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Abstract

We describe an approach for aligning an
LLM-based dialogue agent based on global
(i.e., dialogue-level) rewards, while also tak-
ing into account naturally-occurring multi-
modal signals. At a high level, our approach
(dubbed GELI) learns a local, turn-level reward
model by decomposing the human-provided
Global Explicit (GE) session-level reward, us-
ing Local Implicit (LI) multimodal reward sig-
nals to crossmodally shape the reward decom-
position step. This decomposed reward model
is then used as part of the standard RLHF
pipeline improve an LLM-based dialog agent.
We run quantitative and qualitative human stud-
ies to evaluate the performance of our GELI
approach, and find that it shows consistent im-
provements across various conversational met-
rics compared to baseline methods.

1 Introduction

Developing social dialogue agents that can interact
and collaborate with humans over a long horizon re-
mains a longstanding goal of artificial intelligence.
Large language models (LLM) pretrained at scale
on the next-word prediction objective and then sub-
sequently aligned to human preference via RLHF
(Reinforcement with Human Feedback) represent
a significant step in this direction (Ouyang et al.,
2022), even leading to successful commercial ap-
plications.

However, existing methods for alignment usually
assume that preference labels are annotated at the
turn-level (i.e., after each utterance). This makes
it difficult to extend this framework to cases where
human preference labels are only available at the
session-level, i.e., after an entire dialogue session
(which could span 30 minutes or more). Insofar as
we are interested in developing dialogue agents that
can continually learn from session-level dialogue
data “in the wild” (e.g., through in-person con-
versations), there is a need to develop techniques

that can (1) align agents based on global rewards
at the session level and (2) take into account ex-
tralinguistic multimodal signals that are pervasive
in naturally-occurring conversations.

Concretely, a session-level score obtained post-
conversation is a form of global explicit feedback,
which provides a holistic assessment of a conver-
sation session. Such feedback can be obtained
naturally at scale by, for example, asking partici-
pants to rate how they felt about the dialog session.
However, it is not possible to use such data directly
as part of an RLHF pipeline, since current meth-
ods generally require local, turn-level signals for
aligning an LLM-based dialogue agent to human
preferences.

Moreover, in real world settings and domains,
agents are deployed in multisensory environments
(Benford et al., 1997) where they have access to
rich multimodal signals (e.g., facial expressions
during a video conversation). An ideal agent should
leverage these signals as proxy rewards to improve
its behavior. In dialogue, previous work attribute
many multimodal cues such as body mimicry, vocal
accommodation, and emotion, as implicit measures
of conversation quality (Louwerse et al., 2012).
Hence, we can utilize multimodal signals as a form
of local implicit feedback, which presents an oppor-
tunity to utilize multimodal local implicit feedback
as signals to crossmodally guide the decomposition
of the single global explicit (GE) post-interaction
score.

In this paper, we describe a joint framework
called GELI, which integrates global explicit (GE)
and local implicit (LI) feedback. GELI makes it
possible to align an LLM-based dialogue agent
based on global rewards, while simultaneously tak-
ing into account naturally-occurring multimodal
signals. Our formulation brings together the idea
of training a reward model which decomposes a sin-
gle global explicit annotation score that is shaped
by local implicit multimodal signals, which is sub-
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sequently used to align an LLM-based dialogue
agent via RLHF. Specifically, we use GELI to learn
a reward function based on the overall affect of the
user (i.e., how positive the user felt at the end of the
conversation) from a large-scale long-horizon mul-
timodal dialogue dataset (Reece et al., 2023). Our
local implicit multimodal signal comes from an
affect classifer based on facial expression. We find
that the reward function learned via GELI can be
used train a dialogue agent that has improved abil-
ity across various metrics of conversational quality
including sensibleness, reusability, and specificity
(Lee et al., 2022).

2 Related Works

Reward Design The design of the reward func-
tion can drastically change the performance of
RL agents. Paradigms such as reward shaping
have shown to be effective at enabling the RL
agent to converge quickly and improve perfor-
mance (Mataric, 1994; Ng et al., 1999a; Devlin
et al., 2011; Wu and Tian, 2016; Song et al., 2019).
In addition, inverse RL (Ng et al., 2000; Fu et al.,
2017) has shown to be useful at extracting rewards
from human expert trajectories. Furthermore, in-
trinsic reward functions (Sorg et al., 2010; Zheng
et al., 2018, 2020; Guo et al., 2018; Gangwani
et al., 2018), a class of methods which uses the
agent’s own learning progress, have shown to be
useful at guiding the agent’s behavior by fostering
self-improvement and adaptive exploration.

Temporal Credit Assignment Temporal Credit
Assignment (TCA) is a concept within the field of
reinforcement learning and artificial intelligence
that addresses the challenge of attributing credit to
actions over time. It involves determining the ex-
tent to which past actions contributed to the current
outcome, allowing an intelligent agent to under-
stand the consequences of its decisions. One way
to apply TCA to reinforcement learning is by ma-
nipulating the λ-discount factor and investigating
how this affects policy learning (Petrik and Scher-
rer, 2008; Jiang et al., 2015). Recently, a line of
works have been proposed to treat TCA as a return
decomposition. RUDDER (Arjona-Medina et al.,
2019) assigns step-wise credit by the predictive
difference between two consecutive states. IRCR
(Gangwani et al., 2020) is an instantiation of uni-
form reward redistribution. Randomized return de-
composition (RRD) (Ren et al., 2021) formulate a
surrogate problem through Monte-Carlo sampling

estimating step-wise rewards via least-squares esti-
mation.

Aligning Language Models To Human Prefer-
ences Incorporating human preference feedback
into a reward model, and subsequently optimiz-
ing a language model to output text that reward
model scores highly with an RL algorithm, has
been shown to result in language models that gener-
ate outputs humans generally prefer (Ouyang et al.,
2022). This process has been applied to summariza-
tion (Ziegler et al., 2019; Stiennon et al., 2020; Wu
et al., 2021), answering questions with long-form
answers using text retrieved from the web (Nakano
et al., 2021; Menick et al., 2022), generating en-
gaging responses in a dialogue settings (Thoppilan
et al., 2022; Cohen et al., 2022) and following hu-
man instructions (Kojima et al., 2021; Suhr and
Artzi, 2022; Kim et al., 2023b). However, these
methods generally require collecting fine-grained
annotations for each generated response to train the
reward function, which is difficult to obtain at scale
for long-horizon dialogue.

