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Abstract

As an important part of genetic algorithms (GAs), mutation operators is widely

used in evolutionary algorithms to solve NP-hard problems because it can increase

the population diversity of individual. Due to limitations in mathematical tools,

the mutation probability of the mutation operator is primarily empirically set in

practical applications.

In this paper, we propose a novel reduction method for the 0-1 knapsack problem(0-

1 KP) and an improved mutation operator (IMO) based on the assumptionNP 6= P,

along with the utilization of linear relaxation techniques and a recent result by Dey

et al. (Math. Prog., pp 569-587, 2022). We employ this method to calculate an

upper bound of the mutation probability in general instances of the 0-1 KP, and

construct an instance where the mutation probability does not tend towards 0 as

the problem size increases. Finally, we prove that the probability of the IMO hitting

the optimal solution within only a single iteration in large-scale instances is superior

to that of the traditional mutation operator.

Keywords: genetic algorithm; mutation operator; mutation probability; upper bound;

reduction method

1 Introduction

Definition 1. [1, 2, 3, 4] Given a set N consisting of n items, where the j-th item has a

profit and a weight, and denoted by pj and wj, respectively. The goal of the 0-1 knapsack
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problem(0-1 KP) is to find an optimal subset of the set N such that its total profit is

maximized without exceeding the knapsack capacity C. The problem can be formulated as

follows.

max f(X) =

n
∑

j=1

xjpj , (1.1)

s.t.

g(X) =

n
∑

j=1

xjwj ≤ C, (1.2)

xj ∈ {0, 1}, (1.3)

where xj = 1 represents the j-th item is packed in the knapsack while xj = 0 indicates

not. The objective function (1.1) of the model aims to maximize the total profit of the

selected items. Inequality (1.2) is a capacity constraint that ensures the total weight

of selected items do not exceed the knapsack capacity C. The decision variables xj are

binary, as indicated in (1.3).

A substantial number of commercial decision-making and industrial manufacturing

problems can be formulated as the 0-1 KP, such as budget control and cargo loading.

This has resulted in a significant focus on developing efficient algorithms to tackle these

problems. However, the finding for a polynomial-time algorithm to exactly solve the

0-1 KP, which is widely recognized as an NP-hard problem[5, 6, 7], poses a substantial

challenge. Existing algorithms like dynamic programming [8, 9] can only solve the problem

exactly within a pseudo-polynomial time complexity of O(nC), and even the fastest exact

algorithms require O(2n/2) [10, 11]. Additionally, a significant body of research indicates

that unless one intends to demonstrate NP = P, we can assume NP 6= P [12, 13].

If NP 6= P, for a general instance of the 0-1 KP, there are items whose selection in

the optimal solution cannot be determined without exhaustively enumerating all feasible

solutions.

Coincidentally, in the 1960s, Holland proposed a genetic algorithm(GA) [14] that

simulates biological evolution, consisting of selection, crossover, and mutation operators,

primarily used to search the binary solution space. Genetic algorithms(GAs) do not re-

quire the solution space to be continuous or need to calculate the gradient of the objective

function during iteration, and as a result, the algorithm has been widely applied to solv-

ing various NP-hard problems, such as the task scheduling problem [15], the Traveling

Salesman Problem [16], and the Vehicle Routing Problems [17].

It is worth noting that the convergence analysis of GAs is primarily limited to convex

problems or P problems [18, 19, 20, 21, 22, 23]. However, there is a lack of theoretical
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results for NP-hard problems, especially for the optimal parameter control of operators

such as the mutation operator (MO)[24, 25, 26]. Despite the widespread and efficient

performance of GAs in practical industrial and application processes[27], there is still

widespread skepticism among researchers regarding GA research[28, 29, 30, ?]. Moreover,

the No Free Lunch (NFL) theorem states that there is no superior parameterization for

every problem[27, 31, 32, 33, 34], but it is still important to determine if there exists an

optimal parameterization for a given 0-1 KP instance.

