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This is evident that the controllable quantum systems can be the reliable building blocks for Quan-
tum computation. In reality we are witnessing the progress towards making the idea tractable
enough, though optimistic but the threshold is not very near to us. The dawn of quantum computa-
tion has begun. In the future, we hope to see a full fledged operationally stable quantum computer
which can solve the problems beyond the scope of classical digital computers. We may call it quan-
tum supremacy. Nevertheless, we should not forget that there are problems which demand classical
computers to be in the game for a better performance in comparison to the same through quantum
devices. In the current stage of computing technology, the most beneficial area is nothing but an
hybrid approach and that is for no doubt will reign the market for the next five to ten years.
This hybrid aspect has several directions such as simulating quantum computation on a classical
computer. Keeping both the aspect, computation through real physical devices and simulation on
a classical computer by accessing available quantum computers for cloud computing, some advan-
tages have been discussed in this article which will be elaborated as well in future articles. These
advantages are inherent if we can achieve proper non-adiabatic control over the spin system in the
laboratory. Otherwise these aspects can always be simulated by using quantum algorithms to see
whether they can be useful in comparison to a purely classical computing machine. This is no doubt
a new window for progress in the direction of quantum computation.

We need controllable quantum systems in order to
employ their quantum mechanical properties to perform
computational tasks [1–3] that are either beyond the
scope of any classical computer or quicker in processing
information in comparison to the same performed on a
classical computing machine [4, 5]. This agenda is ruling
the current state of the art in the domain of computa-
tion. A large number of theorists and experimentalists
at various organisations are participating in this race
for achieving the so called quantum supremacy [6–9].
Physical systems at the atomic and subatomic scale are
quite difficult to control in order to manipulate them
according to our computational needs. For example a
two level quantum system which is the most basic text
book topic of quantum mechanics can not be prepared
easily in the laboratory. It has already been four decades
that scientists are advocating in favour of quantum
computation as in many ways it can revolutionise the
subject of computation and perhaps can push the cur-
rent technological horizon. Theoretical understanding
has already made us able to realise that the quantum
superposition, interference and entanglement are three
important pillars [10] for making this dream a reality. In
today’s scenario, many have achieved creating qubits in
various different systems under sophisticated laboratory
conditions.

Quantum computation, we all know is different from
classical computation in the following way. Instead of
classical beats which are either on or off like a switch
in the classical circuit, here the basic component is a
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superposed state of a two level system which we name
as qubit. But unless there is entanglement among the
qubits, they are no where more efficient than classical
bits as it somehow creates the technical essence of par-
allel computing. With the help of the qubits, like we do
for a classical computing device, we can create gates for
performing basic operations through qubits and at the
end a measurement of this physical process though de-
stroys the superposition but strategically designing the
circuit for constructive interference we assure the desired
results. This is the general process of gate based quantum
computation but this is not the only mode of quantum
computation. There are quantum algorithms written for
collection of qubits which do not require anything like
a gate structure for computing complex problems like
optimisation problems or factorisation problems. Quan-
tum annealing [11–13] is one of the examples which deals
with adiabatic quantum computation to solve optimisa-
tion problems. Almost decade later the D-WAVE device
[14] is successfully handling various tasks and has already
been updated to a controlled device dealing with more
than thousand qubits.

There are few types of quantum mechanical systems
which have been successfully employed so far to create
qubits in the laboratory. These are for example super-
conducting qubits, trapped ions, laser controlled pho-
tons and controlled spin qubits. In order to achieve op-
erationally functional computing devices which can run
through different quantum algorithms, hundreds of thou-
sands of stable qubits are needed. In this context it is
worth mentioning that this number is not actually close
tho the number of qubits needed for achieving quantum
supremacy of the computing device. On the other hand,
these large numbers of qubits have to be entangled with
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each other in order to become clusters of logical qubits
to be able to perform computation. It is evident that to
perform different types of tasks based on different algo-
rithms, the number of active quantum qubits are different
but a sustainable correlation among them can not be as-
sured trivially. The reason is simple and that is nothing
but the measurement sensitivity of quantum systems.