Utilizing Implicit Signals for Dialogue Agents
Many previous work utilize local implicit signals
found only in the text, such as existence of next
human turn, next human turn length, mean conver-
sation length, sentiment and reaction in the next
human utterance, retry rate, retention rate, or user
rating (Pang et al., 2023; Irvine et al., 2023). In
contrary, ours is the first (1) to additionally utilize
multimodal signals, and (2) use global signals in
conjunction with the local implicit signals, which
has been a crucial finding that contributed signifi-
cantly to the performance boost in the human eval-
uation.

3 Background

Language Models As Conversational Agents.
We are interested in generating conversational re-
sponses with an autoregressive language model in a
multi-sensory setting. We treat a conversational lan-
guage model as an agent with a policy πϕ (Liu et al.,
2018; Liang et al., 2020; Wen et al., 2016; Thoppi-
lan et al., 2022), which is parameterized by ϕ. The
utterance generated at turn t, given access to the
textual dialogue history st is defined to be the ac-
tion at. To be more specific, the dialogue until turn
t−1 is defined as s1, a1..., st2 , at−2, st−1 = s[:t−1],
for brevity we will call this s[:t−1] = st. Therefore,
the auto-regressive LLM policy, πϕ(st), takes in as
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Figure 1: Overview of our proposed method: GELI. Left: The reward function training involves decomposing a
single global explicit (GE) feedback, with the guidance of multimodal local implicit (LI) feedback, such as visual
facial affect. Right: We utilize the decomposed reward function to update the language model, where the language
model generates utterances and the reward function assigns a score to be optimized via PPO (Schulman et al., 2017).

input st and outputs a distribution over at.

Reinforcement Learning with Human Feedback
(RLHF). RLHF is commonly used to adapt an
agent πϕ to be aligned to human feedback. Given
a reward function which can gauge the quality of
individual generated utterances, we can perform
adaptation via reinforcement learning with human
feedback (RLHF) (Ouyang et al., 2022; Jaques
et al., 2020; Stiennon et al., 2020). Specifically,
for turn t, our reward function rθ(st, at) parameter-
ized by θ takes in as input the context utterance st
and the generated response at to predict the reward
at the utterance level. It is also typical to use a KL
term to penalize RL policy from diverging from
the pretrained model, resulting in the following
objective,

max
ϕ

E[rθ (st, at)]− γDKL(πϕ (·|st) ||πη (·|st)), (1)

where πη is a reference model.

4 Methods: GELI

The reward function rθ in standard adaptation tech-
niques relies on intermediate fine-grained anno-
tations, requiring manual human annotations at
each generated utterance. However, in many long-
term dialogue settings there is only a single global
explicit (GE) annotated reward for each session.
Given a trajectory of the multi-turn dialogue τ , the
global explicit reward RGE(τ) is a scalar reward
at the end of the interaction, such as how posi-
tively the user felt about the conversation. This
GE reward can be decomposed via sum decom-
position (more details in Sec. 4.1) with the GE

loss function LGE. A core novelty of our proposed
GELI approach is that the decomposition of the
GE reward will be guided by some Local Implicit
(LI) feedback. Concretely, in many dialog applica-
tions/datasets of interest there are rich multimodal
signals, which is can provide intermediate signals
that are useful for the decomposition of the sin-
gle global explicit reward. We thus perform cross-
modal distillation of the signals from such multi-
modal signals into the individually decomposed
text-only reward function via the LI loss function
LLI (more details in Sec. 4.2).

In practice, our reward function rθ is optimized
with a joint objective which enables the (1) redis-
tribution of the global explicit (GE) reward and (2)
inclusion of local implicit (LI) reward signals as a
reward shaping function.

LGELI = λLGE(θ) + (1− λ)LLI(θ) (2)

In the following sections, we share more details
about the global explicit decomposition and local
implicit crossmodal reward shaping.

4.1 GE: Decomposing One Global Explicit
Annotation

Global explicit reward is a human annotation at
the end of the interaction, which can come in
the form of a post-interaction score. Let τ de-
note the trajectory of the episode, i.e. τ =
⟨s0, a0, s1, a1 · · · , sT , aT ⟩. This reward repre-
sents the overall reward of trajectory τ , RGE(τ).
The agent in this episodic reinforcement learning
paradigm must maximize the expected global ex-
plicit reward at the end of the conversation. One



Dialogue History: 
[Previous 10 turns of Dialogue]
…

Alice: How are you?

Bob: Uh huh. All right. And you? 

Alice: Oh yes, good. 

Bob: Yeah. So um what do you would 
like to talk about? Do you have any 
interests or hobbies?"

0.046

-0.032

0.029

0.056

-0.037

Bob: Well? Um 
and I'm kind of 
into video games.

Bob: Mhm. Bob: Um Like 
Grand theft Auto, 
the new ones 
coming out, so I 
can't wait if I ever 
get a PlayStation 
five..

Alice:
Uh huh

Bob: Right…

Examining conversation 
rewards at turn 5 to 10

Alice: Um um I 
don't know. Um I 
like tv shows, I 
like sports which 
which is like my 
hobby?

Alice:
Video 
games?

Alice:
What do you 
play?

Alice:
Okay, 
pray for 
you play 
Fortnite, 
Call of 
Duty.

Figure 2: Example of GELI reward score predictions for an unseen conversation from the dataset. Top left: Reward
scores unrolled over an unseen conversation, where the mean is subtracted. We examine a random sampled snippet,
where we find that our decomposed reward function assigns higher values to meaningful utterances.

way to approximate the global explicit reward
RGE(τ) is by sum decomposition via considering
the sum of rθ(st, at), across all the previous states
st and newly generated at:

RGE(τ) ≈
T−1∑
t=0

rθ (st, at) (3)

Then, this idea of sum-based return decomposi-
tion (RD), can be implemented via a least-squares-
based approach, where the reward distribution is
given by a learnt reward function, decomposing
the episodic reward RGE(τ) in an additive way
(Arjona-Medina et al., 2019).

LGE(θ) = E
τ∼D

[(
RGE(τ)−

T−1∑
t=0

rθ(st, at)

)2
]

(4)

Application to Conversational LLMs: To alle-
viate the computation costs arising from the long
horizon nature of conversations and language mod-
eling costs, we employ an alternative of the least-
squares-based return decomposition method, by uti-
lizing Randomized Return Decomposition (RRD;
Ren et al., 2021). RRD improves the scalability of
least-squares-based reward redistribution methods
by using a Monte-Carlo estimator to compute the
predicted episodic return. We refer the readers to
Appendix A for more details on RRD.

