Q2) certainty equivalence: R(X) = inf
C

{
C + V(X − C)

}
;

(Q3) centerness: R(X) = D(X) + E[X], V(X) = E(X) + E[X].

Moreover, the quartet (R,D,V , E) is bound by the statistic S(X) satisfying:

S(X) = argmin
C∈R

{
E(X − C)

}
= argmin

C∈R

{
C + V(X − C)

}
.

Definition 2.6 (Regular Risk Quadrangle). A regular risk quadrangle is a risk quadrangle
with regular elements (R,D,V , E).

Remark 2.1 (Error Projection and Certainty Equivalence). In order to establish the validity
of a given quartet (R,D,V , E) as a quadrangle, it is sufficient to demonstrate the satisfaction
of either conditions (Q1) and (Q3), or conditions (Q2) and (Q3), as conditions (Q1) and (Q2)
are intrinsically linked through the condition (Q3). Indeed,

R(X) = inf
C

{
C + V(X − C)

}
= inf

C

{
E(X − C)

}
+ E[X] = D(X) + E[X].

Let Zf = Y − f(X)−C, Z̄f = Y − f(X), where C ∈ R, f belongs to a class of functions F .

Definition 2.7 (Regression). A regression problem is defined as

min
f∈F ,C

E(Zf ) . (2.2)

Theorem 2.1 (Error Shaping Decomposition of Regression (Theorem 3.2, Rockafellar et al.
[2008])). The solution to regression in Definition 2.7 is characterized by the prescription that

f, C ∈ argmin
f,C

E(Zf ) if and only if

{
f ∈ argminf D(Z̄f )

C ∈ S(Z̄f )
. (2.3)

2.3 Divergence and Related Risk Measure

Definition 2.8 (Extended Divergence Function). A convex lower semi-continuous function
φ : R → R is an extended divergence function if

φ(1) = 0, dom(φ) = R, 1 ∈ int({x : φ(x) < +∞}) , (2.4)

where the interior is denoted by int.

Definition 2.9 (Divergence Function). A divergence function φ(x) is an extended divergence
function in Definition 2.8 that additionally satisfies

φ(x) = +∞ for x < 0 . (2.5)

Definition 2.10 (φ-Divergence). Consider probability measures P and P0, where P is domi-
nated by P0. For a divergence function φ(x), the φ-divergence of P from P0 is defined by

Dφ(P ||P0) :=

∫
Ω

φ

(
dP

dP0

)
dP0 . (2.6)
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The integral can be equivalently written as EP0

[
φ
(

dP
dP0

)]
. The following φ-divergences

are discussed in subsequent examples. The indicator divergence is defined by function, φ(x) =
1[0,(1−α)−1](x), where φ(x) = 0 if x ∈ [0, (1−α)−1] and +∞ otherwise; for Pearson χ2-divergence,
φ(x) = 1

2
(x− 1)2; for total variation distance (which is also a divergence), φ(x) = 1

2
|x− 1|; for

Kullback-Leibler divergence, φ(x) = x log x.

Definition 2.11 (Conjugate Functional, Risk Envelope, Risk Identifier [Rockafellar and Urya-
sev, 2013]). Let ρ : L2 → R be a closed convex functional. Then a functional ρ∗ : L2 → R is
said to be conjugate to ρ if

ρ(X) = sup
Q∈Q

{E[XQ]− ρ∗(Q)}, ∀ X ∈ L2, (2.7)

whereQ = dom(ρ∗) is called the risk envelope associated with ρ, andQ furnishing the maximum
in (2.7) is called a risk identifier for X.

Definition 2.12 (Generalized Entropic Risk Measure [Ben-Tal and Teboulle, 1987, 2007;
Föllmer and Schied, 2011]). Consider a divergence function φ(x) (Definition 2.9). The gen-
eralized entropic risk measure is defined by

Rφ(X) = sup
P∈P(Σ)

{EP [X]−Dφ(P ||P0)}. (2.8)

The envelope representation is as follows

Rφ(X) = sup
Q∈Q1,+

φ

{E[XQ]− E[φ(Q)]}, (2.9)

Q1,+
φ = {Q ∈ L2 : Q ≥ 0,E[Q] = 1}. (2.10)

By convex conjugacy of (2.9) (Theorem 4.4 of Ben-Tal and Teboulle [2007]),

E[φ(Q)] = sup
X∈L2

{E[XQ]−Rφ(X)} . (2.11)

The primal representation is as follows

Rφ(X) = inf
C
{C + E[φ∗(X − C)]}. (2.12)

Definition 2.13 (φ-divergence risk measure [Dommel and Pichler, 2020]). Consider a diver-
gence function φ(x). The φ-divergence risk measure is defined by

Rφ,β(X) = sup
P∈Pφ,β

EP [X] , (2.13)

Pφ,β = {P ∈ P(Σ) : Dφ(P ||P0) ≤ β} . (2.14)

3 Dual Representation of φ-Divergence Quadrangle

This section introduces the dual representation of φ-divergence quadrangle, and proves the reg-
ularity of the quadrangle and the coherency of a special case of this quadrangle. As the section
title implies, there is a primal φ-divergence quadrangle that will be introduced subsequently in
Section 4.
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Definition 3.1 (Dual Representation of Extended φ-Divergence Quadrangle). For an extended
φ-divergence function and X ∈ L2, the dual extended φ-divergence quadrangle is defined by

Rφ,β(X) = sup
Q∈QR

φ,β

E[XQ] , (3.1)

Vφ,β(X) = sup
Q∈Qφ,β

E[XQ] , (3.2)

Dφ,β(X) = sup
Q∈QR

φ,β

E[X(Q− 1)] , (3.3)

Eφ,β(X) = sup
Q∈Qφ,β

E[X(Q− 1)] , (3.4)

Sφ,β(X) = argmin
C∈R

sup
Q∈Qφ,β

E[(X − C)(Q− 1)] , (3.5)

where
QR

φ,β = {Q ∈ L2 : E[Q] = 1,E[φ(Q)] ≤ β}, (3.6)

Qφ,β = {Q ∈ L2 : E[φ(Q)] ≤ β} (3.7)

are the envelopes associated with R(X) and V(X) respectively.

Note that there is no requirement in the envelope that Q ≥ 0.

Definition 3.2 (Dual φ-Divergence Quadrangle). The dual extended φ-divergence quadrangle
is called a dual φ-divergence quadrangle if the extended φ-divergence is φ-divergence.

We prove the dual representation of the extended φ-divergence quadrangle. The proof of
aversity of the risk measure constructs a feasible random variable inspired by Ang et al. [2018].
The proof of the relation between risk and regret follows Sun et al. [2020]. Ang et al. [2018];
Sun et al. [2020] work with coherent risk measures. The proving techniques are of broader
interest. Ang et al. [2018] proves that 1 being a relative interior point of the envelope Q is
sufficient for a coherent risk measure to be risk averse. Sun et al. [2020] proves that removing
EQ = 1 in the envelope of coherent risk measure generates a coherent regret measure.

Theorem 3.1 (Dual Representation of Extended φ-Divergence Quadrangle). Let φ(x) be an
extended φ-divergence function, X ∈ L2. The quartet (Rφ,β,Dφ,β,Vφ,β, Eφ,β) defined by (3.1)–
(3.4) is a regular risk quadrangle with the statistic (3.5).