1.1 Our results

In this paper, we build upon the assumption of NP 6= P [5, 6, 7], improve the re-

cent theoretical results of the branch and bound algorithm (B&B) [35, 36], integrating

generating function approaches[37, 38], introduce a new reduction method and an im-

proved mutation operator (IMO). Simultaneously, the method is applicable in computing

an upper bound of the mutation probability for the 0-1 KP, as well as in constructing a

counterexample where the mutation probability does not tend toward 0 with an increasing

number of decision variables [25]. The contributions of this paper can be summarized as

follows.

1. We propose an improved reduction method for the 0-1 KP, and provide the upper

bound of leaves in the search tree (Theorem 3.6).

2. We propose the IMO and provide a general mathematical formulation for the upper

bound of the mutation probability in solving the 0-1 KP (Theorem 3.7).

3. We construct examples where the mutation probability of the IMO does not tend

towards 0 with the increase in problem size (Theorem 3.9).

4. We demonstrate that for large-scale instances, the performance of the IMO is supe-

rior to that of the MO (Theorem 3.11).

1.2 Organization of remainder paper

The remainder of this paper is organized as follows. In Section 2, we introduce the

preliminary and relevant concepts of GAs. Section 3 presents the theoretical results,

including a novel reduction method, the IMO proposed from this reduction method, and

the associated theoretical findings. Additionally, we provide a convergence analysis of

both the IMO and the MO. Finally, in the last section, we summarize the work of this

paper and discuss future research directions.
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2 Preliminary and existing conclusions

2.1 Preliminary

From the objective function (1.1) and inequality (1.2), a primitive greedy algorithm can

be easily identified: the likelihood of an item appearing in the optimal solution increases

as its profit increases and its weight decreases. Consequently, we introduce the classic

concept of profit density[1, 2] to characterize the return on profit per unit weight of the

items.

Definition 2. For j ∈ N , the profit density of item j is defined by

ej = pj/wj. (2.4)

Without loss of generality, we always assume that the items are arranged in non-

increasing order, denoted as e1 ≥ e2 ≥ · · · ≥ en. The greedy algorithm selects items

according to their profit density in descending order until the first item that cannot be

packed in the knapsack. The item is known as the break item b and the solution obtained

employing this greedy algorithm is the break solution. The characteristics of the break

item and the break solution are defined as follows.

Definition 3. The break item b is defined to be the first item that cannot be packed in the

knapsack with profit density descending order, that is,

b−1
∑

j=1

wj ≤ C and

b
∑

j=1

wj > C (2.5)

Correspondingly, the residual capacity r is defined as

r = C −
b−1
∑

j=1

wj (2.6)

Definition 4. The break solution is donated as X
∗ = (x∗

1, x
∗
2, . . . , x

∗
n) ∈ {0, 1}n, where

x∗
j = 1 if j ∈ {1, 2, . . . , b− 1} and x∗

j = 0 otherwise. For the sake of comparison, let Y be

the optimal solution.

To further verify that items with higher profit density are more likely to be selected in

the optimal solution, Pisinger[39] conducted a comparison between the optimal solution

Y and the break solution X∗ for 1000 instances. Each instance had a data size of 1000,

with the break item being the 500th. Pisinger found that the primary concentrations of

differences between Y and X∗ were around the break item.
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Based on empirical evidence derived from the greedy algorithm and a significant num-

ber of instances, it can be empirically observed that items with higher profit density tend

to be more frequently selected for inclusion in the optimal solution Y. However, it is

regrettable that this observation may be challenged by a classic counterexample, which

can be shown as follows.

Example 2.1. [2] Let n = 2 and C = M . The first item is given by w1 = 1 and p1 = 2

whereas the second item is defined by w2 = p2 = M , where M is a large constant.