The most important thing that we still should keep in
mind in this context is that these different types of proto-
cols and schemes that I have discussed mostly employ the
adiabatic control over the quantum systems. The basics
of quantum annealing are strictly based on the adiabatic
control over the system. The Hamiltonian of the system
is strictly maintained within the slow rate of change such
that it should not break the adiabatic condition. On the
other hand, gate based quantum computation has also
been developed through adiabatic control.

In this article I will talk about some benefits of nona-
diabatic controls over quantum systems. In my demon-
stration I will first talk about physical spin systems in
which formation of physical qubits can be tailored by non
adiabatic evolution and in the same context, I will addi-
tionally discuss how nonadiabatic effects can give rise to
the creation of several qubits almost in no time from par-
ent qubits. These are important in real physical systems
when they can be controlled within a confined region of
space but this challenge obviously can be tackled by the
experimentalist as far as the viability of the process is
concerned.

Furthermore, a full fledged computer is still a matter of
waiting for the sufficient number of controllable qubits.
Considering the state of the art, the recipe we present
here for non adiabatic control can be useful in simulat-
ing various schemes of quantum computation through a
hybrid approach that combines the cloud computing fa-
cilities of available quantum computers and simulation
of various methods of solving complex problems through
specific quantum algorithms.

I. A. QUBIT MULTIPLIER

Let me start with a two level system for example a
physical spin qubit. A spin qubit can always be pre-
pared through any available mechanism. Now if we al-
low the qubit a0|0⟩ + a1|1⟩ to pass through an inhomo-
geneous time dependent or independent magnetic field,
the evolved state should be determined through the na-
ture of the evolution. We are using 0, 1 to denote the up
and down spin along the z axis of the specified coordinate
system 1. If the system evolves through an adiabatic pro-
cess the final state remains one qubit but the state will be
entangled with the wave functions in the up and down
directions. This phenomena is known as path spin en-
tanglement [15]. The final state |Ψ(t)⟩ can be expressed

  


Figure 1. This is a schematic diagram of a Stern-Gerlach device
which shows that the inhomogeneous magnetic field actually
separates two spin states in the up and down direction.

as,

|Ψ(t)⟩ = a0e
−iω0t|0⟩ ⊗ ϕu + a1e

iω0t|1⟩ ⊗ ϕd (1)

By path spin entanglement, I mean the spatial wave
functions ϕu and ϕd corresponding to upward and down-
ward direction along the z axis are coupled to the up and
down spin states. This is evident from the above equation
that spatial and spin part of the state are not product
separable. For an operationally and formally ideal situa-
tion of the Stern-Gerlach set up 1, the up and down part
of the wave function can be well separated. In that case,
if an ensemble of N number of spin half particles undergo
this magnetic field configuration, the up and down spins
will be accumulated within a small region of the space in
the upward and downward directions respectively. The
probability of having the up spin in the spatially upward
direction is given by,

P0,u = a0
2

∫
ϕu

2dX. (2)

Where X represents spatial variables.
So the total number of accumulated particles N0,u in

the state |0⟩ in the upward direction is N times the prob-
ability P0,u. Similarly total number of accumulated par-
ticles N0,d having the down spin |1⟩ in the downward
direction is NP1,d as the probability of having down spin
in the downward direction is given by,

P1,d = |a1|2
∫

ϕd
2dX (3)

Actually each of the N0,u number of particles are in
the up state and at the same time the cluster itself can
be used as one logical bit |0⟩. The same argument ap-
plies to the cluster of particles which are confined in the
downward direction.
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Ideal S-G device


Qubit to bit converter

Figure 2. This is a schematic diagram of the converter which
can transform a superposed state toa pure state with the help
of ideal S-G apparatus.