Proof. First, we verify the conditions for regular risk measure in Definition 2.1.
Closedness and Convexity: Since the envelope Q is closed and convex ([Rockafellar et al.,

2006; Rockafellar and Uryasev, 2013]), then Rφ,β(X) is closed (lower semicontinuous) and
convex as a maximum of continuous affine functions.

Constancy: Constancy is implied by the condition EQ = 1,

sup
Q∈QR

φ,β

E[CQ] = sup
Q∈QR

φ,β

C E[Q] = C .

Risk aversity: We can construct a Q0 such that the strict inequality holds for Rφ,β(X) >
E[X]. As a function of r, P (X ≤ r) is a nondecreasing, right-continuous function with a range
in [0, 1]. Thus for a nonconstant X, there exists r ∈ R, p ∈ (0, 1) such that P (X ≤ r) = p,
P (X > r) = 1 − p. By convexity of φ(x) and 1 ⊂ int({x : φ(x) < +∞}), there exists δ > 0
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such that φ(x) ≤ β for x ∈ (1 − δ, 1 + δ). Then, there exists δ1 ∈ (0, δ), δ2 ∈ (0, δ) such that
δ1 =

1−p
p
δ2. Define Q0 by

Q0(ω) =

{
1− δ1, ω : X(ω) ≤ r

1 + δ2, ω : X(ω) > r
. (3.8)

The feasibility can be checked by E[φ(Q0)] ≤ β, EQ0 = 1.
We have

E[XQ0] =E[XQ0|X ≤ r]P (X ≤ r) + E[XQ0|X > r] (3.9)

=p(1− δ1)E[X|X ≤ r] + (1− p)(1 + δ2)E[X|X > r] (3.10)

=pE[X|X ≤ r] + (1− p)E[X|X > r]− pδ1E[X|X ≤ r] + (1− p)δ2E[X|X > r] (3.11)

=E[X] + pδ1(E[X|X > r]− E[X|X ≤ r]) (3.12)

>E[X] . (3.13)

Thus Rφ,β(X) is a regular risk measure.
Next, we verify the conditions for regular regret measure.
Closedness and Convexity: Same with the proof above for regular risk measure.
Risk aversity: For X ̸= const,

Vβ,φ(X) ≥ Rβ,φ(X) > EX. (3.14)

The first inequality is due to QR
φ,β ⊂ Qφ,β.

Zeroness:

sup
Q∈Qφ,β

E[0 ·Q] = 0. (3.15)

The proof of Theorem 1 in Sun et al. [2020] (which works on coherent risk measure) can
be applied here to show that a regular regret measure can be obtained by removing condition
EQ = 1 in (3.6). Thus the risk (3.1) and regret (3.2) satisfies (Q2) in Definition 2.5.

Deviation (3.3) and error (3.4) measure are obtained by centerness formulae (Q3) (see
Definition 2.5). With Theorem A.1, we can show the regularity of deviation and error, and
that the minimum in C for a regular regret measure is attainable. The optimal C is Sφ,β(X).

Proposition 4.1 of Artzner et al. [1999] proves the coherency of risk measures that have
representation supP∈P EP [X] for any set P . The setting in Artzner et al. [1999] is finite R(X)
and finite Ω.

An alternative proof of risk (3.1) and regret (3.2) satisfying (Q2) in Definition 2.5 can
be obtained from the primal representations in Section 4. The relation (Q2) can be directly
observed from the primal risk and regret.

Consider the φ-divergence quadrangle in Definition 3.2. Since φ(x) = +∞ for x < 0,
E[φ(Q)] ≤ β implies that Q ≥ 0 almost surely. The envelope with Q ≥ 0 is the necessary
and sufficient condition for monotonicity of the convex homogeneous functional associated with
such envelope [Rockafellar et al., 2006; Rockafellar and Uryasev, 2013]. Rφ,β(X) becomes the
φ-divergence risk measure (Definition 2.13), which is a coherent risk measure. In fact, it is
straightforward to verify that the quadrangle elements of φ-divergence quadrangle satisfy the
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axioms of coherent risk, regret, deviation and error measure defined in Fröhlich and Williamson
[2022a].

We discuss the interpretation of Q in QR
φ,β. Consider the extended φ-divergence quadrangle.

The covariance between random variables X and Q is cov(X,Q) = E[(X − EX)(Q − EQ)].
Since EQ = 1 by (3.6), cov(X,Q) = E[X(Q − 1)]. The deviation (3.3) can be written as
supQ∈QR

φ,β
cov(X,Q). Thus the optimal Q∗ tracks X as closely as possible. Next, we consider

only φ-divergence quadrangle. Define indicator function IA(x) = 1 if x ∈ A and 0 otherwise.
For every Q ∈ QR

φ,β, we can define a probability measure on (Ω,Σ) by

PQ(A) = E[IA(ω)Q(ω)], A ∈ Σ . (3.16)

Q is the Radon–Nikodym derivative dPQ/dP0. Then the condition E[φ(Q)] ≤ β can be equiv-
alently expressed by Dφ(P ||P0) ≤ β. The envelope QR

φ,β has a one-to-one correspondence to a
set of probability measures

Pφ,β = {P ∈ P(Σ) : Dφ(P ||P0) ≤ β}. (3.17)

The dual representations (3.1) and (3.3) can be equivalently written as

Rφ,β(X) = sup
P∈Pφ,β

EP [X] (3.18)

Dφ,β(X) = sup
P∈Pφ,β

EP [X]− E[X] . (3.19)

4 Primal Extended φ-Divergence Quadrangle

This section discusses the primal representation of the elements in the dual φ-divergence quad-
rangle.

Definition 4.1 (Primal Extended φ-Divergence Quadrangle). For an extended divergence func-
tion φ(x) and X ∈ L2, the Primal Extended φ-Divergence quadrangle is defined by

Rφ,β(X) = inf
C∈R,
t>0

t

{
C + β + E

[
φ∗

(X
t
− C

)]}
, (4.1)

Dφ,β(X) = inf
C∈R,
t>0

t

{
C + β + E

[
φ∗

(X
t
− C

)
− X

t

]}
, (4.2)

Vφ,β(X) = inf
t>0

t

{
β + E

[
φ∗

(X
t

)]}
, (4.3)

Eφ,β(X) = inf
t>0

t

{
β + E

[
φ∗

(X
t

)
− X

t

]}
, (4.4)

Sφ,β(X) = argmin
C∈R

inf
t>0

t

{
C

t
+ β + E

[
φ∗

(X − C

t

)]}
. (4.5)

Definition 4.2 (Primal φ-Divergence Quadrangle). The primal extended φ-divergence quad-
rangle is called a primal φ-divergence quadrangle if the extended φ-divergence is φ-divergence.
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Theorem 4.1 (Primal Extended φ-Divergence Quadrangle). Let φ(x) be an extended diver-
gence function, X ∈ L2. Elements of the dual extended φ-divergence quadrangle in Theorem
3.1 can be presented as (4.1)–(4.5) in Definition 4.1. The optimal t and C in (4.1)–(4.5) are
attainable.

