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ABSTRACT
Efficient recommender systems play a crucial role in accurately cap-

turing user and item attributes that mirror individual preferences.

Some existing recommendation techniques have started to shift

their focus towards modeling various types of interaction relations

between users and items in real-world recommendation scenarios,

such as clicks, marking favorites, and purchases on online shopping

platforms. Nevertheless, these approaches still grapple with two

significant shortcomings: (1) Insufficient modeling and exploitation

of the impact of various behavior patterns formed by multiplex re-

lations between users and items on representation learning, and (2)

ignoring the effect of different relations in the behavior patterns on

the target relation in recommender system scenarios. In this study,

we introduce a novel recommendation framework, Dual-Channel
Multiplex Graph Neural Network (DCMGNN), which addresses

the aforementioned challenges. It incorporates an explicit behavior

pattern representation learner to capture the behavior patterns

composed of multiplex user-item interaction relations, and includes

a relation chain representation learning and a relation chain-aware

encoder to discover the impact of various auxiliary relations on

the target relation, the dependencies between different relations,

and mine the appropriate order of relations in a behavior pattern.

Extensive experiments on three real-world datasets demonstrate

that our DCMGNN surpasses various state-of-the-art recommen-

dation methods. It outperforms the best baselines by 10.06% and
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12.15% on average across all datasets in terms of 𝑅@10 and 𝑁@10

respectively.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Computing
methodologies → Learning latent representations; • Infor-
mation systems→ Recommender systems.

ACM Reference Format:
Xiang Li, Chaofan Fu, Zhongying Zhao, Guanjie Zheng, Chao Huang,

Junyu Dong, and Yanwei Yu. 2024. Dual-Channel Multiplex Graph Neural

Networks for Recommendation. In Proceedings of the 30th ACM SIGKDD
Conference on knowledge discovery and data mining 2024 (KDD’24), Au-
gust 25–29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 14 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Recommender systems have become a key component of various

online platforms, especially in the fields of e-commerce [8, 15, 33],

social media [1], and video platforms [7], to provide users with

personalized and accurate information recommendations [29]. The

complex interactions between users and items have become increas-

ingly varied and complicated [31], and traditional collaborative

filtering-based recommender systems [4, 20] often tend to simplify

the relations between users and items, and are unable to fully re-

flect the diversity of user behaviors and deep interaction patterns.

With the development of deep learning and graph neural networks

(GNNs), constructing diverse GNNs to capture higher-order neigh-

borhood information of users and items has become a mainstream

method [39].

Some existing GNN-based recommendation methods, such as

HCCF [45], DCCF [30], LightGCN [17], LightGCL [2], have not been

limited to historical collaborative filtering information [6, 18, 24],

but enhance the representations of user-item interaction informa-

tion by introducing techniques such as hypergraph structures [45],

singular value decomposition [2], generative self-supervised learn-

ing [41], knowledge-aware learning [3, 25, 44]. These methods have
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achieved promising results, but they only focus on a single user-

item interaction relation (generally called the target relation, e.g.,
purchase relation in e-commerce networks), and do not fully explore

the complex interaction relations between users and items. To ad-

dress this problem, some researchers have proposed multi-behavior

recommender systems [12, 19, 32], which attempt to meticulously

consider multiplex relations between users and items by introduc-

ing meta-paths [36, 52], contrastive learning [13, 21, 37, 38, 40],

graph disentanglement [30], and other means [5, 26, 48, 50, 54].

However, existing approaches often fail to fully capture the com-

plex impact of user-item interactions, as shaped by multiplex re-

lations, on their respective representations. In response, a specific

group of researchers has aimed to address this limitation by cap-

turing the behaviors through the development of multiplex graph

neural networks [43], such as HybridGNN [14], MHGCN [53] and

BPHGNN [9]. While these models explicitly account for behavior

patterns within multiplex relations, they often ignore the effect of

different relations in the behavior patterns on the target relations

in recommender system scenarios.