4.2 LI: Crossmodal Reward Shaping with
Local Implicit Multimodal Signals

The reward decomposition offers a way to redis-
tribute the rewards from a single reward in an

application-agnostic way. However, in natural di-
alogue there are rich extralinguistic signals (e.g.,
facial expressions, prosody) that provide an indi-
cation of how the conversation is being received.
We thus propose to guide the decomposition such
that it is shaped by local implicit (LI) multimodal
signals. This is essentially using such signals as a
form of reward shaping, which is valuable if they
are known to be aligned with the final objective
(Ng et al., 1999b).

In our multi-sensory setting, we have access to
the multimodal signals in response to the agent’s
actions at, which contains implicit signals that are
correlated with the final reward. We will call this
multimodal state smm

at . If we have access such mul-
timodal signals, we can design a reward function
Γ which utilizes the multimodal signal smm

at to de-
termine a proxy reward. Then, we can formulate
this problem set up as a form of crossmodal knowl-
edge distillation (KD) (Xue et al., 2022; Thoker
and Gall, 2019) for reward shaping. Therefore, we
can express the local implicit reward rLI with a
proxy label from a multimodal input.

rLI(s
mm
at ) = Γ(smm

at ) (5)

Γ indicates a designed score function from do-
main knowledge which captures the relationship
the GE reward and the multimodal local implicit
signals. Therefore, a general formulation of the
loss function to induce the crossmodal knowledge
distillation of local implicit multimodal feedback
signals to the reward function rθ which only has ac-



cess to textual dialogue states and actions (st, at),
we have the following:

LLI(θ) = E
st,at,smm

at
∼D

[
(rLI(s

mm
at

)− rθ (st, at))
2
]

(6)

Application to Conversational LLMs: Our GE
reward indicates how positively the conversation
made the other participant feel. It is known from
previous work (Ruusuvuori, 2012), that the facial
affect of the listener is related to how the conver-
sation is being perceived and the implicit conver-
sation quality. Thus, we design the shaped reward
rLI(s

mm
at ) to capture this intuition. Therefore, we

utilize the implicit visual feedback from a facial
affect classifier as a way to encourage a decompo-
sition informed by visual affective signals. Given a
facial affect classifier f and access to multimodal
states smm

at (in this case vision), which outputs the
affect of the listener, we implement an indicator
function where we assign a score of 1 if the facial
affect of the listener is positive and 0 otherwise.

Γ(smm
at

) =

{
1, f(smm

at
) = positive affect

0, otherwise
(7)

Note, that this is one of many ways to design the
score function Γ, The design of the score function
Γ, to capture the relationship between local multi-
modal signals and the single global explicit reward
leaves exciting research opportunities.

5 Experiments

In this section, we describe our experiments to
evaluate our proposed GELI framework which per-
forms reward function training with global explicit
reward decomposition and local implicit visual
feedback. All experiments are performed by (1)
first, training a reward function (e.g. using GELI or
one of its ablation variant only GE or only LI) (2)
and use the trained reward functions in a reinforce-
ment learning setup with PPO (Schulman et al.,
2017) to adapt the language model in generating
better conversational responses. Due to computa-
tional resources, the training of reward functions
and adaptations are performed over a single run.

5.1 Dataset

Our experiments are based on the CANDOR
(Reece et al., 2023) dataset, due to its long-term
nature (length of conversations 31.3 mins on av-
erage), large-size (1656 conversations, 7+ million

word, 850-hours). The CANDOR dataset also in-
cludes video data, which is often found in other
face-to-face conversation datasets. CANDOR is
used to train our reward function and to sample
dialogue histories for the generations. We con-
struct separate held-out sets for the reward func-
tion training (∼30,000 dialogue history-utterance
pairs) and updating the language model (∼100,000
history-utterance pairs). We optimize for the
“overall-affect” global explicit score from the post-
interaction survey, which given by the answer to the
following question: “Overall during your conversa-
tion, to what extent did you feel positive feelings
(e.g., good, pleasant, happy) or negative feelings
(e.g., bad, unpleasant, unhappy)?”

5.2 Baseline Models
We compare GELI with multiple state-of-the art
reward decomposition methods which could de-
compose the single global explicit (GE) reward.
For fair comparison, we also compare the perfor-
mance of the reward decomposition when we only
use the local implicit (LI) multimodal rewards.

For all the methods mentioned below, we fine-
tune additional linear layers on top of a small BART
(Lewis et al., 2019) language model, which was
previously finetuned for conversational summary.1

This also demonstrates that smaller language mod-
els may be powerful enough to discern patterns for
desirable adaptations.
GE: (RRD) Randomized return decomposi-
tion (Ren et al., 2021) is aimed at learning a proxy
reward function for episodic reinforcement learn-
ing. It formulates the decomposition as a surrogate
problem through Monte-Carlo sampling, enabling
the extension of least-squares-based reward redis-
tribution to address long-horizon problems.
GE: (IRCR) Iterative Relative Credit Refine-
ment (Gangwani et al., 2020) is an instantia-
tion of uniform reward redistribution. The non-
parametric reward redistribution mechanism em-
ployed by IRCR involves setting the proxy reward
for a transition as the normalized value of the asso-
ciated trajectory return.
GE: (RUDDER) Return Decomposition for De-
layed Rewards (Arjona-Medina et al., 2019) em-
ploys a return predictor trained on trajectories,
and step-wise credit assignment is determined by
the predictive difference between two consecutive

1https://huggingface.co/kabita-choudha
ry/finetuned-bart-for-conversation-summa
ry

https://huggingface.co/kabita-choudhary/finetuned-bart-for-conversation-summary
https://huggingface.co/kabita-choudhary/finetuned-bart-for-conversation-summary
https://huggingface.co/kabita-choudhary/finetuned-bart-for-conversation-summary


states. Through the utilization of the LSTM warm-
up technique, this transformation ensures that its
training computation costs are not contingent on
the task horizon T, enabling adaptability to long-
horizon tasks.
LI: Visual Affect (VA): As a form of implicit feed-
back, we use facial affect present in visual signals
as described in section 4.2. The facial affect classi-
fier is a CNN-based image-based emotion detection
model trained on AffectNet (Mollahosseini et al.,
2017). The predictions are captured in 2 second
sliding windows.
LI: Language Sentiment (LS): We also utilize
the utterance of the speaker to check whether if
we could utilize the sentiment of this utterance as a
form of implicit feedback. We utilize a mDeBERTa
(He et al., 2020) pretrained sentiment classifier.2