Clearly, the break solution is X∗ = (1, 0), but the optimal solution for the counterex-

ample is Y = (0, 1). From this counterexample, we can observe that the profit density

of an item does not necessarily determine whether it will be selected in the optimal solu-

tion, and also implies that in the process of solving through GA, the optimal probability

distribution for the MO cannot be determined for a given instance.

Although it is currently impossible to determine all decision variables in polynomial

time complexity, with the continuous development of solving algorithms, a reduction algo-

rithm has been discovered that can exactly solve a part of decision variables in polynomial

time complexity. Given an instance P, the reduction algorithm treats the solving pro-

cess as a search tree, where each branch represents a decision variable in the problem.

We employ the notation (P|xj = α) to denote the subproblem where the j-th decision

variable is fixed at α ∈ {0, 1}. To facilitate subsequent discussions, v(P|xj = α) is in-

troduced as an upper bound for this subproblem. Furthermore, we introduce v(P) as a

lower bound for the original problem P, typically computed using the greedy algorithm

or a meta-heuristic algorithm.

Despite the subproblem (P|xj = α) is also known to be NP-hard, relaxing the

solution space to the real field converts it into a convex problem[40]. Consequently,

the optimal solution for the relaxed subproblem, v(P|xj = α), can be obtained within

polynomial time complexity. These findings lead to several significant conclusions.

Theorem 2.2. For the 0-1 KP, if v(P|xj = α) ≤ v(P), then xj is set to 1 − α in the

optimal solution, where α ∈ {0, 1}.

The decision variable xj is fixed, and the branch xj = α is pruned. To compute

v(P|xj = α), the most common approach is to relax the solution space from the inte-

ger field to the real field. By doing this, we can obtain the well-known Dantzig upper

bound[41], which is denoted as U and is given by

U =

b−1
∑

j=1

pj +
rpb
w

,
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where r represents the residual capacity. It is clear that the decision variables dominated

by the Dantzig upper bound U can be expressed as follows:

Theorem 2.3. [39] For the j-th item, if ej ≥ eb(resp. ej < eb) and pj > (wj +

r)pb/wb(resp. pj < (wj − r)pb/wb), then we have xj = 1(resp. xj = 0) in the optimal

solution.

The time complexity of computing the Dantzig bound is O(n). It is evident that we

can solve a decision variable exactly within polynomial time complexity. A significant

amount of research has been conducted to improve the upper bounds obtained within

the time complexity of O(n2) [39, 42, 43, 44, 45], thereby enabling the exact fixing of

more decision variables within polynomial time complexity. However, in the worst-case

scenario, the method cannot solve all decision variables. Consequently, for a preprocessed

NP-hard problem, to the best of our knowledge, there is currently no relevant research

available regarding which decision variables are more likely to be selected in the optimal

solution. Moreover, if an NP-hard problem can be exactly solved within polynomial

time complexity, heuristic algorithms, such as GAs, that can only provide locally optimal

solutions within polynomial time complexity lose their significance. Based on the current

state of research, we make the following assumptions.

Assuption 1. NP 6= P.

If Assumption 1 holds, then for an unpruned feasible solution, we cannot determine

its status as an exact solution within polynomial time complexity. Consequently, each

unpruned feasible solution has an equal probability of being the optimal solution.

2.2 Genetic algorithm Framework

With the prosperity of commercial activities, a vast number of business operations can

be described as NP-hard problems. Considering Assumption 1, the development of exact

algorithms for solving such problems has been slow. Meanwhile, heuristic algorithms

have flourished [50, 51]. As a classic algorithm in the field of heuristics, GAs have been

extensively applied to solve NP-hard problems, particularly the knapsack problem and

its variants [46], over the past decades. In GAs, each solution in the search space can be

represented by an individual composed of several genes. By simulating natural selection,

genetic mutation, and crossover operations, GAs evolve and select individuals within

the current population, aiming to find the optimal solution. The flowchart of the GA

can be illustrated in Figure 1. It is worth noting that Rudolph pointed out, through

Markov chain analysis, that the GA lacks global convergence, whereas the Elitist Genetic
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Algorithm (EGA), which selects the current population and the optimal individual from

the previous generation, possesses the property of converging to the global optimum as

time approaches infinity [22]. The main distinction between EGA and GA lies in the

selection operators, while the same mutation operator is employed. Since this paper

primarily focuses on the theoretical results of mutation operators, we will still adopt the

representation of the GA in this study.