Therefore, it is important to acknowledge two important limita-

tions of the current recommendation approaches: First, the impact
of various behavior patterns formed by multiplex interactions between
users and items on representation learning is not adequately modeled
and exploited. The complex interactions between users and items in

real-world scenarios require a more nuanced approach to represen-

tation learning to encompass the diversity of user behaviors and

evolving user preferences [10, 47]. Unfortunately, capturing this

information is difficult because the composition of these interac-

tions is complex, and general GNNs are not capable of direct node

representation learning. Second, most existing approaches ignore the
impact of different interaction relations within behavior patterns on
the target relation. User behaviors are inherently multiplex, and

the relations formed in these interactions each make their impact

and contribution to the target relation in the recommender system.

Established approaches ignore the different impacts of each interac-

tive relation in the behavior patterns on the target relation, which

hinders the models’ ability to understand the user preferences and

correlations and dependencies between relations, thus limiting the

accuracy of recommendations.

Presented Work. Recognizing the above challenges, we focus
on exploring different behavior patterns and the effects of different

relations within them on the target relation within the framework

underlying multiplex graph representation learning. To this end,

this paper proposes a novel Dual-ChannelMultiplex Graph Neural

Network model (DCMGNN) for multi-behavior recommendation

tasks. In DCMGNN, we first design an explicit behavior pattern
representation learner to learn potential user preferences by ex-

plicitly modeling the complex interaction relations between users

and items, based on the multiplex bipartite graph. This enables

the recommender system we developed to adequately model and

exploit the complex behavior patterns formed by multiplex interac-

tive relations between users and items. Second, we utilize the idea

of contrastive learning to capture the effects of different auxiliary

relations on the target relation, as well as the correlations and depen-

dencies between different relations in the behavior pattern, respec-

tively. The former achieves agreement between relation-specific

embeddings through the constructed relation-based contrastive

learning loss, and the latter takes into account that the correlations

and dependencies between relations are of a certain sequence in

a behavior pattern. Thus our model goes about exploring the ap-

propriate order of relations in the behavior patterns by designing

an implicit relation chain effect learner and a relation chain-aware
contrastive learning module. In particular, the ethical personalized

knowledge extracted from the user is then used as a complement

to the contrastive learning, and fed into the weighting function to

guide the contrastive learning to better distinguish the effects of

different auxiliary relations on the target relation. Experiments on

three real-world datasets show the significant superiority of our

proposed model over state-of-the-art (STOA) baselines.

This work makes the following contributions:

• We propose a novel multi-behavior recommendation model,

DCMGNN, that emphasizes the importance of constructing

and exploiting user behavior patterns and addresses the issue

of the impact of different types of interactive relations on

the target relation.

• We present an implicit relation chain effect learner to ex-

plore the effect of the sequence of different relations on the

target relation. We also design a relation chain-aware con-

trastive learning paradigm to refine the impact, correlations,

and dependencies of different relation chains on the target

relation.

• We conduct extensive experiments on three real-world datasets

to demonstrate the effectiveness of our proposed frame-

work. Experiment results show that DCMGNN achieves up

to 11.84% and 14.34% performance improvement compared

to STOA baselines in 𝑅@10 and 𝑁@10.

2 RELATEDWORK
Multi-behavior recommendation [16, 23] refers to the utilization

of multiplex relations in user-item interactions for recommenda-

tion [12, 19]. It has attracted increasing attention in recent years

due to its effectiveness in mitigating data sparsity and improving

recommendation performance [27, 31, 42]. Early multi-behavior

recommendation methods are mainly based on traditional recom-

mendation techniques, and a straightforward approach is to take

a traditional matrix factorization technique that runs on a single

matrix and extend it to multiple matrices [34, 35, 56]. For recom-

mender systems such as HCCF [45] and LightGCL [2] that focus

on only a single relation, important interaction information about

other relations between users and items is discarded.