Evaluation: For the trained reward functions, we
compute the LGE(θ), which is the MSE between
RGE and the sum of all predicted rewards rθ(st, at)
as described in Eq. 4. We also calculate the differ-
ence of the expected predicted returns of ∆r̂LI con-
ditioned on the local implicit multimodal reward:
Γ(smm

t ). With our choice of the score function as
described in Eq. 7, this can be written as:

∆r̂LI = E [rθ(st, at)|f(smm
at

) = positive affect]
− E [rθ(st, at)|f(smm

at
) ̸= positive affect]

(8)

Intuitively, this can be seen as the difference in
the predicted reward scores of the text-only utter-
ance conditioned on the visual facial expression
which we are using as local implicit feedback re-
wards (e.g. the difference of the reward score of the
utterance when the User responds with a positive
affect vs. a negative affect). Given our choice of
the score function Γ, given Eq. 7, ∆r̂LI should
be greater than 0, if assume that a positive visual
affect indicates that the associated utterance is con-
tributing positively to RGE , i.e. how the utterance
is being received by the listener.

5.3 Updating Language Models with
Reinforcement Learning

We use LLAMA-2 (Touvron et al., 2023) as the
base model and with a default prompt shown in
Fig. 3. We adapt the LLAMA-2 model with rein-
forcement learning with human feedback by utiliz-
ing the above-mentioned reward functions which

2https://huggingface.co/lxyuan/distil
bert-base-multilingual-cased-sentiment
s-student

Feedback Type Baselines LGE ↓ ∆r̂LI > 0

Human N/A 0.087 ± 0.05
Mean 245.495 0.000
Mode 289.473 0.000

GE

IRCR 394.041 0.008
RUDDER 285.720 0.003
RRD (K = 32) 172.246 0.007
RRD (K = 160) 188.382 0.008

LI
Visual Affect (VA) 1546.17 0.256
Language Sentiment (LS) 825.31 0.010

GELI
IRCR + VA 722.687 0.392
RUDDER + VA 623.882 0.030
RRD + VA (Ours) 176.897 0.063

Table 1: Automatic Evaluation on Reward Function
Training. Left: Results for Reward Decomposition Loss,
LGE . We find that RRD and RRD+VA performs the
best. Right: Difference of expected predicted reward
conditioned on the local implicit multimodal feedback,
∆r̂LI . We find the GELI: RRD + VA achieves the best
of both world with low reward decomposition scores
and sufficient delta values.

has been trained to decompose the reward and per-
form ablations to demonstrate the effectiveness of
GELI. We utilize TRL implementation of RLHF
with PPO (von Werra et al., 2020). Furthermore,
we utilize LoRA (Hu et al., 2021) for computational
constraints. We share our detailed hyperparameters
in Appendix F.

Evaluation: We run a human study based on the
8 metrics commonly used in literature to evaluate
the quality of the generated utterances (Lee et al.,
2022). We recruited a total of 300 crowd work-
ers on Amazon Mechanical Turk. For each of the
sample, including dialogue history and responses,
users were asked to rate which model(s) satisfied
the given criterion. At the end of the survey, anno-
tators were asked to describe which chatbot they
would talk to again.

6 Results and Discussion

In this section, we discuss the quantitative and qual-
itative results of our experiments. We first describe
the results for the reward decomposition training.
Then, we discuss the results of the human evalua-
tion of generations that are trained with the decom-
posed reward functions via reinforcement learning.

6.1 Reward Function

Reward Decomposition (LGE): We refer the
readers to the rows corresponding to ’GE’ on the
left side of Table 1, where we display the MSE of
the reward decomposition loss, as described in Eq.

https://huggingface.co/lxyuan/distilbert-base-multilingual-cased-sentiments-student
https://huggingface.co/lxyuan/distilbert-base-multilingual-cased-sentiments-student
https://huggingface.co/lxyuan/distilbert-base-multilingual-cased-sentiments-student


4. We find that amongst the three return decompo-
sition methods, RRD performs the best. We also
compare the results when we use only the local im-
plicit (LI) multimodal rewards directly as rewards
and find that they perform significantly worse than
that of GE decomposition methods.

Predicted Reward Conditioned on Visual Affect
(∆r̂LI ): On the right side of Table 1, we display
the difference of the expected predicted reward con-
ditioned on the local implicit multimodal feedback,
∆r̂LI . In our setting, this is the difference of the
predicted reward when the visual affect is positive
and when the visual affect is negative.

To verify our intuition that visual feedback is cor-
related with actual perceived conversational qual-
ity, we ran a human study (displayed in the first
row of Table 1), where we show annotators the
only language dialogue history and the speaker’s
next utterance. They are asked to rate whether the
speaker’s next response would induce a positive
or non-positive feeling in the listener. We average
the scores of their annotations conditioned on non-
positive and positive affect samples, where we find
a statistically significant difference, this indicates
that the visual feedback is correlated with people’s
perception of the conversation quality.

We find that after the GE decomposition meth-
ods without any LI feedback training is unable to
discern between positive and non-positive facial
affect, as indicated by the ∆r̂LI values being close
to zero. The LI baseline with only the language
sentiment is unsurprisingly unable to as well. On
the other hand, the LI baseline with visual response
is able to recognize differences in the utterances
which will induce positive and negative affect.

GELI : Combining Global Explicit and Lo-
cal Implicit Feedback We refer the readers to
the bottom of Table 1. The results are shown for
the reward decomposition and visual feedback for
the reward function trained with GELI: global ex-
plicit reward decomposition informed by local im-
plicit multimodal feedback shaping. We find that
the combination of random return decomposition
(RRD) and visual affect (VA) achieves the best of
both worlds.

It is important to look at both error metrics (GE
and LI): the LGE metric is evaluating performance
globally, comparing the final predicted score of the
whole conversation with the ground truth (which
is a single scalar value for the entire conversa-

tion).The ∆r̂LI metric evaluates the local predic-
tions for each speaking turn, confirming whether
the local predictions are aligned to the local im-
plicit reward. It is normal that the GE-RRD base-
line performs well on the first metric, since it is
also optimized this way. However, as we observe
in the human evaluations and the qualitative visual-
izations, this GE-RRD baseline ends up being very
conservative in its predictions, with little variabil-
ity in its local predications and often converging
to the mean (variance of predicted rewards from
GE:RRD is 0.0231 ± 0.004, for GE: RRD+VA is
0.0778 ± 0.006). Hence, it is important to also
look at the LI metric where we can observe that
for GE:RRD in Table 2 is near 0. Our proposed
GELI approach finds a successful balance between
both general and local metrics. As we see in the
human evaluation in Section 6.2, this GELI balance
ends up improving even the widely used LLAMA2
baseline.