Initialize Population

Fitness Evaluation

Check

Termination

Criteria

Return

Solution

Crossover Operator

Mutation Operator

Selection Operator

Next

Iteration

No

Yes

Figure 1: Flowchart of a basic genetic algorithm

The GA begins by initializing the population and generating initial solutions, and the

fitness value of each individual is calculated by the objective function. The algorithm

then checks if the termination condition is satisfied based on the specified number of

iterations. If the termination condition is met, the results are output; otherwise, the

next generation population is obtained by applying the crossover, mutation, and selection

operators sequentially. Common crossover operators include single-point crossover, k-

point crossover, and uniform crossover. Frequent mutation operators include flip bit

mutation, swap mutation, and inversion mutation. Selection operators mainly consist of

roulette wheel selection, stochastic universal sampling, and rank-based selection. Various

works on these operators are available in the references [47, 48]. In this study, we utilize

the widely employed single-point crossover, flip bit mutation, and roulette wheel selection

operators, along with presenting pseudo-code for the GA.

Let Ok
t (j) represent the value of the j-th decision variable in the k-th individual of the

t-th (1 ≤ k ≤ pop) generation where pop represents the population size, and let min f(Ot)
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(resp. max f(Ot)) denote the minimum (resp. maximum) fitness value of individuals in

the t-th generation population. Additionally, LOS refers to the local optimal solution,

while I and t represent the maximum number of iterations and the current iteration

number, respectively. Moreover, pm and pc represent the mutation probability and the

crossover probability, respectively.

Algorithm 1 Genetic algorithm
Input: n,W, P, C, pop, I, pc, pm

Output: LOS

Generating initial population O1 and let t = 1.

while t ≤ I do

//Crossover Operator

for k = 1 : 2 : pop do

if rand ≤ pc then

rt = rand ∗ (n− 1) + 1, T = Ok
t ,

Ok
t (rt + 1 : n) = Ok+1

t (rt + 1 : n),

Ok+1
t (rt + 1 : n) = T (rt + 1 : n).

end if

end for

//Mutation Operator

Ot = |Ot − [rand(pop, n) ≤ pm]|.

//Selection Operator

The selection probability of the k-th individual is determined as
f(Ok

t )−min f(Ot)+1
∑pop

k′=1
f(Ok′

t )−popmin f(Ot)+pop
, and resulting in Ot+1.

t = t+ 1.

end while

LOS = max f(OI)

The GA starts by generating initial solutions and then enters a loop. Next, the

algorithm performs the crossover and mutation operators on the individuals determined

by random numbers. These operations involve randomly generating crossover points,

denoted as tr, crossing two individuals from position tr to n, and flipping their bits.

Afterward, the GA calculates the probability of each individual being selected using the

roulette wheel selection operator. Particularly, as problem size increases, the difference

between the objective function values of sub-optimal and local optimal solutions decreases,

increasing the likelihood of sub-optimal solutions being selected. To address this, we assign

a value of 1 to the objective function value of the worst solution in the current generation,

then subtract this value from the objective function values of the other solutions, and
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add 1. Finally, the algorithm terminates the loop after a limited number of iterations and

returns the local optimal solution (LOS).

It is worth noting that GAs were initially perceived as a robust search algorithm,

leading to a lack of extensive attention to parameter control in the early stages of its

development [22]. As the research on algorithm theory progressed, however, numerous

researchers acknowledged the impact of parameter control on search outcomes, and it has

since become one of the most crucial issues in the field of evolutionary algorithms [49].