In contrast, another research idea is to consider multiplex rela-

tions as auxiliary and target relations, and accordingly, new sam-

pling strategies are designed to enrich the training samples. Loni

et al. [22] proposed to assign different preference levels to multiple

relations and extended the criterion BPR [31] with a new negative

sampling strategy for negative item sampling from different rela-

tions. Gu et al. [13] designed a self-supervised task to differentiate

the importance of different relations to capture the differences be-

tween the embeddings of different relations, complemented by a

star-contrastive learning paradigm to capture the embedded com-

monalities between the target and auxiliary relations. Guo et al. [16]
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used item-item similarity to generate samples from multiple auxil-

iary behaviors. Huang et al. [45] on the other hand strengthened

the information from collaborative filtering by using GCN.

With the rapid development of GNNs or graph convolutional

networks (GCNs), it has also been naturally introduced into the

field of recommender systems, and recent researchers have also

tried to develop multi-behavior recommendation models based on

them. In GNN-based models, a common approach is to first learn

user and item embeddings from each relation by a designed net-

work, and then aggregate the embeddings learned from different

relations for target relation prediction [11, 12, 46]. The difference

is that different approaches will design different convolutional net-

works [53] and attention mechanisms [28]. For example, Zhang

et al. [55] utilized Multiplex Graph Neural Networks (MGNNs)

to address the multi-behavior recommendation problem from a

novel perspective, that of link prediction in multiplex networks.

By leveraging multiplex network structures and graph represen-

tation learning techniques, MGNN learns shared embeddings and

behavior-specific embeddings of users and items to model the col-

lective effects of multiplex behaviors; different from methods that

aggregate embeddings from different relations to make the target

relation predictions, NTMR [12] develops a neural network model

combining with multi-task learning framework to capture complex

multi-type interactions between users and items, the model takes

into account cascading relationships between different types of

behaviors (e.g., users have to click before they can buy).

For GCN models, the general paradigm is to construct a unified

user-item graph based on all relations, and then perform GCN op-

erations on the graph to learn user embeddings [5, 19, 46, 49, 51].

MBGCN [19] learns relation contributions on a unified user-item

graph and models relation semantics on an item-item interaction

graph. The final prediction is an aggregation of the prediction

scores obtained from relation contributions and relation semantics.

MB-CGCN [5] is a multi-behavior recommendation model with a

cascading graph convolutional network that exploits the behavior

dependency in embedding learning by using embeddings learned

from one relation after a feature transformation operation as input

features for embedding learning of the next relation. MBGMN [46]

is a multi-behavior recommendation framework with graph meta-

networks that incorporates multi-behavior pattern modeling into a

meta-learning paradigm to enable user-item interaction learning to

discover topologically relevant relation representations to automat-

ically extract behavior heterogeneity and interaction diversity for

recommendation. Xuan et al. [49] proposed a knowledge-enhanced

multi-behavioral comparative learning recommendation (KMCLR)

framework, which includes the use of a multi-behavior learning

module to extract personalized relation information about a user

to enhance user embedding, a knowledge enhancement module to

derive a more robust perceptual representation of item knowledge,

and an optimization phase to model the coarse-grained similarities

and fine-grained differences between users’ multiplex relations.

Except for NMTR [12] and MB-CGCN [5], Yan et al. [50] proposed

a CRGCN model that addresses this limitation by using a cascaded

GCN structure for multi-task learning. However, due to the resid-

ual design, it can only use a single layer of GCNs for auxiliary

behaviors.

3 PRELIMINARY
Given the user set, the item set, and multiple interaction relations

between users and items, we first model them into a multiplex

bipartite graph as follows.

Definition 1 (Multiplex Bipartite Graph). Amultiplex bipar-
tite graph is defined as G = {U,V,X, E}, whereU andV denote the
set of all users and the set of all items respectively, X ∈ R( |U |+|V | )×𝑓

denotes node (include uses and items) attribute feature matrix, and
E =

⋃
𝑖∈R

E𝑖 is the collection of various interactive edges between users

and items, each edge belonging to a particular interaction type. Here
R denotes the set of all interaction types.

For example, in typical E-commerce networks, the interaction

type set R usually includes viewing, add-to-favorite, add-to-cart,

purchasing, etc. To capture the impact of multiple interaction rela-

tions on user and item representation, following [9], we also adopt

the concept of the following basic behavior pattern.