Proof. Consider the regret (3.2)

Vφ,β = sup
Q∈Qφ,β

E[XQ] = − inf
Q∈Qφ,β

E[−QX]. (4.6)

Consider the Lagrangian dual problem of infQ:Q∈Qφ,β
E[−QX]

sup
t≥0

inf
Q

{E[−XQ] + t (E[φ(Q)]− β)} . (4.7)

Denote the optimal t by t∗. If t∗ = 0, then

sup
t≥0

inf
Q

{E[−XQ] + t (E[φ(Q)]− β)} = inf
Q

E[−XQ] = −∞. (4.8)

Thus for all t ≥ 0,

inf
Q

{E[−XQ] + t (E[φ(Q)]− β)} = −∞ . (4.9)

Thus if t∗ = 0, the optimum is also attained at t > 0. If t∗ > 0, t > 0 and t ≥ 0 are the same
for the problem. Thus, we can substitute t ≥ 0 with t > 0 in the Lagrange dual problem.

Then,

sup
t>0

inf
Q

{E[−XQ] + t (E[φ(Q)]− β)} (4.10)

= sup
t>0

inf
Q
(−t)

{
E
[
X

t
Q− φ(Q)

]
+ β

}
(4.11)

=− inf
t>0

sup
Q
t

{
E
[
X

t
Q− φ(Q)

]
+ β

}
. (4.12)

Next, we prove that

− inf
t>0

sup
Q
t

{
E
[
X

t
Q− φ(Q)

]
+ β

}
=− inf

t>0
t

{
β + Eφ∗

(
X

t

)}
. (4.13)

We consider two cases where the following condition is satisfied and not satisfied

sup
Q

{
E
[
X

t
Q− φ(Q)

]}
< +∞ for some t . (4.14)

When (4.14) is satisfied, since XQ/t− φ(Q) is a normal convex integrand [Shapiro, 2017], sup
and expectation in (4.12) are exchangeable by Theorem 3A of Rockafellar [1976]. Thus, (4.13)
holds.

When (4.14) is not satisfied, supQ{E[XQ/t− φ(Q)]} = +∞ for all t. We have

− inf
t>0

sup
Q
t

{
E
[(

X

t

)
Q− φ(Q)

]
+ β

}
= −∞.
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We also have that

t

(
Eφ∗

(
X

t

)
+ β

)
=t

(
E
[
sup
Q

{(
X

t

)
Q− φ(Q)

}]
+ β

)
(4.15)

≥ sup
Q
t

{
E
[(

X

t

)
Q− φ(Q)

]
+ β

}
(4.16)

= +∞. (4.17)

Thus

− inf
t>0

t

(
Eφ∗

(
X

t

)
+ β

)
= −∞. (4.18)

We see that (4.13) holds with or without the condition (4.14). With (4.10)–(4.12), (4.13), we
obtain

sup
t>0

inf
Q

{E[−XQ] + t (E[φ(Q)]− β)} = − inf
t>0

t

{
β + Eφ∗

(
X

t

)}
. (4.19)

Strong duality for the convex problem holds since the following Slater’s condition is valid for
Q = 1

∃Q : Q ∈ Qφ,β, E[φ(Q)] < β . (4.20)

Thus

Vφ,β = − inf
Q∈Qφ,β

E[−QX] = inf
t>0

t

{
β + Eφ∗

(
X

t

)}
. (4.21)

By regularity, the statistic Sφ,β(X) is attainable. Denote the optimal C and t by C∗ and t∗.

If t∗ > 0,
Sφ,β(X)

t∗
is attainable. We showed that if t∗ = 0, any t > 0 is also optimal.

Sφ,β(X)

t∗
is

attainable. By change of variable, C∗ in (4.1),(4.2) equals
Sφ,β(X)

t∗
. Thus t∗ and C∗ in (4.1)–(4.5)

are attainable.
The primal representation of the other elements can be obtained similarly by Lagrange dual

problem, or by direct calculation using the quadrangle relations in Definition 2.5.

The primal representation of the risk measure (4.1) is studied in the literature under different
technical conditions.

Fröhlich and Williamson [2022b] starts with the primal representation of coherent regret
and obtains the coherent risk with (Q3) centerness relation in Definition 2.5.

5 Statistic and Risk Identifier

5.1 Statistic and Characterizing Equations

This section characterizes statistic function and studies optimality conditions for (C, t) in the
primal problem in Theorem 4.1.
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Lemma 5.1 (Convexity). Let f : R× (0,∞) → R be such that

f(C, t) = C + tβ + E
[
tφ∗

(X − C

t

)]
. (5.1)

Then f(C, t) is convex in (C, t) and

∂(C,t)(f(C, t)) = (1, β)⊤ + E
[
∂(C,t)

(
tφ∗

(
X − C

t

))]
, (5.2)

where ∂(C,t)(f(C, t)) denotes a subdifferential of a convex function f(C, t) with respect to the
vector (C, t)⊤ ∈ R× (0,∞), cf. [Rockafellar, 1970, Definition 23.1]. The “+” sign in (5.2) is
understood in the sense of the Minkowski sum.

Proof. To prove the first part of the lemma it suffices to establish that the function

ψ(z, t) = tφ∗(z/t), z ∈ R, t ∈ (0,∞)

is convex. This follows from the fact that the function h(z, t) = tg(z/t), z ∈ Rn, t > 0 is convex
if and only if g is convex. Such function h is called a perspective function, cf. [Dacorogna and
Maréchal, 2008, Lemma 2.1]. Hence, since φ∗ is convex then ψ is also convex as a perspective
function. Therefore, f(C, t) is convex since convexity is preserved under linear transformations.

The second part of the lemma follows from [Rockafellar, 1977, Theorem 23]. Indeed, since
the function under the expectation in (5.1) is convex, hence measurable (cf. Rockafellar and
Wets [1998]), the subdifferential can be interchanged with the expectation.

Theorem 5.1 (Characterization of Sφ,β). Let (Rφ,β,Dφ,β,Vφ,β, Eφ,β) be a Primal Extended
φ-Divergence Quadrangle. Statistic in this quadrangle equals

Sφ,β(X) =

{
C ∈ R : 0 ∈ (1, β)⊤ + E

[
∂(C,t)

(
tφ∗

(
X − C

t

))]}
. (5.3)

Proof. Definition 2.5 implies that the statistic is equal to

Sφ,β(X) = argmin
C∈R

{
C + Vφ,β(X − C)

}
= argmin

C∈R
inf
t>0

f(C, t) ,
(5.4)

where f(C, t) = C + tβ+E
[
tφ∗

(
X−C

t

)]
. To find the statistic one has to minimize f(C, t) with

respect to (C, t). Since f(C, t) is convex, cf. Lemma 5.1, then it reaches the minimum if and
only if

0 ∈ ∂(C,t)f(C, t) . (5.5)

Therefore, cf. Lemma 5.1, condition (5.5) is equivalent to

0 ∈ (1, β)⊤ + E
[
∂(C,t)

(
tφ∗

(
X − C

t

))]
. (5.6)
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If for an extended divergence function φ(x), the conjugate φ∗(z) is positive homogeneous,
then the expression (4.5) for statistic is reduced to

Sφ,β(X) = argmin
C∈R

C + E[φ∗(X − C)] . (5.7)

The [Rockafellar and Uryasev, 2013, Expectation Theorem] in this case implies

Sφ,β(X) =

{
C ∈ R : E

[
∂−

∂z
φ∗(z)

∣∣∣∣
x=X−C

]
≤ 1 ≤ E

[
∂+

∂z
φ∗(z)

∣∣∣∣
x=X−C

]}
, (5.8)

where
∂−

∂z
,
∂+

∂z
denote left and right derivatives with respect to z ∈ R. As a finite convex

homogeneous function, φ∗(z) is the support function of a closed interval (Corollary 13.2.2,
Rockafellar [1970]). The convex conjugate of a support function is an indicator function. Since
φ(1) = 0, it must be in the form of the φ(x) in Example 8.