3 Mainly theoretical result

3.1 A novel reduction method

Recently, a new reduction method was proposed by Dey et al.[36] for analyzing the

performance of the B&B in solving random integer linear programming problems. This

method divides the decision variables into different regions and constrains the branching

generated by decision variables within each region. In this section, we combine traditional

reduction methods [39] with the approach by Dey et al. [36] to solve the 0-1 KP. We

introduce a colored regions partitioning method for 0-1 KP, as demonstrated in Theorem

3.1. This method determines the minimum or maximum number of items that should be

included in the optimal solution for each colored region.

Theorem 3.1. Given a set of items N ′ where the j-th item satisfies the inequality

pj
wj + r/i

>
pb
wb

(3.7)

for i ∈ N, we can conclude that
∑

j∈N ′

|xj − yj| ≤ i − 1, where Y represents the optimal

solution.

It is evident that for the 0-1 KP, the number of leaves in the search tree for items in

N ′ is reduced from 2|N
′| to

i−1
∑

k=1

(

|N ′|
k

)

. Finding ways to effectively reduce the algorithmic

complexity and improve the solving speed, particularly by exploring more efficient prune

strategies between different colored regions, remains an intriguing question. Regrettably,

existing research has not investigated the relationships between items within different

colored regions. Therefore, we present the following definition based on Theorem 3.1.

Definition 5. The item set N1 = {1, 2, . . . , b − 1}, consisting of items with a higher

profit density than the break item b, can be divided into m disjoint subsets, denoted as
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N1 = ⊔m
i=1N1i. Each N1i subset is defined as follows:

N1i = {j|⌊
rpb

pjwb − pbwj
⌋ + 1 = i, ej > eb}. (3.8)

If no item satisfies the formula (3.8) for any integer i(1 ≤ i ≤ m), then N1i = ∅.

Theorem 3.2. Let D1i and s1i denote the item set and the number of items that are not

packed into the optimal solution in N1i, respectively, where 1 ≤ i ≤ m. Furthermore, we

have s1i = |D1i| =
∑

j∈N1i

|yj − 1|. All s1i form the vector S = (s1i)
m
i=1. Therefore, we can

conclude that:

m
∑

i=1

s1i
i

≤ 1.

Proof. Given a vector Y′, we can determine the corresponding D′
1i and S ′ = (s′1i)

m
i=1 of

Y′ for i = 1, 2, . . . , m using the definitions of D1i and S.

Assume, for the sake of contradiction, that Y′ is the optimal solution and satisfies

m
∑

i=1

s′1i/i > 1.

It is clear that the optimal solution Y′ must not exceed the Dantzig bound. Therefore,

we have

m
∑

i=1

∑

j∈D′

1i

pj ≤ (

m
∑

i=1

∑

j∈D′

1i

wj + r)pb/wb. (3.9)

Using the formulas (3.8) and Theorem 3.1, we can deduce the following inequality:

m
∑

i=1

∑

j∈D′

1i

pj

m
∑

i=1

∑

j∈D′

1i

(wj + r/i)
=

m
∑

i=1

∑

j∈D′

1i

pj

m
∑

i=1

∑

j∈D′

1i

wj + r
m
∑

i=1

s′1i/i
>

pb
wb

and

m
∑

i=1

∑

j∈D′

1i

pj > (

m
∑

i=1

∑

j∈D′

1i

wj + r

m
∑

i=1

s′1i/i)pb/wb

> (

m
∑

i=1

∑

j∈D′

1i

wj + r)pb/wb. (3.10)

Inequality (3.9) and inequality (3.10) contradict each other, proving the proposition.