Definition 2 (Basic Behavior Pattern, or BBP). A basic be-
havior pattern between users U and items V in multiplex bipar-

tite graphs is defined asU
[𝑟1 ]&[𝑟2 ]&...&[𝑟 |R | ]−−−−−−−−−−−−−−−−−→ V that represents a

unique interaction behavior pattern between users and items, where
[·] denotes optional, |R | is the number of relation types, and at least
one interaction relation type 𝑟𝑖 exists.

For example, U 𝑣𝑖𝑒𝑤−−−−→ V and U
𝑏𝑢𝑦
−−−→ V are two types of BBPs

between users and items, which respectively represent that there

is only one interactive behavior of ‘view’ or ‘buy’ between users

and items.U
𝑣𝑖𝑒𝑤 & 𝑏𝑢𝑦
−−−−−−−−−−→ V andU

𝑣𝑖𝑒𝑤 & 𝑐𝑎𝑟𝑡 & 𝑏𝑢𝑦
−−−−−−−−−−−−−−−−→ V are also

two types of BBPs, and the former means that there are only two

interactions of ‘view’ and ‘buy’ between users and products at the

same time, while the latter means that there are three interactive

behaviors of ‘view’, ‘cart’ and ‘buy’ at the same time between users

and products. As depicted in Figure 1, the interactive behavior

between 𝑢1 and 𝑖1 belongs to pattern U
𝑣𝑖𝑒𝑤 & 𝑏𝑢𝑦
−−−−−−−−−−→ V , the in-

teractive behaviors between 𝑢2 and 𝑖1, between 𝑢2 and 𝑖3 belong

to patternU
𝑣𝑖𝑒𝑤 & 𝑐𝑎𝑟𝑡 & 𝑏𝑢𝑦
−−−−−−−−−−−−−−−−→ V , and no interaction belongs to

pattern U 𝑣𝑖𝑒𝑤−−−−→ V .

To further capture the impact of different relations on the target

relation (e.g., buy relation) in the same behavior pattern, we next

propose the concept of relation chain as follows.

Definition 3 (Relation Chain). Given a basic behavior pattern
that includes at least two interaction relations, a relation chain is
defined as a sequence of all relations included in the basic behavior
pattern.

Notice that, in general, basic behavior pattern must include the

target relation (e.g., ‘buy’ relation), and the last relation in the rela-

tion chain has to be the target relation. The guidelines for defining

the sequence of relation chains are implemented in the order of

general principles of user behavior. For example, in E-commerce

networks, we define the order of interaction relations as: 𝑣𝑖𝑒𝑤 −→
𝑐𝑜𝑙𝑙𝑒𝑐𝑡 −→ 𝑐𝑎𝑟𝑡 −→ 𝑏𝑢𝑦. For pattern U

𝑣𝑖𝑒𝑤 & 𝑐𝑎𝑟𝑡 & 𝑏𝑢𝑦
−−−−−−−−−−−−−−−−→ V , a

corresponding relation chain ⟨𝑣𝑖𝑒𝑤 −→ 𝑐𝑎𝑟𝑡 −→ 𝑏𝑢𝑦⟩ is produced.
Finally, we formally defined our studied problem in this work.
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Problem. Given a multiplex bipartite graph G = {U,V,X, E},
the goal of our recommender system is to learn a predictive function
which estimates the likelihood of user 𝑢 ∈ U will interact with item
𝑣 ∈ V under the target interaction behavior.

4 METHODOLOGY
In this section, we present the Dual-Channel Multiplex Graph Neu-

ral Network (DCMGNN) for the recommendation, which contains

three critical components: Explicit Behavior Pattern Representation
Learner, Implicit Relation Chain Effect Learner, and Relation Chain-
aware Contrastive Learning. Figure 1 illustrates the overall architec-
ture of the proposed DCMGNN.