A. A. 1. Converter Oracle

This adiabatic evolution and path spin entanglement
has an interesting feature in the context of computations
through the qubits. Suppose we start with a qubit state
and with one step boosting through regular ideal S-G set
up, we can create well separated two streams of two dif-
ferent states. Now, among the two streams, if we allow
only the upward one to be released, when considered as a
final output, the manipulation results in conversion of a
superposed state to a pure state which is equivalent to a
classical bit. The entire process in this case serves like an
oracle which changes an input qubit to an output which
serves as a classical bit. A reverse process can always
restore to the initial state and hence can keep the unitar-
ity unviolated through the process. This oracle can be
used as a gate that transforms quantum to classical beats
and can be useful in various algorithms as a component
of an integrated circuit to solve specific computational
problems.

B. A. 2. The non-adiabatic multiplier

A very different situation arises when the system
evolves through a non-adiabatic evolution. For this pur-
pose, the Hamiltonian of the spin system needs to be
changing quite fast with respect to time. How fast it
should be is determined with respect to the a character-
istic time scale τ of the system which is the inverse of
the energy gap between the Zeeman levels, I mean the
energy states of the two level system. If the characteris-
tic time τ is much less than the time needed for the unit
amount change of the Hamiltonian, the system evolves
adiabatically otherwise it evolves non-adiabatically. The
precise criteria for non-adiabatic evolution is as follows
[16–18].

∣∣∣ ⟨0(t)|Ḣ(t)|1(t)⟩
(E0 − E1)2

∣∣∣ << 1. (4)

|0(t)⟩ and |1(t)⟩ are the instantaneous eigenstates of H(t)
and E0 and E1 are the corresponding energy eigenvalues.

There can be many different possible magnetic field
configurations, which can violates this condition and
serve our purpose. For a simple demonstration, let
me consider a very well known configuration which has
been understood previously in the context of spin states
in other areas of physics. Here we will be enjoying a
few advantages for the purpose of quantum computing.
The considered field configuration is a rotating magnetic
field and in order to have the desired outcome, I will
present a specific case when a rotating field component
will be added to a formally and operationally ideal Stern-
Gerlach setup. The rotating field is confined in the X-
Y plane only and it rotates about the Z axis. Another
method of violating adiabatic condition was presented in
one of our previous articles in the context of evolution of
spin states when there is azimuthal inhomogeneity inside
the S-G set up [19]. In both the cases the mathematical
construction of the problem is same. This field strength
has to be decided in such a way that the time scale of spin
states dynamics is much smaller than that of the spatial
wave function. Then, We can represent the Hamiltonian
in the following way.

H(t) = γB(σx sin θ cosϕ(t)

+σy sin θ sinϕ(t) + σz cos θ)

= ω0(σx sin θ cosωt (5)

+σy sin θ sinωt+ σz cos θ).

Where γ is the gyromagnetic ratio and σx, σy, σz are
three different Pauli spin matrices in the chosen orienta-
tion of the total spin S. The rotating components makes
the field rotating in the x-y plane with a frequency ω.
θ is the angle between the z-component of the magnetic

moment (µ = γS) and the magnetic field B⃗ and ϕ(t)
is the azimuthal angle that magnetic field makes in the
X − Y plane considered here. The matrix form of the
Hamiltonian is given below.

H(t) =
ω0

2

(
cos θ e−iωt sin θ

eiωt sin θ − cos θ

)
The quantity ω0 is the Larmor frequency of the magnetic
moment of the spin1/2 particle.
The instantaneous Eigenstates of the time dependent

Hamiltonian can be expressed as,

|0(t)⟩ =
(
e−iωt/2 sin θ/2
eiωt/2 cos θ/2

)
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Qubit Multiplier
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Operationally non-ideal S-G

 +


  Non-Adiabatic evolution

Figure 3. This is a schematic diagram of the oracle ”qubit mul-
tiplier” which is based on the non-adiabatic control inside a
formally and operationally ideal Stern-Gerlach device.

and

|1(t)⟩ =
(

eiωt/2 sin θ/2
−e−iωt/2 cos θ/2

)
.

Plugging these two states in the equation 4, we arrive
to the condition for adiabatic evolution as,

ω

2ω0
sin θ << 1. (6)

This equation tells us that whether the evolution is
adiabatic or not depends on three different parameters:
ω0, ω and θ. One can employ this freedom to break
the adiabatic condition and in that case the evolution of
spin states will be determined by solving the Schrödinger
equation.