In fact, Dommel and Pichler [2020] provided optimality conditions for (C, t) in (4.1). For
differentiable function φ∗, they developed a set of equations known as the characterizing equa-
tions for optimal (C, t). Further, we provide a system of equations similar to the characterizing
equations developed by Dommel and Pichler [2020].

Definition 5.1 (Characterizing Equations). Let φ∗(z) ∈ C1(R). Characterizing system of
equations is defined by:

E

[
dφ∗(z)

dz

∣∣∣∣
z=X−C

t

]
= 1 ,

β + E
[
φ∗

(
X − C

t

)]
− 1

t
E

[
(X − C)

dφ∗(z)

dz

∣∣∣∣
z=X−C

t

]
= 0 .

(5.9)

The following Corollary 5.1 provides an expression for the statistic Sφ,β with smooth φ∗(z).

Corollary 5.1 (Characterization of Sφ,β : Smooth Case). Let φ∗(z) ∈ C1(R), then the statistic
equals

Sφ,β(X) = {C ∈ R : (C, t) is a solution to Characterizing Equations (5.9) }.

Proof. Replacing the subdifferential in (5.6) with the gradient ∇(C,t) leads to the system of
equations (5.9).

5.2 Optimality Conditions for Risk Identifier

Lemma 5.2 (Subgradients of expectation, Bauschke and Combettes [2011]). Let (Ω,A, P0) be
a probability space and ψ : R → R be a proper, lsc, and convex function. Set

ρ = E[ψ(X)]. (5.10)

Then ρ is proper, convex lsc functional and, for every X ∈ dom(ρ),

∂Xρ(X) = {Q ∈ L2 : Q ∈ ∂ψ(X) P0 − a.s.}. (5.11)
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Proposition 5.1. Denote by C∗ and t∗ the optimal C and t in the primal representation (4.1)
of extended φ-divergence risk measure. The risk identifier of risk measure Rφ,β(X) can be
expressed as follows

Q∗(ω) ∈ ∂φ∗
(
X(ω)

t∗
− C∗

)
. (5.12)

Denote by C∗ the optimal C in the primal representation (4.4) of extended φ-divergence risk
measure. The risk identifier of extended φ-divergence error measure Eφ,β(X) can be expressed
as follows

Q∗(ω) ∈ ∂φ∗
(
X(ω)

t∗

)
. (5.13)

Proof. It is known that the risk identifier is the subgradient of the risk function (see, for example,
Proposition 8.36 of Royset and Wets [2022]). Therefore, (5.12) is obtained by taking the
subdifferential of (4.1) following Lemma 5.2. The expression (5.13) is obtained analogously.

Note that the envelope Qφ,β of error does not have the constraint EQ = 1. However, when
we minimize Eφ,β(X − C) with respect to C to get statistic Sφ,β(X), the constraint EQ = 1 is
satisfied automatically. This can be seen from the necessary condition for saddle point (C∗, Q∗)

∂

∂C
E[(X − C)(Q∗ − 1)]

∣∣∣
C=C∗

= 0. (5.14)

6 Relation to Generalized Entropic Risk Measure

This section discusses the relation between the extended φ-divergence risk measure and gener-
alized entropic risk measure.

Proposition 6.1. The following relation holds for φ-divergence risk measure Rφ,β(X) and
generalized entropic risk measure Rφ(X)

Rφ,β(X) = inf
t>0

{tβ +Rtφ (X)} . (6.1)

Proof. Notice that

Rtφ(X) = inf
C
{C + E[(tφ)∗(X − C)]} (6.2)

= inf
C

{
C + tE

[
φ∗

(
X − C

t

)]}
(6.3)

=t inf
C

{
C

t
+ E

[
φ∗

(
X

t
− C

t

)]}
(6.4)

=tRφ

(
X

t

)
. (6.5)
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Then, we have

Rφ,β(X) = inf
C∈R,
t>0

t

{
β +

(
C + E

[
φ∗

(X
t
− C

)])}
(6.6)

= inf
t>0

t

{
β +Rφ

(
X

t

)}
(6.7)

= inf
t>0

{tβ +Rtφ (X)} . (6.8)

Equality (6.7) is obtained by (2.12) and equality (6.8) is obtained by (6.5).

We recover a special case of Theorem 4.1 of Rockafellar [2023] by directly observing the
relation in primal representation. Rockafellar [2023] proves the relation for general divergence
by studying dual representation and viewing Rφ,β(X) as the support function of the level set
QR

φ,β.
Next, we recover the φ-divergence from the elements in the corresponding φ-divergence

quadrangle.

Proposition 6.2. Let φ(x) be a divergence function. φ-divergence can be recovered from the
elements in φ-divergence quadrangle by

Dφ(P ||P0) = sup
X∈L2,β>0

{E[XQ]−Rφ,β (X)− β} (6.9)

= sup
X∈L2,β>0

{E[X(Q− 1)]−Dφ,β (X)− β} (6.10)

= sup
X∈L2,β>0,C

{E[XQ]− Vφ,β (X − C) + C − β} (6.11)

= sup
X∈L2,β>0,C

{E[X(Q− 1)]− Eφ,β (X − C)− β}. (6.12)

Proof. From (6.8), we have by convex conjugate

Rtφ (X) = inf
β>0

{tβ +Rφ,β (X)}. (6.13)

(6.13) is a generalization of Proposition 3.1 in Föllmer and Knispel [2011].
Next, we have

E[φ(Q)] = sup
X∈L2

{E[XQ]−Rφ(X)} (6.14)

= sup
X∈L2

{E[XQ]− inf
β>0

{β +Rφ,β (X)}} (6.15)

= sup
X∈L2,β>0

{E[XQ]−Rφ,β (X)− β}, (6.16)

where (6.14) is by (2.11), (6.15) is by plugging in (6.13) to (2.11).
Since φ(x) is a divergence function, E[φ(Q)] = Dφ(P ||P0). The rest of the proof is by

quadrangle relations.
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Discussion on Risk Quadrangle The primal representation (2.12) has the form of expectation-
type risk measure [Rockafellar and Uryasev, 2013]. However, it is not regular or coherent in
general.