4.1 Explicit Behavior Pattern Representation
Learner

There are multiple interaction relations between users and items

in multiplex bipartite graphs, and to better utilize these relations,

we use the basic behavior pattern, which contains a series of U-I

interactions that represent the complete shopping behavior of a

user for an item. Inspired by BPHGNN [9], a model for multiplex

graph representation learning, we design an explicit behavior pat-

tern representation learner, which explicitly captures the behavior

between users and items into user/item representations. Three key

components are included in the explicit behavior pattern repre-

sentation learner: basic behavior pattern constructor, local behavior
pattern aggregation, and global behavior pattern aggregation.

4.1.1 Basic Behavior Pattern Constructor. Basic behavior pattern
constructor extracts all basic behavior pattern matrices directly

from the multiplex bipartite graph. First, we decouple the multiplex

heterogeneous network structure based on the types of edges (re-

lations). Let {A𝑟 ∈ R𝑁×𝑁 |𝑟 = 1, 2, . . . , |R |} denote the adjacency
matrix of the generated subgraphs, where𝑁 = |U|+ |V| is the num-

ber of all nodes in the network. Then, each adjacencymatrix and the

corresponding logic variable (i.e., 1 or 0) is operated with XNOR to

generate |R | intermediate matrices {−→A𝑟 ∈ R𝑁×𝑁 |𝑟 = 1, 2, . . . , |R |}.
Here, the logic variable is 1 if the relation represented by the ad-

jacency matrix is preserved in the basic behavior pattern, and 0

otherwise. Finally, a per-position AND operation is performed on

the intermediate matrix to obtain the basic behavior pattern matrix.

By adjusting the logic variables, we can obtain all basic behavior

pattern matrices {Ā𝑖 ∈ R𝑁×𝑁 |𝑖 = 1, 2, . . . , 2 | R | − 1}.

4.1.2 Local Behavior Pattern Aggregation. Local behavior patterns
are deep aggregations of basic behavior patterns, aiming at captur-

ing the multiplex structure among the nodes from the perspective

of local nodes, to mine the interactions among different relations in

the behavior patterns. To achieve this goal, local behavior pattern

aggregation introduces an attention mechanism that distinguishes

the importance of each basic behavior pattern through a set of

learnable attention weights 𝑎𝑖 , as shown below:

Ã𝑙𝑜𝑐 =

N∑︁
𝑖=1

𝑎𝑖A𝑖 , (1)

where N denotes the number of basic behavior patterns.

Based on previous work, we use a simplified LightGCN [17] to

obtain representations, i.e., without linear activation and feature

transformations:

H(𝑙 )
𝑙𝑜𝑐

= Ã𝑙𝑜𝑐 · H(𝑙−1)
𝑙𝑜𝑐

. (2)

The depth of the local behavior patterns can be determined

by the number of convolutional layers. Eventually, the local node

representation H𝑙𝑜𝑐 ∈ R𝑁×𝑑
is obtained by fusing the outputs of

all the layers to capture all the multiple interaction information in

the behavior patterns of different depths as follows:

H𝑙𝑜𝑐 =
1

𝐿

𝐿∑︁
𝑖=1

H(𝑖 )
𝑙𝑜𝑐

. (3)

4.1.3 Global Behavior Pattern Aggregation. Global behavior pattern
aggregates features among nodes from a global perspective based

on the similarity of basic behavior patterns among nodes. Users

with similar behaviors are more likely to exhibit similar purchase

preferences. Specifically, we first generate a matrix to represent

the users’ global behavior patterns based on the obtained basic

behavior patterns, adding rows to obtain column vectors for each

basic behavior pattern matrix, and each column vector describes the

number of basic behavior patterns corresponding to all users rela-

tive to all other items. Considering that different behavior patterns

contribute differently to the similarity, we use a set of learnable

weights 𝑏𝑖 to connect these column vectors to obtain the global

behavior pattern matrix B ∈ R𝑁×N
:

B𝑝 (𝑖 ) =
|V |∑︁
𝑗=1

A𝑝 (𝑖, 𝑗 ) , (4)

B = ⊕N𝑖=1
𝑏𝑖 · B𝑖 = (⊕N𝑖=1

B𝑖 ) · Λ𝑏 , (5)

where B𝑝 ∈ R𝑁×1
is the column vector related to the 𝑝-th basic

behavior pattern, ⊕ denotes the concatenation operation and Λ𝑏 =

𝑑𝑖𝑎𝑔(𝑏1, 𝑏2, . . . , 𝑏N) represents the learnable diagonal matrix.

