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Abstract 

Due to the heterogeneity of the global distribution of ecological and hydrological ground-truth 

observations, machine learning models can have limited adaptability when applied to unknown 

locations, which is referred to as weak extrapolability. Domain adaptation techniques have been 

widely used in machine learning domains such as image classification, which can improve the model 

generalization ability by adjusting the difference or inconsistency of the domain distribution 

between the training and test sets. However, this approach has rarely been used explicitly in machine 

learning models in ecology and hydrology at the global scale, although these models have often 

been questioned due to geographic extrapolability issues. This paper briefly describes the 

shortcomings of current machine learning models of ecology and hydrology in terms of the global 

representativeness of the distribution of observations and the resulting limitations of the lack of 

extrapolability and suggests that future related modelling efforts should consider the use of domain 

adaptation techniques to improve extrapolability. 

 

  



Main 

In classical machine learning, it is assumed that the training and test sets are drawn from the 

same distribution. However, this assumption may not always hold true in real-world applications in 

fields like ecology and hydrology, which involve geographical variability. In the construction of big 

data models in ecology and hydrology, when models are applied to specific locations, there can be 

significant differences (dissimilarities) in the domain distributions of the test and training sets, 

potentially leading to decreased model performance (Shi et al., 2023). Domain Adaptation learning 

(Farahani et al., 2021), a type of transfer learning, aims to enhance the model's self-adaptive ability 

for the prediction set by adjusting the deviation between the domains of the training and test sets. 

Domain adaptation has been widely applied in fields like computer vision (Farahani et al., 2021), 

but is rarely used in big data models in ecology and hydrology. This indicates that previous models 

have overlooked the significant differences in domain distributions between test and training sets 

implied by geographical variability (including differences in climate, hydrology, underlying 

surfaces, etc.), highlighting an urgent need for improvements to substantially increase the models' 

generalizability. 

 

Domain adaptation learning was initially proposed in the field of machine learning (Ben-David 

et al., 2006) and has since been widely applied in areas such as computer vision (Long et al., 2015). 

This approach arises when training data does not accurately reflect the distribution of test data, 

potentially leading to performance degradation when the trained model is applied to the test data. 

To address this issue, domain adaptation was introduced (Ben-David et al., 2006). In this context, 

the training and test sets are referred to as the source domain and target domain, respectively. 

Domain adaptation seeks to identify and adjust common underlying factors between the source and 

target domains to reduce mismatches in the feature space between the domains (Ben-David et al., 

2006). Existing domain adaptation methods can be broadly categorized into shallow and deep 

architectures. Shallow domain adaptation methods (Gopalan et al., 2011; Pan et al., 2010) primarily 

use instance-based and feature-based techniques to align domain distributions. This includes 

minimizing the distance between domains (common distance metrics include Wasserstein distance, 

Kullback-Leibler divergence, etc.), and aligning the covariance of source and target domain data 

(correlation alignment methods) (Sun et al., 2016). On the other hand, deep domain adaptation 

methods (Ganin & Lempitsky, 2015; Long et al., 2015) employ neural networks. These methods 

often use convolutional networks, autoencoders, or adversarial networks to reduce differences 

between domains. Such research has demonstrated higher accuracy in a series of image 

classification experiments (Ganin & Lempitsky, 2015; Liang et al., 2020; Long et al., 2015) and 

effectively improves adaptability in situations with significant domain variations. 

 

In the field of geospatial big data research, while some studies in remote sensing image 

classification (Matasci et al., 2015; Tuia et al., 2016) have begun to explore domain adaptation 

learning, its application in constructing big data models for hydrology and ecology, which are 



characterized by high geographic variability, remains limited. In many mainstream data products of 

hydrological and ecological geographic variables based on machine learning, all available 

observational data are used to build a unified prediction model, which is then directly applied on a 

regional or global scale (Hassani et al., 2020; Jung et al., 2020; Li et al., 2023). However, the training 

sets for these models are often densely distributed in economically developed regions like the United 

States and Europe (Figure 1), but are sparse in many underdeveloped areas and regions with minimal 

human footprint, such as Africa, Central Asia, and Siberia. The challenges in data sharing also mean 

that the availability of training set data is not maximized. As a result, current machine learning 

models in the fields of ecology and hydrology are more likely to learn patterns specific to regions 

with dense observational networks, such as the United States and Europe, and are insufficiently 

trained on areas with scarce observations. Therefore, the extrapolative potential of these models has 

not been fully recognized. This highlights a significant gap in the predictive capabilities of these 

models across different geographic regions, indicating a need for models that can adapt to diverse 

geographical conditions and data distributions. 

 

 

Figure 1: Distribution of observational data available for training global ecological and 

hydrological machine learning models. (a) Network of soil moisture observation stations, modified 

from the ref. (Dorigo et al., 2021), (b) Network of carbon and water flux stations, modified from the 

ref. (Pastorello et al., 2020), (c) Network of runoff gauge stations, modified from the ref. (Lin et al., 

2019), (d) Network of water quality (total suspended solids) stations, modified from the ref. (Virro 

et al., 2021). 

 

Many models in geospatial research employ methods like "leave-one-out cross-validation" 

(e.g., in the ET product of FLUXCOM (Jung et al., 2019)) or random cross-validation (such as the 

commonly used k-fold cross-validation (Shi et al., 2022a, 2022b)) to assess model accuracy. 

However, these approaches often overlook the significant impact that differences in domain 



distribution (or dissimilarity) between the left-out site or fold and the training set can have on the 

precision of predictions. These models typically don't assess and mitigate the differences between 

the source domain (training set) and the target domain (prediction set), leading to potentially 

unreliable predictions in locations where there is a substantial difference from the training data's 

domain. A few studies have focused on "model extrapolation" related to domain adaptability (Jung 

et al., 2020; Meyer & Pebesma, 2021), attempting to establish a relationship between model 

accuracy and the dissimilarity between the test set and the training set in leave-one-out cross-

validation (Meyer & Pebesma, 2021). This approach aims to provide a geographical distribution of 

predictability. For instance, in ET (Evapotranspiration) simulation predictions, Shi et al. (Shi et al., 

2023) compared the accuracy of models trained with all data against those trained with data from 

specific land cover types. They found that in some sites, models trained with all data were less 

accurate than those trained with specific land cover types. This suggests that quantifying the distance 

between the prediction set and the training set could be crucial in understanding these differences. 

However, these studies have not explicitly employed domain adaptation methods to optimize the 

domain distribution of the training set data. By doing so, they could potentially improve the 

adaptability of the models to different test sets, significantly enhance the accuracy of the models' 

predictions, and produce high-precision data on a global scale. There's a growing recognition of the 

need for such domain adaptation in ecological and hydrological modeling, especially considering 

the diverse and often sparse data distributions in these fields. 

 

This indicates that domain adaptation techniques have not yet been fully applied in global-

scale ecological and hydrological machine-learning models. If implemented, these techniques could 

significantly reduce inconsistencies between training and prediction sets, thereby enhancing the 

adaptability of models to unknown locations. While there may still be challenges in finding similar 

training data in extreme outlier conditions, domain adaptation offers the potential to improve 

adaptability for many test locations. 

 

In summary, the application of domain adaptation in the current field of hydrological and 

ecological geospatial big data modelling is quite scarce, and its importance has been largely 

overlooked. The incorporation of domain adaptation methods in future models deserves more 

attention and experimentation to enhance their generalizability and extrapolation capabilities. As 

the field continues to evolve, recognizing and addressing these gaps can lead to more robust and 

accurate predictive models, especially in areas with sparse data distributions. 
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