Still, we can mimic the quadrangle elements and define the following elements

Rφ(X) = inf
C∈R

{
C + E[φ∗(X − C)]

}
(6.17)

Dφ(X) = inf
C∈R

{
C + E[φ∗(X − C)−X]

}
(6.18)

Vφ(X) = E[φ∗(X)] (6.19)

Eφ(X) = E[φ∗(X)−X] (6.20)

Sφ(X) = argmin
C∈R

{
C + E[φ∗(X − C)]

}
. (6.21)

Quadrangle relations in Definition 2.5 are satisfied.
Since (tφ)∗(x) = tφ∗ (X/t),

Rtφ(X) = inf
C∈R

t

{
C + E

[
φ∗

(
X

t
− C

)]}
(6.22)

Dtφ(X) = inf
C∈R

t

{
C + E

[
φ∗

(
X

t
− C

)
− X

t

]}
(6.23)

Vtφ(X) = tE
[
φ∗

(
X

t

)]
(6.24)

Etφ(X) = tE
[
φ∗

(
X

t

)
− X

t

]
(6.25)

Stφ(X) = argmin
C∈R

t

{
C + E

[
φ∗

(
X

t
− C

)]}
. (6.26)

Plugging in to Theorem 4.1, we can express the elements in the extended φ-divergence quad-
rangle with (6.17)-(6.21)

Rφ,β(X) = inf
t>0

{tβ +Rtφ (X)} (6.27)

Dφ,β(X) = inf
t>0

{tβ +Dtφ (X)} (6.28)

Vφ,β(X) = inf
t>0

{tβ + Vtφ (X)} (6.29)

Eφ,β(X) = inf
t>0

{tβ + Etφ (X)} (6.30)

Sφ,β(X) = argmin
C∈R

inf
t>0

{C + tβ +Rtφ (X − C)} . (6.31)

Rockafellar [2023] proposes a parent quadrangle and studies its relation to a more general
version of the divergence quadrangle. (6.17)–(6.21) is a special case of parent quadrangle.
(6.27)–(6.31) is a special case of the relations in Rockafellar [2023]. Rockafellar [2023] also
studies subaverse quadrangle that includes the parent quadrangle in the Fundamental Risk
Quadrangle framework. The difference in this discussion is that we observe the relation directly
from the primal representation.
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7 Examples

This section lists some examples of extended φ-divergence and φ-divergence quadrangles. Risk
measures in many of the considered examples are studied in existing literature. We provided the
complete quadrangles and, consequently, made the connections to corresponding regressions.

7.1 Examples of Extended φ-Divergence Quadrangles

Example 1 (Range-based Quadrangle Generated by Extended Total Variation Distance). Con-
sider the following extended divergence function and its convex conjugate

φ(x) = |x− 1|, x ∈ R and φ∗(z) =

{
z, z ∈ [−1, 1]

+∞, z ∈ (−∞,−1) ∪ (1,+∞) .
(7.1)

The quadrangle elements are infinite if X is unbounded. Thus we consider X ∈ L∞ to obtain
nontrivial expression. The regret measure is given by

Vφ,β(X) = inf
t>0

t≥−ess inf X
t≥ess supX

{tβ + E[X]} (7.2)

= βmax{0,−ess infX, ess supX}+ E[X] (7.3)

= β ess sup |X|+ E[X] . (7.4)

The risk measure is given by

Rφ,β(X) = inf
t>0, C∈R

t(C−1)≤ess inf X
t(C+1)≥ess supX

{tβ + tC + E[X − tC]} (7.5)

=
β

2
(ess supX − ess infX) + E[X] . (7.6)

From the constraints t(C − 1) ≤ ess infX and t(C + 1) ≥ ess supX, we have

2t ≥ ess supX − ess infX,

hence the optimal
t∗ = (ess supX − ess infX)/2.

From the constraints, we have

2ess supX/(ess supX − ess infX)− 1 ≤ C ≤ 2ess infX/(ess supX − ess infX) + 1.

Thus,

(ess supX+ess infX)/(ess supX−ess infX) ≥ C ≥ (ess supX+ess infX)/(ess supX−ess infX),

yelding
C∗ = (ess supX + ess infX)/(ess supX − ess infX).

Therefore, the statistic

Sφ,β = C∗t∗ = (ess supX + ess infX)/2.
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The complete quadrangle is as follows

Rφ,β(X) =
β

2
(ess supX − ess infX) + E[X] = range-buffered risk, scaled

Vφ,β(X) = β ess sup |X|+ E[X] = L∞-regret, scaled

Dφ,β(X) =
β

2
(ess supX − ess infX) = radius of the range, scaled

Eφ,β(X) = β ess sup |X| = L∞-error, scaled

Sφ,β(X) =
1

2
(ess supX + ess infX) = center of range, scaled

We recovered the range-based quadrangle in Example 4 of Rockafellar and Uryasev [2013]. The
divergence function is the extended version of the divergence function of total variation distance
in Example 6.

Example 2 (Mean Quadrangle Generated by Extended Pearson χ2-divergence). Consider the
following extended divergence function and its convex conjugate

φ(x) = (x− 1)2 and φ∗(z) =
z2

4
+ z . (7.7)

Then, the extended Pearson χ2-divergence risk measure is given by

Rφ,β(X) = inf
t>0,C∈R

t

{
C + β +

1

4t2
E[(X − C)2] + E[

X − C

t
]

}
= inf

t>0,C∈R

{
tβ +

1

4t
E[(X − C)2] + E[X]

}
= E[X] +

√
βV[X],

where V[X] = E[(X − E[X])2] is the variance of X and (t∗, C∗), which furnish the minimum
are

t∗ =

√
V[X]

4β
, C∗ = E[X].

Evidently, the corresponding regret is given by

Vφ,β(X) = E[X] +
√
βE[X2]

= E[X] +
√
β ∥X∥2 .

Let λ =
√
β and

√
V[X] = σ(X), then the complete quadrangle is as follows

Rφ,λ(X) = E[X] + λσ(X) = safety margin tail risk

Vφ,λ(X) = E[X] + λ ∥X∥2 = L2-regret, scaled

Dφ,λ(X) = λσ(X) = standard deviation, scaled

Eφ,λ(X) = λ ∥X∥2 = L2-error, scaled

Sφ,λ(X) = E[X] = mean

We recovered the mean quadrangle in Example 1 of Rockafellar and Uryasev [2013]. The diver-
gence function is the extended version of the divergence function of χ2-divergence in Example
7. It is worth noting that the radius β of the uncertainty set does not impact the regression
result, since it only impact the scale the error function.
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Example 3 (Expectile Quadrangle Generated by Generalized Pearson χ2-divergence). Let
0 < p < 1. Consider the following extended divergence function and its convex conjugate

φ(x) =

{
1
q
(x− 1)2, x > 1
1

1−q
(x− 1)2, x ≤ 1

and φ∗(z) =

{
( qz
2
+ 1)z − 1

q
( qz
2
)2 = qz2

4
+ z, z > 0

( (1−q)z
2

+ 1)z − 1
1−q

( (1−q)z
2

)2 = (1−q)z2

4
+ z, z ≤ 0

.