Then we obtain the global behavior pattern similarity matrix

Ã𝑔𝑙𝑜 by transposition and normalization as follows:

Ã𝑔𝑙𝑜 = 𝑛𝑜𝑟𝑚(B · B𝑇 ) ∈ R𝑁×𝑁 . (6)

We input the global behavior pattern similarity matrix into Light-

GCN for information aggregation to obtain node representations:

H(𝑙 )
𝑔𝑙𝑜

= Ã𝑔𝑙𝑜 · H(𝑙−1)
𝑔𝑙𝑜

, (7)

and we take the output H(𝑙 )
𝑔𝑙𝑜

∈ R𝑁×𝑑
as the global node represen-

tation H𝑔𝑙𝑜 .

We filter user embedding and item embedding using H𝑙𝑜𝑐 (𝑢) and
H𝑙𝑜𝑐 (𝑣) respectively, and then obtain the Explicit Behavior Pattern

(EBP) embeddings of user 𝑢 or item 𝑣 (H𝑢/𝑣 ∈ R𝑑 ) through the

average pooling as:

H𝑢/𝑣 =
1

2

(
H𝑙𝑜𝑐 (𝑢/𝑣) + H𝑔𝑙𝑜 (𝑢/𝑣)

)
. (8)

4.2 Implicit Relation Chain Effect Learner
In this section, we aim to learn the impact of implicit relation chains

within behavior patterns on node representation. We first learn

multi-relation embeddings of users and items through LightGCN,

and then obtain node relation-chain embeddings by capturing the

effect of relation chains corresponding to basic behavior patterns.
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Figure 1: The overview of the proposed DCMGNN.

4.2.1 Multiplex Relation Embedding Aggregation. In this section,

we use LightGCN [17] as an information dissemination mechanism

to learn the embeddings of users and items from each relation. For

the 𝑟 -th relation in the multiplex bipartite graph, LightGCN utilizes

the user-item interactions to propagate the embeddings as follows:

𝑒
(𝑟,𝑙 )
𝑢 =

∑︁
𝑣∈N (𝑟 )

𝑢

1√︃
|N (𝑟 )

𝑢 | · |N (𝑟 )
𝑣 |

𝑒
(𝑟,𝑙−1)
𝑣 , (9)

𝑒
(𝑟,𝑙 )
𝑣 =

∑︁
𝑢∈N (𝑟 )

𝑢

1√︃
|N (𝑟 )

𝑣 | · |N (𝑟 )
𝑢 |

𝑒
(𝑟,𝑙−1)
𝑢 , (10)

where N𝑟
𝑢 and N𝑟

𝑣 represent the neighbor set of users and items

under the 𝑟 -th relation respectively, 𝑒
(𝑟,𝑙 )
𝑢 and 𝑒

(𝑟,𝑙 )
𝑣 denote the em-

beddings of user 𝑢 and item 𝑣 under the 𝑟 -th relation throughout

the propagation of 𝑙 LightGCN layers. After that, we simply aggre-

gate the embeddings of users {𝑒 (𝑟,0)𝑢 , 𝑒
(𝑟,1)
𝑢 , . . . , 𝑒

(𝑟,𝐿)
𝑢 } and those of

items {𝑒 (𝑟,0)𝑣 , 𝑒
(𝑟,1)
𝑣 , . . . , 𝑒

(𝑟,𝐿)
𝑣 } to get relation-specific embeddings:

𝑒
(𝑟 )
𝑢 =

𝐿∑︁
𝑙=0

𝑒
(𝑟,𝑙 )
𝑢 , 𝑒

(𝑟 )
𝑣 =

𝐿∑︁
𝑙=0

𝑒
(𝑟,𝑙 )
𝑣 . (11)