Now let me come back to the story that we have started
in this section. Suppose the initial qubit is a superposi-
tion of two spin states |0⟩ and |1⟩. The moment they
enter into the magnetic field, the up and down states
will be coupled to the spatial up and down component
of the wave function and will evolve according to the
time dependent Hamiltonian. The interaction Hamilto-
nian H does not contain any spatial part hence the time
dependence will affect the spin part only. The spatial
inhomogeneity of the basic ideal S-G setup will help sep-
arating the wave functions in the upward and downward
direction along the Z axis. So we just need to study the
evolution of up and down spin states under the influence
of the additional rotating component.

We have to calculate the evolution of the up state
which will be deflected in the upward direction and for
the down state which will be deflected in the down-
ward direction. For both purposes we have to solve the
Schrödinger equation for the time dependent Hamilto-
nian with two different initial conditions with the help
of the following instantaneous Eigenstates. Let’s write

down the evolved state in the upward direction in the
following way,

Ψu,z = |szu(t)⟩ ⊗ Φu. (7)

Where,

|szu(t)⟩ = α0(t)|0(t)⟩+ α1(t)|1(t)⟩

Now, We see that the Nu number of particles forms the
cluster of qubits which will be accumulated in the upward
direction. On the other hand the Nd number of particles
will form a cluster of qubits in the downward direction.
The state can be written as,

Ψd,z = |szd(t)⟩ ⊗ Φd. (8)

Where,

|szd(t)⟩ = β0(t)|0(t)⟩+ β1(t)|1(t)⟩

Now plugging this in the Schrödinger equation with the
initial conditions a0(t = 0) = 1 for the upward stream
and a1(t = 0) = 1 for the down stream, we are left with
the following solutions for α0, α1, β0 and β1 as follows.

α0(t) = cos
ω̄t

2
− i

ω0 − ω cos θ

ω̄
sin

ω̄t

2

α1(t) = i
ω sin θ

ω̄
sin

ω̄t

2

β0(t) = i
ω sin θ

ω̄
sin

ω̄t

2

β1(t) = cos
ω̄t

2
+ i

ω0 − ω cos θ

ω̄
sin

ω̄t

2

(9)

Where, ω̄ =
√
ω2
0 + ω2 − 2ω0ω cos θ

The first advantage of this nonadiabatic process is
that we are able to create two different logical qubits
through two different clusters of physical qubits. This
is like an oracle which doubles the number of logical
qubits just by giving one order of non-adiabatic boosting
through the time dependent magnetic field inside the
ideal S-G setup. With such n number of non adiabatic
booster the logical qubits can be scaled by a factor of
2n.

The second advantage is that we can create many basic
one qubit logic gates through the non-adiabatic control.
Let us discuss just a few among these gates and the as-
sociated values of the control parameters. There are four
different parameters such as ω0, ω, θ and t which can
be adjusted to achieve the desired output. The scope
of exploration is almost unlimited but let me just show
one particular choice of these free parameters and how
we can achieve three different one qubit quantum logic
gates through this.
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Lets start with a particular choice which is cos θ = ω0

ω .
The ratio of the two frequencies have to be chosen in
such a way so that it does not satisfy the adiabatic
condition 6. It is very much possible as there is a big
domain for which the ratio ω0

ω can be fixed accordingly.

Case 1. Quantum Not Gate: Suppose the incom-
ing state to the S-G setup is a0|0⟩ + a1|1⟩ The evolved
state in the upward direction becomes a1|0⟩ + a0|1⟩ at
some instant t = τnot for which

cos
ω̄τnot
2

= a1 and i sin
ω̄τnot
2

= a0 (10)

For this purpose the time dependent Hamiltonian should
change up to H(τnot) from t = 0 to t = τnot and should
remain fixed afterwards. The qubit at the final instant
can be treated as the output of a quantum NOT gate and
can be utilised accordingly. Under this circumstance,
the qubits in the downward direction is the same as the
input qubit. This operation is equivalent to an Identity
operation on the input state

Case 2. The Z Gate: With the same value of θ, if we
consider the final state in the upward direction at some
instant τz so that it satisfies the following condition.

cos
ω̄τz
2

= a0 and i sin
ω̄τz
2

= −a1 (11)

In this case the final outcome in the upward direction
is a0|0⟩ − a1|1⟩. Obviously, the Hamiltonian in this case
shall remain unchanged from t = τz with the final value
H(τz).