Visualization of GELI Decomposed Rewards:
In Fig. 2, we display the unrolled reward from
GELI from an unseen conversation sample from
the dataset. We find that the GELI decomposition
has learned to assign meaningful scores which indi-
cates the contribution of each utterance to the over-
all quality of the conversation (i.e interesting, co-
herent responses are rewarded, whereas less mean-
ingful repetitions and backchannels are assigned
lower scores).

6.2 Human Evaluation on Adapted LLM on
CANDOR (Reece et al., 2023)

We refer the reader to Table 2, where we find that
the LLAMA-2 model with GELI outperforms all
other approaches in most evaluation metrics and
performs comparably with other baselines other-
wise. Importantly, if a certain reward function
properly adapts the language model via RLHF to
become more conversational, it implies that the
rewards contains accurate, valuable signals which
a reinforcement learning algorithm such as PPO
could leverage to improve the policy. For clar-
ity, LLAMA2 + GE, refers to the trained reward
function from global explicit reward decomposi-
tion only, and LLAMA2 + LI, refers to the trained
reward function from local implicit rewards only.
Finally, LLAMA2 + GELI refers to our proposed
approach, the reward function trained with both
global explicit decomposition shaped by local im-
plicit rewards. For dialogue, we find the local im-



CANDOR (Reece et al., 2023) Connection Positivity Social Inclination Interestingness Reuse Specific Sensible GELI Score
(/100%) ↑ ↑

Human 16.00 ± 2.83 16.33 ± 4.03 19.67 ± 1.89 17.33 ± 6.65 17.33 ± 6.55 17.33 ± 3.09 82.67 ± 7.93 85.33 ± 4.5 N/A
LLAMA2 30.67 ± 8.73 26.67 ± 6.65 25.67 ± 8.38 26.00 ± 5.66 24.33 ± 7.76 28.0 ± 5.72 77.33 ± 6.18 80.33 ± 5.91 0.4929
LLAMA2 + GE: RRD 21.33 ± 6.80 16.33 ± 1.70 18.00 ± 2.16 17.67 ± 1.25 18.00 ± 2.83 11.33 ± 4.03 68.67 ± 6.34 69.0 ± 5.1 0.5072
LLAMA2 + LI: LS (Language Sentiment) 20.67 ± 7.04 21.00 ± 4.90 21.00 ± 5.72 18.33 ± 8.22 23.00 ± 3.56 22.0 ± 6.98 82.0 ± 3.74 89.67 ± 4.19 0.4852
LLAMA2 + LI: VA (Visual Affect) 22.67 ± 4.19 25.33 ± 5.44 31.33 ± 0.47 28.67 ± 3.4 19.33 ± 3.68 26.0 ± 0.82 67.67 ± 4.71 90.0 ± 2.16 0.4858
LLAMA2 + GELI: RRD+VA (Ours) 39.67 ± 7.32 44.33 ± 12.23 35.33 ± 10.87 37.33 ± 6.85 38.0 ± 10.2 41.67 ± 7.04 80.33 ± 4.5 80.67 ± 10.5 0.5419

Table 2: Human evaluation results on 100 samples for 3 seeds for 8 preference metrics where mean and std. are
reported. Green indicates best score. GELI performs better on 6 out of 8 metrics (emotional connection,
positivity, social understanding, inclination, interestingness, reuse) and comparably to the best performing model on
the other 2 metrics: specific and sensible.

SODA (Kim et al., 2023a) Connection Positivity Social Inclination Interestingness Reuse Specific Sensible
(/100%) ↑

GPT-3.5 (text-davinci-002) 40.1 ± 7.56 43.05 ± 3.4 48.13 ± 9.08 46.05 ± 3.44 49.11 ± 7.69 44.03 ± 2.01 78.14 ± 9.49 80.07 ± 7.72
LLAMA2 66.04 ± 4.79 70.0 ± 2.51 71.99 ± 6.28 67.0 ± 0.46 55.05 ± 8.24 65.99 ± 6.3 89.04 ± 2.65 89.99 ± 3.81
LLAMA2 + GE: RRD 30.98 ± 2.66 30.98 ± 5.04 34.04 ± 3.28 27.0 ± 7.43 24.98 ± 2.69 30.0 ± 2.51 43.97 ± 3.3 47.06 ± 4.34
LLAMA2 + LI: LS 62.0 ± 3.71 70.06 ± 4.52 75.02 ± 5.06 68.04 ± 3.41 59.0 ± 1.24 68.01 ± 3.72 86.04 ± 2.61 92.99 ± 1.47
LLAMA2 + LI: VA 55.02 ± 1.92 57.1 ± 7.21 63.04 ± 4.76 51.99 ± 0.67 43.97 ± 3.3 51.04 ± 3.08 76.03 ± 2.16 82.0 ± 2.49
LLAMA2 + GELI: RRD + VA (Ours) 71.01 ± 1.27 73.98 ± 1.76 76.98 ± 3.01 71.99 ± 1.65 66.97 ± 6.69 70.0 ± 2.51 90.02 ± 7.53 88.06 ± 4.73

Table 3: Human evaluation results on an unseen dataset, SODA (Kim et al., 2023a), during all learning steps to
demonstrate generalizability across datasets and dialogue scenarios. 33 samples for 3 seeds for 8 preference metrics
where mean and std. are reported. Green indicates best score, 7 out of 8 metrics (emotional connection, positivity,
social understanding, inclination, interestingness, reuse) and comparably to the best performing model on the other
1 metrics: specific and sensible.

plicit rewards (LLAMA2+LI) perform better than
that of LLAMA2+GE, where we observe up to a
10% performance boost. However, we find the im-
provements are often worse than that of the base
LLAMA-2 model (3 out of 8 evaluation measures
are worse), this leads to the conclusion that the
reward signals in GE, and LI separately do not con-
tain enough reward signals to be used as a reward
model in a reinforcement learning set-up to adapt
the language model to be more conversational. On
the otherhand, we find that GELI, by utilizing both
GE and LI, gains consistent performance boosts
across most conversational evaluation metrics (6
out 8 measures are better, the remaining are com-
parable), which indicates the combination of both
GE and LI contain valuable reward signals for the
RL algorithm to utilize.