Finally, we obtain the multi-relation embeddings of users and

items as follows:

𝑒𝑟𝑢 =
∑︁
𝑟 ∈R

𝑒
(𝑟 )
𝑢 , 𝑒𝑟𝑣 =

∑︁
𝑟 ∈R

𝑒
(𝑟 )
𝑣 . (12)

4.2.2 Relation Chain Representation Learning. According to Defi-

nition 3 (i.e., Relation Chain), a relation chain is generated for each

basic behavior pattern containing the target relation (i.e., buy rela-

tion) and two or more relations. Let W𝑖, 𝑗
𝑢 and W𝑖, 𝑗

𝑣 be the learnable

transformation matrix parameters of users and items from the 𝑗-th

relation to the ( 𝑗 + 1)-th relation in the 𝑖-th relation chain, and the

transformation is performed as:

𝑒
𝑖, 𝑗+1

𝑢 = W𝑖, 𝑗
𝑢 𝑒

𝑖, 𝑗
𝑢 , 𝑒

𝑗+1

𝑣 = W𝑖, 𝑗
𝑣 𝑒

𝑖, 𝑗
𝑣 , (13)

where 𝑒
𝑖, 𝑗
𝑢 and 𝑒

𝑖, 𝑗
𝑣 represent the embeddings of user 𝑢 and item 𝑣

of 𝑗-th relation. When the transformation process is over, we will

finally get the relation-chain embeddings 𝑒𝑐𝑢 and 𝑒𝑐𝑣 of user 𝑢 and

item 𝑣 across all relation chains as follows:

𝑒𝑐𝑢 =

|𝐶 |∑︁
𝑖=1

|𝐶𝑖 |∑︁
𝑗=1

𝑒
𝑖, 𝑗
𝑢 , 𝑒𝑐𝑣 =

|𝐶 |∑︁
𝑖=1

|𝐶𝑖 |∑︁
𝑗=1

𝑒
𝑖, 𝑗
𝑣 (14)

where 𝐶 = {𝐶1,𝐶2, . . . ,𝐶𝑚} represents the set of relation chains,

and 𝑚 denotes the number of relation chains. According to the

experiments, it is proved that the feature transformation process

among the relation chains is simple and efficient, and the features

can be extracted effectively.

Based on the learned EBP embeddingsH𝑢/𝑣 , multi-relation-based

embeddings 𝑒𝑟
𝑢/𝑣 , and relation-chain embeddings 𝑒𝑐

𝑢/𝑣 , we can ob-

tain the final embeddings of user 𝑢 and item 𝑣 , respectively:

𝑒
𝑓 𝑖𝑛𝑎𝑙
𝑢 = 𝑀𝑒𝑎𝑛

(
H𝑢 , 𝑒

𝑟
𝑢 , 𝑒

𝑐
𝑢

)
, 𝑒

𝑓 𝑖𝑛𝑎𝑙
𝑣 = 𝑀𝑒𝑎𝑛

(
H𝑣, 𝑒

𝑟
𝑣 , 𝑒

𝑐
𝑣

)
. (15)

4.3 Relation Chain-aware Contrastive Learning
In E-commerce networks, different users have different interac-

tion preferences in their behavior patterns toward items. In multi-

plex bipartite graphs, multiple behavior patterns lead to different

item-relational interactions for different users, so it is important to

effectively model the dependencies and correlations between the

different types of relations in behavior patterns.

Before that, it is also important to consider the multiple user-

item interaction relations contained in different behavior patterns,

so we first set up a relation-based contrastive learning module for

distinguishing between the target ‘buy’ relation and other differ-

ent auxiliary relations. Specifically, we set different relations for
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the same user as positive sample pairs and different users are con-

sidered negative ones. For user-item interactions, the intuition is

represented by different interaction relations, so setting up such

a comparison learning module helps us to capture the relation

between the auxiliary relation and the target buy relation.