Case 3. The Hadamard Gate: For the same value
of θ, if we impose the following condition,

cos
ω̄τH
2

=
a0 + a1√

2
and i sin

ω̄τH
2

=
a0 − a1√

2
(12)

The final state in the upward direction is a0
|0⟩+|1⟩√

2
+

a0
|0⟩−|1⟩√

2
. This is the output of a single qubit Hadamard

gate.

II. B. NON-ADIABATIC CONTROL OVER
MULTI QU-BIT ENTANGLED STATES

So far, we have talked regarding the non-adiabatic con-
trol through the rotating time dependent magnetic field
inside a formally and operationally ideal S-G apparatus.
In this section we will discuss the control we can have
over multi qubit entangled states which is one of the im-
portant ingredients for quantum computation. I won’t be
making this section prolonged as in an upcoming article
I will show preparation of various many qubit quantum
gates and specific controls for introducing algorithms to
solve complex problems. Let me give an introductory

description along with a few important hints that can
create some ambition for future study in the domain of
non-adiabatic quantum control.
Instead of S-G set up, here we consider Mach-zehnder

setup in conjunction with an S-G device for the purpose
of creating entanglement among different multi-particle
qubits [20]. This is actually done through the mechanism
of swapping of path-spin entanglement to spin spin en-
tanglement. The issue has been well studied previously.
I am not going into the details of the mechanism as we
are trying to emphasise on the improvement that we are
bringing in through the application of an additional time
dependent rotating magnetic field. Through a specific
process first the mechanism creates two particle (particle
1 and 2) states which are coupled to a pseudo path like
spatial variable and later a third particle 3 is introduced
which previously has not interacted with the two parti-
cles. The swapping then creates various entanglement
between 2 and 3. Intuitively, the process is the following.
Particles ‘2’ and ‘3’ are kept separated without allow-
ing them to interact throughout the process. Now the
scheme allows the particle ‘1’ to interact independently
with the particles ‘2’ and ‘3’, without the need of having
‘2’ and ‘3’ in the near vicinity of each other.
Now the qubit undergoes through two different S-G

apparatus and these devices provide an unitary trans-
formation /cite. Upon measurement mentioned on the
state of the particle 1 we can create two different kinds
of entangled states which are given below.

1). a|00⟩23 + b|11⟩23
2). a|00⟩23 − b|11⟩23

But if we use the non adiabatic control over the out-
going state of the Mach- Zehender state through a time
dependent rotating magnetic field, we can create four dif-
ferent types of entangled states in the two particle tensor
product space of particle 2 and 3. Furthermore, by ad-
justing the parameter values, we can create various two
qubits gates in this context. In this article we are not go-
ing into the details of those gates and quantum circuits
that can be employed to create various quantum algo-
rithms for solving complex issues. This issue I leave for
a different article in near future.

III. DISCUSSION

My purpose in this article is to introduce the key idea
of non adiabatic control and the various benefits that
it can offer for computing. Now implementation of the
control in the form of a physical device needs necessary
engineering and that might suffer from several difficulties
in the laboratory. Nevertheless the procedure opens up
new possibilities for integrated devices which can be use-
ful in solving various complicated problems with the help
of proper algorithms. On the other hand, a mathemati-
cal simulation of non-adiabatic control can be a good ap-
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proach if it is implemented through quantum algorithms
running on basic quantum computers that are available
for cloud computing. In a different article we will show a
few such algorithms and how they can be useful in solv-

ing various computations in the simulation of many body
physics and chemistry as well as in the domain optimiza-
tion problems.
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