(7.8)

The error measure is given by

Eφ,β(X) = inf
t>0

tβ + E
[
tφ∗

(
X

t

)
−X

]
(7.9)

= inf
t>0

tβ +
1

4t
E
[
qX2

− + (1− q)X2
+

]
(7.10)

= tβ +
1

4t
E
[
qX2

− + (1− q)X2
+

] ∣∣∣
t=

√
E[qX2

−+(1−q)X2
+]

4β

(7.11)

=
√
βE [qX2

− + (1− q)X2
+] (7.12)

The complete quadrangle is as follows

Rφ,β(X) = qE[(((X − eq(X))+)
2] + (1− q)E[(((X − eq(X))−)

2] + E[X]

Vφ,β(X) = E[X] +
√
βE [qX2

− + (1− q)X2
+]

Dφ,β(X) = qE[(((X − eq(X))+)
2] + (1− q)E[(((X − eq(X))−)

2]

Eφ,β(X) =
√
βE [qX2

− + (1− q)X2
+] = asymmetric squared loss, scaled

Sφ,β(X) = eq(X) = expectile

We recover one version of expectile quadrangle in Malandii et al. [2024]. The divergence function
φ(x) gives rise to a generalized Pearson χ2-divergence. Example 2 is a special case of this
quadrangle with q = 0.5.

7.2 Examples: φ-Divergence Quadrangle

Example 4 (EVaR Quadrangle Generated by Kullback-Leibler Divergence). The divergence
function and its convex conjugate are

φ(x) = x ln(x)− x+ 1, φ∗(z) = exp(z)− 1.
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Let β = ln
(

1
1−α

)
. The complete quadrangle is as follows:

Rφ,α(X) = EVaRα(X) = inf
t>0

t

{
lnE

[ e
X
t

1− α

]}
,

Dφ,α(X) = EVaRα(X)− E[X] = inf
t>0

t

{
lnE

[eX−E[X]
t

1− α

]}
,

Vφ,α(X) = inf
t>0

t

{
ln
( 1

1− α

)
+ E

[
e

X
t − 1

]}
,

Eφ,α(X) = inf
t>0

t

{
ln
( 1

1− α

)
+ E

[
e

X
t − X

t
− 1

]}
,

Sφ,α(X) = t∗ lnE
[
e

X
t∗
]
,

In the quadrangle, t∗ is a solution of the following equation:

t∗ ln
( 1

1− α

)
+ t∗ lnE

[
e

X
t∗
]
−

E
[
Xe

X
t∗
]

E
[
e

X
t∗
] = 0,

which can be obtained from the second equation in (5.9) when φ∗(z) = exp(z) − 1. The risk
measure in this quadrangle is studied in Ahmadi-Javid [2012].

Example 5 (Quantile Quadrangle Generated by Indicator Divergence). Consider the diver-
gence function and its convex conjugate

φ(x) = 1[0,(1−α)−1](x), φ∗(z) = max{0, (1− α)−1z}.

We obtain the Quantile Quadrangle:

Rφ,β(X) = inf
C∈R,
t>0

t

{
C + β +

1

1− α
E
[X
t
− C

]
+

}
= CVaRα(X), (7.13)

Vφ,β(X) = inf
t>0

t

{
β +

1

1− α
E
[X
t

]
+

}
=

1

1− α
E[X+], (7.14)

Dφ,β(X) = inf
C∈R,
t>0

t

{
C + β +

1

α
E
[[X

t
− C

]
+
− X

t

]}
= CVaRα(X)− E[X], (7.15)

Eφ,β(X) = inf
t>0

t

{
β +

1

1− α
E
[[X

t

]
+
− X

t

]}
= E

[ α

1− α
X+ +X−

]
, (7.16)

Sφ,β(X) = argmin
C∈R

inf
t>0

t

{
C

t
+ β +

1

1− α
E
[X − C

t

]
+

}
= VaRα(X). (7.17)

The derivation of the risk measure (7.13) is from Ahmadi-Javid [2012]; Shapiro [2017]. We
recover the quantile quadrangle in Example 2 of Rockafellar and Uryasev [2013]. Note that the
radius β of the divergence ball does not appear in the formula in the primal representation.
When α → 1, the quadrangle becomes the worst-case-based quadrangle. When α → 0, the risk
measure becomes E[X], which is not risk averse. φ(x) in this case violates Definition 2.9.
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Example 6 (Robustified Supremum-Based Quadrangle Generated by Total Variation Dis-
tance). Consider the following divergence function and its convex conjugate

φ(x) =

{
|x− 1|, x ≥ 0

+∞, x < 0
and φ∗(z) =

{
−1 + [z + 1]+, z ≤ 1

+∞, z > 1
. (7.18)

The risk measure is given by

Rφ,β(X) = inf
t>0, C∈R

ess sup(X−C)≤t

{tβ + C − t+ E[X − C + t]+}

= inf
t>0, C∈R

ess sup(X−C−t)≤t

{tβ + C + E[X − C]+}

= inf
t>0, C∈R

ess sup(X)−2t≤C

{tβ + C + E[X − C]+} .

The function being minimized is convex in C. It attains minimum at C ∈ (−∞, ess infX] if
there is no constraint on C. Thus the minimum in C is attained at C∗ = ess sup(X) − 2t.
Suppose that β ∈ (0, 2) (Note that TVD is no larger than 2). Then

Rφ,β(X) = ess sup(X) + inf
t>0

{t(β − 2) + E[X − ess sup(X) + 2t]+}

= ess sup(X) + inf
t<0

{
t(1− β

2
) + E[X − ess sup(X)− t]+

}
= ess sup(X) + (1− β

2
) inf
t<0

{
t+ (1− β

2
)−1E[X − ess sup(X)− t]+

}
.

Note that since X − ess sup(X) ≤ 0, the minimum in the last equation is attained at some
t ≤ 0, and this minimum is equal to

CVaRβ
2
(X − ess sup(X)) = CVaRβ

2
(X)− ess sup(X).

Therefore, the complete quadrangle is as follows:

Rφ,β(X) =
β

2
ess sup(X) + (1− β

2
)CVaRβ

2
(X),

Vφ,β(X) = inf
t>0,t≥ess supX

{
t(β − 1) + E

[
X + t

]
+

}
,

Dφ,β(X) =
β

2
ess sup(X) + (1− β

2
)CVaRβ

2
(X)− E[X],

Eφ,β(X) = inf
t>0

{
t(β − 1) + E

[[
X + t

]
+
−X

]}
,

Sφ,β(X) = ess sup(X)− 2VaR1−β
2
(X).

The derivation of the risk measure is studied in Example 3.10 of Shapiro [2017]. From the
dual representation of the risk measure, one can intuitively understand the shape of the worst-
case distribution. Since the total variation distance is L1 distance, the worst-case distribution
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is obtained by moving the probability of the smallest element to the largest one, while keeping
the others intact. If the radius is sufficiently large, then after moving all the the probability of
the smallest element, the probability of the second smallest element will be moved to that of
the largest element, and so on.

Since the risk envelope corresponding to φ(x) in (7.18) is a subset of the risk envelope
generated by the extended version in Example 1, the risk, regret, deviation and error in this
quadrangle is an lower bound of those in Example 1.