Hence, Theorem 3.2 is established.
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It is worth noting that s1i represents the items in N1i that are not selected by the

optimal solution, so s1i belongs to the set of natural numbers, i.e., s1i ∈ N. Even when

the integer constraints of the original problem are relaxed, i.e., xj ∈ [0, 1] and s1i ∈ R,

the conclusion still holds. This means that

Corollary 3.3. Given a solution X ∈ [0, 1]n and s1i =
∑

j∈D1i

|xj − 1|. If

m
∑

i=1

s1i/i > 1, (3.11)

then X is not the optimal solution.

Furthermore, we establish the following equivalent corollary to facilitate algorithmic

computation, considering the presence of numerous empty sets N1i in Theorem 3.2.

Corollary 3.4. Consider a vector H = {h1, h2, . . . , hn}, where each element is defined

as:

hj =

{

⌊ rpb
pjwb−pbwj

⌋+ 1, if ej > eb,

∞, otherwise.

If X is the optimal solution, then the following inequality holds:

n
∑

j=1

1− xj

hj
≤ 1.

Based on Corollary 3.4, we can derive the following corollary for items with a profit

density lower than the break item b.

Corollary 3.5. Consider a vector L = {l1, l2, . . . , ln}, where each element is defined as:

lj =

{

⌊ rpb
pbwj−pjwb

⌋ + 1, if ej < eb,

∞, otherwise.

If X is the optimal solution, then the following inequality holds:

n
∑

j=1

xj

lj
≤ 1.

The number of leaves pruned in the search tree of the 0-1 KP by Corollaries 3.4 and

3.5 can be expressed using generating functions[37, 38] as follows.
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Theorem 3.6. Consider the number of leaves in the search tree, denoted as ω, and

the number of items in N1i, denoted as n1i, respectively. Additionally, let X (λ) be the

polynomial representing a potential optimal solution, given by:

X (λ) :=

m
∏

i=1





min{n1i,i}
∑

j=0

(

n1i

j

)

λj/i



 . (3.12)

Then, the number of leaves ω is equal to the sum of the coefficients of terms with an

exponent no greater than 1.

It is evident from Theorem 3.6 that Corollary 3.4 and Corollary 3.5 significantly en-

hance the efficiency of B&B algorithms in solving problems such as the 0-1 KP.

3.2 An improvement mutation operator and the upper bound

of the mutation probability

As one of the most commonly used tools to enhance population diversity in various

heuristic algorithms, the flip bit mutation operator has been widely applied due to its sim-

plicity. Specifically, for Ok
t (j), the flip bit mutation compares the mutation probability pm

(typically set as pm ∈ [0.001, 0.01]) with a randomly generated number. If the generated

random number is less than pm, the value of Ok
t (j) is flipped, changing 1 to 0 and 0 to

1. This procedure effectively increases the diversity of the population, enabling better

exploration of the search space. To facilitate subsequent discussions, we first provide the

mathematical representation of the flip bit mutation.

Ok
t (j) =







1− Ok
t (j), if rand < pm,

Ok
t (j), otherwise,

(3.13)

where rand is a randomly generated number within the interval [0, 1].

From Theorem 3.6, it becomes evident that items positioned farther from the line

formed by the break item and the origin are more likely to be selected in the optimal

solution. Building upon this observation and combining it with a greedy algorithm, we

propose the IMO. Given a mutation probability pm, the IMO initially employs the break

item to partition the set of items into two parts. Mutation operations are then performed

on items belonging to different parts based on the value of Ok
t (j). The mathematical

representation of the IMO can be described using formula (3.14).

For a given mutation probability pm, the IMO yields an expectation of pmn1i for the

number of unselected items in each set N1i. However, due to the constraint imposed by

12



Ok
t (j) =



















1− Ok
t (j), if ej > eb and rand < Ok

t (j)pm + (1− Ok
t (j))(1− pm),

1− Ok
t (j), if ej ≤ eb and rand < (1− Ok

t (j))pm +Ok
t (j)(1− pm),

Ok
t (j), otherwise.