Overall, compared to base LLAMA-2, we see
that there is a significant improvement in the level
of emotional connection (+9%), positivity (+18%),
understanding of social context (+10%), how inter-
esting the responses are (+14%). It is especially
impressive to note that there is a statisical differ-
ence in how inclined people wanted to talk to our
model over others (+11%), and how much they
would want to reuse our chatbot again (+14%). In-
terestingly, we see statistically signficant results for
positivity, which is the most closely related to our
primary optimization objective overall-affect, and

inclination, reuse, which indicates which chatbot
the User would speak to again.

6.3 Generalizability of Adapted LLM on
Unseen Dataset: SODA (Kim et al., 2023a)

In Fig. 3 we show generalizability of GELI-adapted
LLM by running the same experiment and human
evaluation from previous Section 6.2 on a new un-
seen dataset to show generalization. SODA (Kim
et al., 2023a) is a large social dialogue dataset that
was distilled from a social commonsense knowl-
edge graph and generated via GPT 3.5. Human
evaluation demonstrates that the dialogue in SODA
is more consistent, natural and specific than human-
authored datasets. We use the LLAMA2+GELI
model trained and CANDOR and evaluate on 100
unseen samples from SODA. We find the GELI
performs even better in SODA when compared to
CANDOR, performing significantly better results
in 7 out of 8 conversational metrics. SODA was
generated by ChatGPT, and we find that our pro-
posed approach significantly outperforms ChatGPT
by up to 30%. Hence, we can conclude that this
approach is generalizable across different datasets
and dialogue scenarios.

6.4 Qualitative Improvement

We refer the reader to Fig. 3, where we show-
case a randomly sampled generation. We display



Dialogue History
AI: Yeah, it's definitely a challenge. But I think it's really good. Like one 
of the things in the pandemic has been um like it's gotten so much 
easier to access like mental health care because like things can um 
happen online now, which I think seems like a good thing, wow.
User: Oh yeah accessibility is uh is always is always great.
AI: Yeah. Yeah.
User: Although there's the whole well there's all this stuff about like 
zoom anxiety is this as good as face to face, but I mean it's certainly 
safer.
AI: Uh Okay. Okay.
User: So mm.
AI: Yeah. Uh I had previously worked from home before the pandemic 
and had a lot of phone calls um and now everyone just wants to do the 
phone calls via zoom and like this doesn't need to be a like zoom call, 
like we can just be on the phone. There's there's not there's like not any 
added value here. It's really it's really interesting like just this sense 
now that everyone is working from home, like this idea that like all 
things are video calls.
User: Yeah I mean I I see a psychiatrist actually I've got I've got a D.
AI: Yeah. Uh huh.
User: D. So I need to I need to get it, I need to get my my prescription 
renewed and talk to a doctor and I used I used to go up to his office 
every two weeks and see him and now we just do it by phone and he 
asked if I wanted to do it in person and I was like yeah that seems 
unnecessary.

GELI: (Visual Affect + Random Return Decomposition)
Yeah, um, that makes a lot of sense. I think it's it's really important to have like 
access to mental health care in like, in a way that's convenient for people, like, 
you know, especially during like a pandemic or something like that. And I think 
it's it's really great that like you can, like, access it in a way that's safe and like, 
you know, it's not like it's not like you have to go to a physical office or anything 
like that. So, like, I think it's really great.

Human:
Uh huh. Yeah. Uh huh. Yeah. Some people prefer video though. Um It's 
interesting how different people's preferences are between phone versus 
video versus texting. Um I think a lot of the like companies that are doing 
mental health care are trying to offer all of them so that you know, no matter 
what like no matter what someone's preferences, they can offer it.

GE: Random Return Decomposition (RRD):
Absolutely, I, like, totally get it, um, it's, uh, really, like, super, you know, 
important to, like, have, like, these, uh, calls, like, for, like, totally, you know, 
mental heath reasons.

LI: Visual Affect (VA):
Okay that makes sense. Yeah it's definitely nice to have more flexibility with 
healthcare.

LI: Language Sentiment (LS):
Okay, yeah. Yeah, I see.

Base LLAMA-2:
Yeah, yeah. Yeah, no, I completely understand. Like, it's definitely nice to have 
the option to do things remotely, especially during the pandemic. But, you know, 
there are definitely some downsides too. Like, as you said, sometimes it can feel 
less personal or less meaningful than in-person interactions. And also, like, there 
are some things that are just better in person, you know? Like, you can read 
people's body language and expressions and get a better sense of their emotions. 
But yeah, I think it's a trade-off.

Prompt: "You are AI. You are having a casual social conversation 
with a User. AI is polite, kind, obedient, honest, and does not 
swear. You are given the dialogue history, generate the response 
to the User in under 100 words."

Figure 3: Generated utterances with colors indicating aligned conversational topics. We display our proposed

approach GELI alongside human groundtruth, the best performing global explicit decomposition methods

(RRD), local implicit rewards (visual affect and language sentiment). We find that GELI adapts the language
model to generate more coherent, personable and empathetic conversational response.

the generations from our proposed approach GELI
alongside human groundtruth, the best perform-
ing global explicit (GE) decomposition methods:
RRD, and local implicit rewards (LI) (visual af-
fect and language sentiment). We find that our
approach generates responses that are more aligned
to the User’s implicit intent, and is more coherent.
Furthermore, the dialogue style is aligned to the
optimization objective overall-affect, and speaks in
a manner to induce a positive feeling to the User.
In comparison, other methods are not proficient
at recognizing the intent, being coherent, being
empathetic, or too generic. Comparing LI meth-
ods with GELI, LI responses are generic, which
showcases again the importance of utilizing both
global explicit and local implicit feedback (GELI).
We highly refer the reader to Appendix J for more
examples.

7 Conclusion

We introduce GELI, which automatically decom-
poses a single Global Explicit post-interaction
score, incorporating Local Implicit feedback from
multimodal behaviors. The reward function trained
via GELI is designed to align and improve the con-
versational capabilities of a language model. GELI
performs global alignment of multi-turned interac-

tions by locally rewarding parts of the interaction,
shaped by multimodal local implicit feedback. Our
proposed approach complements previous align-
ment approaches, such as RLHF, which requires
fine-grained manual reward annotations. We run
quantitative and qualitative human studies to evalu-
ate the performance of our GELI approach, with re-
sults showing consistent performance boosts across
conversational metrics.