Example 7 (Second-order Quantile-based Quadrangle Generated by Pearson χ2-divergence).
The divergence function and its convex conjugate are

φ(x) =

{
x2 − 1, x ≥ 0

+∞, x < 0
and φ∗(z) =

{
z2

4
+ 1, z ≥ 0

1, z < 0
= 1 +

z2

4
Iz≥0 . (7.19)

We derive the corresponding error measure

Eφ,β(X) = inf
t>0

t

{
β + E

[
φ∗

(X
t

)
− X

t

]}
(7.20)

= inf
t>0

{
t(β + 1) +

1

4t
E
[
X2I{X≥0}

]
− E[X]

}
(7.21)

=
√
(β + 1)E

[
X2I{X≥0}

]
− E[X] . (7.22)

The complete quadrangle is

Rφ,β(X) = min
C∈R

√
(β + 1)E

[
(X − C)2I{X≥C}

]
+ C = second-order superquantile,

Vφ,β(X) =
√

(β + 1)E
[
X2I{X≥0}

]
= 2-normed absolute loss, scaled,

Dφ,β(X) = min
C∈R

√
(β + 1)E

[
(X − C)2I{X≥C}

]
− E[X − C] = second-order superquantile deviation,

Eφ,β(X) =
√

(β + 1)E
[
X2I{X≥0}

]
− E[X] = second-order quantile error,

Sφ,β(X) = argmin
C∈R

√
(β + 1)E

[
(X − C)2I{X≥C}

]
− E[X − C] = second-order quantile.

The risk measure is studied in Krokhmal [2007] . This quadrangle a special case of the higher-
order quantile-based quadrangle in Example 12 of Rockafellar and Uryasev [2013].

Observe that Vφ,β(X − E[X]) = Eφ,β(X − E[X]) is the semideviation [Markowitz, 1959], a
popular measure of downside risk.

Since the risk envelope corresponding to φ(x) in (7.19) is a subset of the risk envelope
generated by the extended version in Example 2, the risk, regret, deviation and error in this
quadrangle is an lower bound of those in Example 2.

Example 8 (Example Generated by Two-sided-indicator Divergence). Let 0 < a < 1 < b. The
divergence function and its convex conjugate are

φ(x) =


+∞, x ∈ [0, a)

0, x ∈ [a, b]

+∞, x ∈ (b,+∞)

, φ∗(z) =

{
az, z < 0

bz, z ≥ 0
. (7.23)
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The error measure is

Eφ,β(X) = E[(1− a)X− + (b− 1)X+] . (7.24)

The complete quadrangle is

Rφ,β(X) = (1− a)CVaR b−1
b−a

(X) + aE[X],

Vφ,β(X) = E[(2− a)X− + bX+],

Dφ,β(X) = (1− a)CVaR b−1
b−a

(X) + (a− 1)E[X],

Eφ,β(X) = E[(1− a)X− + (b− 1)X+],

Sφ,β(X) = argmin
C∈R

E[(1− a)(X − C)− + (b− 1)(X − C)+],

The risk measure in this quadrangle is studied in Pflug and Ruszczynski [2004], in Ben-Tal and
Teboulle [2007] (see Example 2.3), in Love and Bayraksan [2015] (see Example 3). CVaR is a
special case of this risk measure for a = 0. When α/(1− α) = (b− 1)/(1− a), the quadrangle
is a scaled version of Example 5.

The risk measure provides another way to connect expectile eq(X) with distributionally
robust optimization (see Proposition 9 in Bellini et al. [2014])

eq(X) = max
γ∈[ 1−q

q
,1]
RI[γ,γ q

1−q ],β
(X) . (7.25)

8 Robust Optimization Interpretation for Various

Applications

This section generalizes robust optimization interpretations presented in the Introduction. The
primal representations of the risk measures and error measures in Section 4 are frequently
used as an objective function in optimization and regression. From the dual representation in
Section 3, we obtain the general interpretation as robust optimization. In particular, examples
in Section 7 all have such interpretation.

We start with the interpretation of risk minimization.

Risk Minimization as a Robust Expected Loss Minimization Consider an extended
divergence function φ(x) and the corresponding risk measure Rφ,β(X) in the quadrangle in
Theorem 3.1. Denote by X the set of feasible random variables. Risk minimization (8.1) can
be interpreted as robust loss minimization (8.2)

Risk minimization

min
X∈X

Rφ,β(X) , (8.1)

Robust loss minimization

min
X∈X

max
Q∈Qφ,β

E[QX] . (8.2)

Problem (8.2) is the robust version of the expected loss minimization problem minX∈X E[X]. If
φ(x) is a divergence function defined in Definition 2.9, risk minimization (8.1) can be interpreted
as distributionally robust loss minimization (8.3)

Distributionally robust loss minimization

min
X∈X

max
P∈Pφ,β

EP [X] (8.3)
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Portfolio Optimization as a Robust Expected Loss Minimization Following the setup
above, we consider the portfolio loss X(w), where w is the portfolio weight. Portfolio opti-
mization (8.4) can be interpreted as robust loss minimization (8.5)

Portfolio Optimization

min
w:1Tw=1

Rφ,β(X(w)) , (8.4)

Robust loss minimization

min
w:1Tw=1

max
Q∈Qφ,β

E[QX(w)] . (8.5)

Problem (8.5) is the robust version of the expected loss minimization problem min
1⊤w=1

E[X(w)].

If φ(x) is a divergence function defined in Definition 2.9, portfolio optimization (8.4) can
be interpreted as distributionally robust loss minimization (8.6)

Distributionally robust loss minimization

min
w:1Tw=1

max
P∈Pφ,β

EP [X(w)] (8.6)

Next, we discuss the interpretation of classification. Consider attribute X, label Y and
decision vector w. The margin is defined by L(w, b) = Y (wTX−b). γ(w) is the regularization
term.

Classification as Robust Expected Margin Minimization Classification can be inter-
preted as robust expected margin maximization

Classification

min
w

Rφ,β(−L(w, b)) + γ(w) , (8.7)

Robust expected margin maximization

min
w

max
Q∈Qφ,β

E[−QL(w, b)] + γ(w) . (8.8)

Problem (8.8) is the regularized robust version of the expected margin maximization problem
maxw E[L(w, b)].

If φ(x) is a divergence function defined in Definition 2.9, classification (8.7) can be inter-
preted as distributionally robust loss minimization (8.9)

Distributionally robust expected margin minimization

min
w:1Tw=1

max
P∈Pφ,β

EP [X(w)] + γ(w) . (8.9)

Next, we discuss the interpretation of regression. Consider a dependent variable (regressant)
Y , a vector of independent variables (regressors) X = (X1, . . . , Xd), a class of function F and
C ∈ R. The regression residual is defined by Zf = Y − f(X) − C, and the residual without
intercept C is defined by Z̄f = Y − f(X).

Regression as a Robust Optimization Consider an extended divergence function φ(x)
and the corresponding error measure Eφ,β(X) in the quadrangle in Theorem 3.1. Regression
(8.10) can be interpreted as deviation minimization (8.11)(8.12)

Regression

min
f∈F ,C

Eφ,β(Zf )), (8.10)

Deviation minimization

min
f

{
max

Q∈Qφ,β

E[QZ̄f ]− E[Z̄f ]
}

(8.11)

calculate C = S(Z̄f ) . (8.12)
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If φ(x) is a divergence function defined in Definition 2.9,the regression (8.10) can be interpreted
as deviation minimization (8.13), (8.14), where the uncertainty set is a φ-divergence ball

Deviation minimization

min
f

{
max

P∈Pφ,β

EP [Z̄f ]− E[Z̄f ]
}

(8.13)

calculate C = S(Z̄f ) . (8.14)

The equivalence between (8.10) and (8.11), (8.12) is proved as follows. By Theorem 2.1, Problem
(8.10) is equivalent to

min
f

Dφ,β(Z̄f ) (8.15)

calculate C = S(Z̄f ) . (8.16)

The equivalence to Problem (8.11)(8.12) follows from the dual representation of Dφ,β(X) in
(3.3).