(3.14)

Corollary 3.3, there is a maximum limit on the number of unselected items among all sets.

Solutions that do not meet this constraint cannot be considered optimal. Consequently,

we can further reduce the ineffective search space of the mutation operator and determine

an upper bound for the mutation probability pm.

Theorem 3.7. Let pm denote the upper bound of the mutation probability, which can be

expressed as:

pm = min{
1

∑n
j=1 1/hj

,
1

∑n
j=1 1/lj

}. (3.15)

Proof. Without loss of generality, we assume that 0 < 1∑n
j=1 1/hj

≤ 1∑n
j=1 1/lj

. It is evident

that, according to Corollary 3.3 and Corollary 3.4, if pm > 1∑n
j=1 1/hj

, the individual

processed by the IMO cannot be an optimal solution in terms of mathematical expectation.

The proof of Theorem 3.7 is thereby established.

In the past decades, numerous researchers have conducted extensive research on the

optimal mutation probability for convex functions or P problems such as OneMax and

LeadingOnes. The commonly obtained value for this probability is 1
n
[18, 19, 20]. These

studies have led to the following conclusions.

Proposition 1. [25] With the increase in problem size, the mutation probability gradually

tends to 0, i.e.,

lim
n→∞

pm = 0.

As the problem size increases, it becomes apparent that for a general instance of

the 0-1 KP, the number of items with profit density greater than the break item also

increases. This raises an intriguing question of whether the upper bound pm for the

mutation probability in the IMO gradually tends to 0.

Theorem 3.8. Let R be a constant such that R ∈ N
+ and consider an instance P of the

0-1 KP with pj , wj ∈ {1, 2, . . . , R}. We can conclude that

lim
n→∞

pm = 0.
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Proof. For an instance of the 0-1 KP, without loss of generality, let the profit density of

the break item be constant at pb/wb, and let the residual capacity r also be constant. The

knapsack capacity C can then be expressed as:

C =

b−1
∑

j=1

wj + r.

Consider the item set N1 consisting of items with profit density greater than the break

item b, and let R be any constant. It is evident that there exists a constant M ∈ N
+

such that m < M and N1 can be expressed as the disjoint union of sets N1i, as defined in

Definition 5. In other words, for any j ∈ N1, we have:

pj
wj + r/M

>
pb
wb

.

Furthermore, by leveraging Corollary 3.4, we are able to acquire a vector H that is

associated with the given instance. Consequently, the following conclusion can be derived:

lim
n→∞

pm ≤ lim
n→∞

1
∑n

j=1 1/hj

≤ lim
n→∞

M

n
= 0.

The proof of Theorem 3.8 is complete.

It is notable that when the profit and weight values of items in a 0-1 KP instance are

limited, as exemplified in Theorem 3.8, the instance can be solved within O(Rn2) time

complexity by Dynamic Programming[8, 9]. Since R is a constant, the instance belongs

to the P complexity class. Consequently, it becomes an interesting question of whether

the upper bound of the mutation operator in the IMO still tends towards 0 when the

instance of the 0-1 KP no longer limits the profit and weight values of items.

Theorem 3.9. For any given constant θ within the interval (0, 1), it is feasible to construct

an instance of the 0-1 KP with pj , wj ∈ N
+, and we have

lim
n→∞

pm = θ.

Proof. Following the same approach as the proof of Theorem 3.8, we assume that the

profit density of the break item remains constant at pb/wb, while maintaining a constant

residual capacity r. Furthermore, the knapsack capacity C must satisfy

C =

b−1
∑

j=1

wj + r.
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Without loss of generality, we set θ = 1
2
. Next, we construct the profit and weight of

items in the instance, ensuring that their profit densities exceed that of the break item.