8 Limitations

Here we discuss the limitations and risks of our
work. We present a framework in which global
explicit rewards, in the form of a single post-
interaction survey could be used for alignment. In
addition, we utilize the multimodal signals as form
of local implicit shaping reward. Our approach
presents one of many ways in which global explicit
rewards could be decomposed, and there are many
other methods which are yet to be explored. Local
implicit feedback can be not only used as a reward
shaping function, but in other methods as well, such
as a meta-learning paradigm. Again, more methods
to incorporate local implicit feedback needs to be
researched. Furthermore, the interaction and rela-
tionship between the local implicit feedback and
global explicit feedback is understudied. Due to



computational resources, we were only able to run
a single run over experiments.

There are risks that could arise as a result of
more social, dialogue agents that can interact with
people in a long-term interaction. Conversational
agents could be used maliciously for deception,
manipulation, and the spread of misinformation.
Furthermore, conversational agents which use mul-
timodal data could enhance seriousness of these
issues, as models can detect subtle cues such as
microexpressions to infer and manipulate the user.

As a potential measure to mitigate such misuse,
we plan to release our code and model weights un-
der a license which prevents the use of our assets by
any party that support or contribute to false imper-
sonation or hate speech (Do No Harm, Nonviolent
Public or Hippocratic License).
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A Randomized Return Decomposition (Ren et al., 2021)

LRRD(θ) = E
τ∼D

 E
I∼ρT (·)

(Rep(τ)−
T

|I|
∑
t∈I

R̂θ (st, at)

)2
 (9)

Randomized return decomposition (RRD), improves the scalability of least-squares-based reward
redistribution methods by using a Monte-Carlo estimator to compute the predicted episodic return. This
model is optimized via the above loss function. I denotes a subset of indices. ρT (·) denotes an unbiased
sampling distribution where each index t has the same probability to be included in I. In this work,
without further specification, ρT (·) is constructed by uniformly sampling K distinct indices and K is
a hyper-parameter. Therefore, instead of computing rθ (st, at) for the whole agent trajectory, we are
efficiently able to estimate the true reward for the trajectory via subsamples in expectation.

B Human Evaluation Metrics Definitions

Here list the human evaluation metrics utilized in the study, which we draw from (Lee et al., 2022).

• Sensibleness (turn-level; binary; reversed scores for the negated question): Mark responses where
the chatbot did NOT make sense.

• Specificity (turn-level; binary; reversed scores for the negated question): Mark the responses that
were NOT specific to what you had said, i.e., responses that could have been used in many different
situations. For example, if you say “I love tennis” then “That’s nice” would be a non-specific
response, but “Me too, I can’t get enough of Roger Federer!” would be a specific response.

• Emotional Connection (turn-level; binary): Which responses did you feel an emotional connection
to? (EmpatheticDialogues)

• Social: Which responses made you feel the chatbot understood social contexts and situations?
(CommonsenseDialogues)

• Interestingness (turn-level; binary): Mark the responses that were particularly interesting or boring

• Inclination (turn-level; binary; reversed scores for the negated question): Which responses made you
NOT want to talk with the chatbot again?

• Reuse (turn-level; binary): Would you want to talk to this chatbot again?

• Positivity (turn-level; binary): Which AI responses most likely made User feel positive feelings?
conversation?

The human evaluation scores are conducted via a binary-level classification. For a given question, the
annotators can select the models that satisfy the question. For example, for ‘Positivity’, the annotators are
given the following question and answer choices:

Which AI responses most likely made User feel positive feelings? (A) (B) (C) (D) (E) (F)
The options A-F refer to models which are randomized in order and anonymized. The annotators can

select multiple models if they satisfy the question. Therefore, Table 1 can be interpreted as the percentage
of instances out of the samples (300 in our case) where each model satisfied the question.

C PPO Objective

objective (ϕ) =E(x,y)∼D
πRL
ϕ

[
rθ(x, y)− β log

(
πRL
ϕ (y | x)/πSFT(y | x)

)]
+

γEx∼Dpretrain

[
log(πRL

ϕ (x))
] (10)

General form of PPO objective.



D Artifacts & Resources

Did you discuss the license or terms for use and/or distribution of any artifacts?
TRL (von Werra et al., 2020): Apache License 2.0
LLAMA-2 (Touvron et al., 2023): License can be found here: https://ai.meta.com/llama/license/
CANDOR (Reece et al., 2023): Terms of Use from https://betterup-data-requests.herokuapp.com/:

These are the terms of use we require all users and downloaders of this dataset, including you, the applicant,
to abide by. Please select the answer option "I agree to fully abide by these terms of use" if you wish
to continue. Terms of Use: (1) You agree to only use this data for legitimate academic and/or scientific
research, meaning no analyses, reviews, or derivative works of this dataset may be used for commercial or
for-profit purposes in any way; (2) You agree not to re-publish any new versions of this dataset, whether
original or derivative (i.e. modified or updated in some way), without explicit permission from BetterUp,
Inc.; (3) You agree not to use any part of this dataset for the purpose of personally identifying, locating,
or gathering any kind of information about individuals who appear in the recordings in this dataset,
beyond the information that is provided in the dataset itself; (4) In the case that an individual shares
personally-identifiable information about themselves in a recording, you agree not to use, analyze, share,
or publish that information in any form.

Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that
is compatible with the original access conditions (in particular, derivatives of data accessed for
research purposes should not be used outside of research contexts)?

We rigorously examined the terms of use and the intended use, and ensured that it is consistent with the
intended use.

E Data Collection & Anonymization

Did you discuss the steps taken to check whether the data that was collected/used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect/anonymize it?

We utilize the CANDOR dataset and follow its terms of use by agreeing not to use the dataset personally
identifying, locating, or gathering any kind of information about individuals who appear in the recordings
in this dataset, beyond the information that is provided in the dataset itself. We do not use any explicit
information that uniquely identifies people.

Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and linguistic
phenomena, demographic groups represented, etc.? Did you report the basic demographic and
geographic characteristics of the annotator population that is the source of the data?