9 Case Study: Risk Identifier Visualization

This section contains three case studies visualizing the risk envelope in portfolio optimization
(8.5), classification (8.8) and regression (8.11), (8.12). The code is available for download1. We
focus on the mean quadrangle (Example 2) in this case study. We first solve the problems (8.4),
(8.7) and (8.10) in primal representations. With the optimal solutions, we obtain the random
variable X in three problems, respectively. By plugging in φ∗(z) = z2/2+1 to Proposition 5.1,
we obtain the risk identifier Q∗ = (X/t∗ − C∗)2/2 + 1.

Data The data for portfolio optimization and regression are the same: it is generated by
drawing 1,000 samples from a bivariate zero-mean Gaussian distribution. The variance of both
random variables is 1, while the covariance is 0.5. The data for classification is generated by two
normal distributions with different mean and different covariance matrix. The first has mean
(−0.3, 0), while the second has mean (0.3, 0). For both distributions, the variance is 0.05 while
the covariance is 0.02. The value of the risk identifier Q∗ is represented through the intensity
of color. Darker points have larger values.

9.1 Portfolio Optimization

We illustrate the idea with Markowitz portfolio optimization from the mean quadrangle (Ex-
ample 2). The data points (x, y) represents the loss (negative return) of two assets. We choose
β = 100. The optimal portfolio weight is (0.509, 0.491). The value of the risk identifier Q∗

is represented through the intensity of color in Figure 1. Darker color corresponds to a larger
value. Larger values are assigned to data points incurring larger loss, i.e., points whose both
coordinates are larger.

1https://uryasev.ams.stonybrook.edu/index.php/risk-envelope-visualization-for-extended-phi-divergence-
quadrangle/
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Figure 1: Risk envelope in Markowitz portfolio optimization. Darker points correspond to
higher values of Q∗(w). Optimal portfolio weights = (0.509, 0.491).

9.2 Classification

We illustrate the idea with large margin distribution machine from the mean quadrangle (Ex-
ample 2). We choose β = 0.01 and γ(w) = ||w||22. The optimal decision line is 0.129x −
0.009y + 0.002 = 0. The circles represent samples with label 1, while the diamonds represent
samples with label −1. The value of the risk identifier Q∗ is represented through the intensity
of color in Figure 2. A darker spot corresponds to a larger value. Larger values are assigned to
data points incurring larger loss (negative margin), i.e., points that are correctly classified and
have larger perpendicular distance from the optimal decision line.

9.3 Regression

We illustrate the idea with least squares regression from the mean quadrangle (Example 2).
We choose β = 100. The regression line is y = 0.47x+ 0.00197. The value of the risk identifier
Q∗ is represented through the intensity of color in Figure 3. A darker spot corresponds to a
larger value. Larger values are assigned to data points incurring larger loss, i.e., data points
further above the regression line.

10 Concluding remarks

We study the primal and dual representation of the extended φ-divergence quadrangle. The
quadrangle connects portfolio optimization, classification and regression problem. It includes
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Figure 2: Risk envelope in Large Margin Distribution Machine. Darker points correspond to
higher values of Q∗(w). The circles represent samples with label 1, while the diamonds represent
samples with label −1. The optimal decision line is 0.129x− 0.009y + 0.002 = 0.
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Figure 3: Risk envelope in the least squares regression. Darker points correspond to higher
values of Q∗(w). The straight line is the least squares regression line y = 0.47x+ 0.00197.

as examples many well-studied risk and error measures in the literature, which are used as
objective function in portfolio optimization, classification and regression. The special case of
φ-divergence quadrangle provides the interpretation of the three problems as distributionally
robust optimization. We visualize the risk identifier in portfolio optimization, classification and
regression with a case study.
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A Quadrangle Theorem

Rockafellar and Uryasev [2013] introduced measures of uncertainty that are built upon the
concept of regularity, which is closely linked to convexity and closedness.

Uncertainty can be modeled via random variables and by studying and estimating the
statistical properties of these random variables, we can estimate the risk in one form or the
other. When the aim is to estimate the risk, it is convenient to think of the the random variable
as ‘loss’ or ‘cost’. There are various ways in which risk can be quantified and expressed. One
such framework developed by Rockafellar and Uryasev [2013] is called the Risk Quadrangle,
which is shown in Figure 4.

Risk R

Regret V

Deviation D

Error E

SOptimization Estimation

Figure 4: Risk Quadrangle Flowchart

The quadrangle begins from the upper left corner which depicts the measure of risk denoted
by R. It aggregates the uncertainty in losses into a numerical value R(X) by the inequality
R(X) ≤ C where C is the tolerance level for the risk. The next term is in the upper-right corner
called the measure of deviation denoted by D and it quantifies the nonconstancy of the random
variable. The lower-left corner depicts measure of regret denoted by V . It stands for the net
displeasure perceived in the potential mix of outcomes of a random variable ”loss” which can
be bad (> 0) or acceptable/good (≥ 0). The last measure is the measure or error which sits
as the right-bottom of the quadrangle denoted by E . Error quantifies the non-zeroness in the
random variable.

Theorem A.1 (Quadrangle Theorem, Rockafellar and Uryasev [2013]). The theorem states the
following:

(a) The centerness relations D(X) = R(X)−E[X] and R(X) = E[X]+D(X) give a one-to-
one correspondence between regular measures of risk R and regular measures of deviation
D. In this correspondence, R is positively homogeneous if and only if D is positively
homogeneous. On the other hand, R is monotonic if and only if D(X) ≤ supX − E[X]
for all X.

(b) The relations E(X) = V(X) − E[X] and V(X) = E[X] + E(X) give a one-to-one corre-
spondence between regular measures of regret V and regular measures of error E. In this
correspondence, V is positively homogeneous if and only if E is positively homogeneous.
On the other hand, V is monotonic if and only if E(X) ≤ |E[X]| for X ≤ 0.

(c) For any regular measure of regret V , a regular measure of risk E is obtained by:

R(X) = min
C∈R

{C + V(X − C)} .

If V is positively homogeneous, R is positively homogeneous. If V is monotonic, R is
monotonic.
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(d) For any regular measure of error E , a regular measure of deviation D is obtained by

D(X) = min
C∈R

{E(X − C)} .

If E is positively homogeneous, D is positively homogeneous. If E satisfies the condition
E(X) ≤ |E[X]| for X ≤ 0, then D satisfies the condition D(X) ≤ supX − E[X] for all
X.

(e) In both (c) and (d), as long as the expression being minimized is finite for some C , the set
of C values for which the minimum is attained is a nonempty, closed, bounded interval.
Moreover when V and E are paired as in (b), the interval comes out the same and gives
the associated statistic:

argmin
C∈R

{C + V(X − C)} = S(X) = argmin
C∈R

{E(X − C)} .
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