Let pj and wj represent the profit and weight, respectively, of the j-th item, satisfying

⌊
rpb

pjwb − pbwj
⌋ + 1 = 2j−1. (3.16)

In other words, we have hj = 2j−1. Since pj , wj ∈ N
+, it is clear that there exist pj

and wj that satisfy equality (3.16). Consequently, we can conclude that

lim
n→∞

pm = lim
n→∞

1
∑n

j=1 1/hj

=
1

2
= θ.

The proof of Theorem 3.9 is complete.

3.3 Comparison analysis

In NP-hard problems, given two solutions X′ and X′′, even if ‖X′ −Y‖ < ‖X′′ −Y‖,

we cannot conclude that f(X′) ≥ f(X′′), where Y is the optimal solution. In other

words, solutions with a smaller Hamming distance to the optimal solution Y do not

necessarily dominate solutions with a larger Hamming distance to Y. Therefore, the

existing convergence analysis of GAs is limited to specific scenarios. For a general instance

of NP-hard problems, the expected runtimes of the GA often exceed O(2n), which lacks

strong theoretical guarantees for the performance.

To demonstrate the performance of the IMO, we evaluate the algorithm by considering

the probability τ(Algorithm) of hitting the optimal solution Y from the zero vector 0

within a single iteration for a given instance P. This evaluation is conducted to assess

the performance of the IMO and the MO on general large-scale instances.

Example 3.10. Given an instance P of the 0-1 KP with n items, let λ1 and λ2 denote the

number of selected and unselected items within the first b−1 items, respectively. Similarly,

λ3 and λ4 represent the number of selected and unselected items after the (b− 1)-th item,

respectively. We have λ1 =
b−1
∑

j=1

|yj − 1|, λ2 =
b−1
∑

j=1

|yj|, λ3 =
n
∑

j=b

|yj|, and λ4 =
n
∑

j=b

|yj − 1|.

Theorem 3.11. If λ1 < λ2 and pm < 0.5, then τ(IMO) > τ(MO).

Proof.

τ(IMO)

τ(MO
=

(1− pm)
λ1pλ2

m pλ3
m (1− pm)

λ4

pλ1+λ3
m (1− pm)λ2+λ4

=
pλ2+λ3
m (1− pm)

λ1+λ4

pλ1+λ3
m (1− pm)λ2+λ4

15



= (
1− pm
pm

)λ2−λ1

> 1.

This completes the proof of Theorem 3.11.

Theorem 3.11 demonstrates that when the number of items in the optimal solution

exceeds the number of items not in the optimal solution before the break item, the prob-

ability of the IMO hitting the optimal solution in a single iteration is higher, which aligns

with empirical experimental data. Moreover, since GAs are primarily employed for solv-

ing large-scale NP-hard problems, which rarely exhibit the scenario of Example 3.10

with λ1 ≥ λ2, and the mutation probability pm does not exceed 0.5, the IMO generally

outperforms the MO in large-scale instances.

4 Conclusion and future work

Heuristic algorithms with parameters exhibit significant performance differences de-

pending on the value of the parameters. Due to limitations in mathematical tools, the

problem of finding the optimal parameters for heuristic algorithms has received extensive

attention in recent decades. Based on the assumption that NP 6= P, we propose a novel

reduction method and apply it to compute the upper bound of the mutation probability.

Furthermore, our method not only proves that in the 0-1 KP, when the weight and

profit of items are limited, the mutation probability tends toward 0, but also demonstrates

that the mutation probability can tend toward a constant within the open interval (0, 1)

when the weight and profit values of items are unrestricted.

For future work, we can approach it from two perspectives. Firstly, the upper bound

of the method deserves further improvement. Our research only utilized the linear relax-

ation technique, and it would be worthwhile to explore better upper bound computation

methods, such as the Lagrangian relaxation technique. Secondly, Dey et al. have demon-

strated that such reduction methods can apply to not only one-dimensional cases but also

multidimensional problems. Therefore, the application scope of these reduction methods

can be further expanded, such as multidimensional knapsack problems.
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