The coverage of the domains discussed in the CANDOR dataset is presented in the original paper
(Reece et al., 2023), we find that the discussion topics are centered around COVID-19, family, politics.
The language used is english. The demographic groups represented can also be found in the in the
original paper (Reece et al., 2023), specifically in the supplementary Table S.2. We share a screenshot for
reference.

Was the data collection protocol approved (or determined exempt) by an ethics review board?
The data is sourced from public available dataset (Reece et al., 2023). The usage was approved by an
ethics review board. The human annotations were approved by an ethics review board.

F Training Details

Did you report relevant statistics like the number of examples, details of train/test/dev splits, etc. for
the data that you used/created?

For reward shaping with LI: we use 500 conversations as the training set and 50 conversations for the
test set. For reward decomposition, we use the same 500 conversations for LI as the training set and 50
conversations for the test set. For LLM adaptation, we use a separate 600 conversations for LI as the
training set.



Figure 4: Candor Demographics

F.1 Distribution of GE score (overall-affect):
• <50: 2.2

• 50 60: 6.7

• 60 70: 14.5

• 70 80: 30.4

• 80 90: 24.6

• 90 100: 21.6

Distribution of Emotions Polarity (only Happiness is considered as positive polarity):

• Anger: 3.9

• Contempt: 0.08

• Disgust: 1.98

• Fear: 2.23

• Sadness: 8.84

• Neutral: 35.61

• Happiness: 40.01

• Surprise: 7.35

Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?

The BART model used for the reward function has 406M parameters. The LLAMA-2 model has 7B
parameters. However, we use a LoRA implementation with the hyperparameters in the next question,



resulting in actual training parameters of 13M. We train with 4 NVIDIA RTX A6000 GPUs, each
experiment reward function training and RLHF took around 19 hours.

Did you discuss the experimental setup, including hyperparameter search and best-found hyper-
parameter values?

We perform grid search for all of our experiments and here we report the best parameters.

Reward Function Training:

• learning rate = 5e-6,

• batch size = 32 (for LI), 1 (forGE) ,

• optimizer = AdamW,

RLHF:

• batch size = 24,

• clip range = 0.2,

• learning rate = 0.000014,

• gamma = 0.05,

• use score norm = true,

Lora:

• r=24,

• alpha=48,

• dropout=0.05,



G Human Annotation Screenshots

Did you report the full text of instructions given to participants, including e.g., screenshots, dis-
claimers of any risks to participants or annotators, etc.?

We show the full text of instructions given to participants below:

Figure 5: Mturk experiment for human evaluation fo generated samples



Figure 6: Mturk experiment for human study on gauging reward scores for visual affect signals

Did you report information about how you recruited (e.g., crowdsourcing platform, students) and
paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

We utilzed the MTurk crowdsourcing platform. We did an internal annotation, given that each assign-
ment took less than 3 minutes to complete, we paid 0.4 USD per assignment, which equates to 8 dollars
per hour of work.

Did you discuss whether and how consent was obtained from people whose data you’re us-
ing/curating (e.g., did your instructions explain how the data would be used)?

As shown in the screenshots above, our instructions explained how the data would be used. i.e.
’You are invited to participate in a research study on understanding human-human communication and
evaluating the quality of conversation. Our goal is to learn what makes up a good conversation You will
examine a response for a given dialogue history and you will examine the respone, you will be asked to
answer feedback questions about the interaction. Data from responses and annotation will be analysed in
deidentified format and extracts edited to preserve confidentiality may be featured in any published work
resulting out of the study.’.

Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?

While we did not explicitly collect the basic demographic and geographic characteristics. The demo-
graphics of Amazon Mturkers (Difallah et al., 2018) are comprised of 75% US workers and 16% India
workers, other countries include Canada, Great Britain, Philippines and Germany. More females work
than males in the US (female: 55%, male: 45%) and more males work females in India (female: 35%,



male: 65%). Generally, 51% are male, and 49% are female. 20% of the MTurk workers are born after
1990, 60 % are born after 1980, and 80 1970. Roughly 40 % report being single, and 40 % report being
married.

H Use of AI assistants

Did you use AI assistants (e.g., ChatGPT, Copilot) in your research, coding, or writing?
We utilized AI assistants in paraphrasing and summarizing content from our paper, to improve the

writing quality and improve precision.

I Full Reward Function Training Result

Feedback Type Baselines
Reward Decomposition Reward conditioned on Visual Affect

MSE MAE Positive (1) Non-Positive (0) ∆ (↑)

Human N/A N/A 0.607 ± 0.02 0.52 ± 0.03 0.087 ± 0.05
Mean 245.495 15.668 0.458 0.458 0.000
Mode 289.473 17.013 0.438 0.438 0.000

GE

IRCR (Gangwani et al., 2020) 394.041 19.850 0.384 0.375 0.008
RUDDER (Arjona-Medina et al., 2019) 285.720 16.903 0.410 0.407 0.003
RRD (K = 32) (Ren et al., 2021) 172.246 13.124 0.474 0.468 0.007
RRD (K = 160) (Ren et al., 2021) 188.382 13.725 0.457 0.449 0.008

LI
Visual Affect (VA) 1546.17 39.321 0.455 0.199 0.256
Language Sentiment (LS) 825.31 28.728 0.496 0.486 0.010

GELI
IRCR + VA 722.687 26.882 0.752 0.361 0.392
RUDDER + VA 623.882 24.977 0.542 0.513 0.030
RRD + VA (Ours) 176.897 13.300 0.507 0.444 0.063

Table 4: Automatic Evaluation on Reward Function Training. Left: MSE and MAE for return decomposition.
We find that RRD and RRD+VA performs the best. Right: Reward function scores conditioned on positive and
non-positive visual response samples. ∆ indicates the difference of scores between positive and non-positive visual
response samples. We find the GELI: RRD + VA achieves the best of both world with low reward decomposition
scores and sufficient delta in visual response scores

J Generations



K Training Curves











GELI: RRD + Visual Affect

KLReward

Figure 7: GELI RL Training during adaptation. Left: Reward scores over steps, Right: KL divergence over steps

LI: Language Sentiment

KLReward

Figure 8: LI: Language Sentiment RL Training during adaptation. Left: Reward scores over steps, Right: KL
divergence over steps

LI: Visual Affect

KLReward

Figure 9: LI: Visual Affect RL Training during adaptation. Left: Reward scores over steps, Right: KL divergence
over steps

GE: RRD

KLReward

Figure 10: GE: RRD RL Training during adaptation. Left: Reward scores over steps, Right: KL divergence over
steps
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