To achieve this goal, we introduce a relation chain-aware con-

trastive learning framework for integrating explicit weighting func-

tions for contrastive losses of different relations in multiple basic

behavior patterns. The relation chain-aware contrastive learning is

divided into two phases: First, we use a relation-aware encoder to

represent different relation chains to capture the multi-relational

features of user-item interactions, reflecting user shopping pref-

erences under different relation chains; Second, the knowledge

extracted from the relation-aware encoder serves as an input to

a relation chain-aware network that generates customized con-

trastive loss weights for the relation chain dependency modeling.

4.3.1 Relation-based Contrastive Learning. Following existingmeth-

ods, we use the InfoNCE loss in the relation-based contrastive learn-

ing module to measure the difference between relation-specific

embeddings. We calculate the relation-based contrastive loss as

follows:

L𝑟 ′,𝑟
𝑟𝑐𝑙

=
∑︁
𝑢∈U

− log

exp(𝜙 (𝑒 (𝑟 )𝑢 , 𝑒
(𝑟 ′ )
𝑢 )/𝜏)∑

𝑢′∈U exp(𝜙 (𝑒 (𝑟 )𝑢 , 𝑒
(𝑟 ′ )
𝑢′ )/𝜏)

, (16)

where 𝜙 (·) denotes the similarity function between two embed-

dings, 𝜏 denotes the temperature hyperparameter for 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

function. Generally, we maximize the contrastive loss to make the

different relations more distinguishable from each other than before

and use this to measure the variability between different users.

4.3.2 Relation Chain-aware Encoder. In the relation chain-aware

contrastive learning module, we first extract the relation-aware

knowledge to preserve relation dependencies and correlations. In-

spired by the feature extraction mechanism in CML [37], we set

two kinds of relation-aware encoder within two types of aggrega-

tion techniques based on the learned users’ relation embeddings,

relation-chain embeddings, and final embeddings as follows:

F𝑐,𝑟𝑡𝑢 = (𝑑𝑢𝑝 (
∑︁
𝑟 ∈𝑐

L𝑟,𝑟𝑡
𝑟𝑐𝑙

) · 𝜇) ⊕ 𝑒𝑐𝑢 ⊕ 𝑒
𝑓 𝑖𝑛𝑎𝑙
𝑢 , (17)

F 𝑟,𝑟𝑡
𝑢 = L𝑟,𝑟𝑡

𝑟𝑐𝑙
· (𝑒 (𝑟 )𝑢 ⊕ 𝑒

𝑓 𝑖𝑛𝑎𝑙
𝑢 ), (18)

where 𝑟𝑡 denotes the target relation, and F𝑐,𝑟𝑡𝑢 represents the de-

pendencies that retain user preference information between all

relations in the user relation chain and the target relation, and

𝑑𝑢𝑝 (·) denotes the duplicate function which aims to generate a vec-

tor that has the same embedding dimensionality, ⊕ represents the

embedding concatenation, 𝜇 denotes the scale factor for the enlarge

value. F 𝑟,𝑟𝑡
𝑢 cooperatively represents the relation-aware knowledge

between relation-specific embedding and user embedding. Accord-

ing to this, relation dependencies and correlations in the relation

chain and relation-specific embeddings can be preserved.

Next, we transform the preserved information into relation chain-

aware contrastive weights. Let 𝜑 (·) represent the transformation

function, and we can obtain the relation dependencies and correla-

tions 𝜑 (F𝑐,𝑟𝑡𝑢 ) as follows:
𝜑 (F𝑐,𝑟𝑡𝑢 ) = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (F𝑐,𝑟𝑡𝑢 · W𝜑 + 𝑏𝜑 ), (19)

Table 1: Statistical information of evaluation datasets.

Datasets Users Items Interactions Relation Type

Retail 2,174 30,113 9.7 × 10
4

{View, Cart, Buy}

Tmall 15,449 11,953 1.2 × 10
6

{View, Cart, Buy}

Yelp 19,800 22,734 1.4 × 10
6

{Tips, Like, Neutral, Dislike}

where W𝜑
and 𝑏𝜑 represent the projection and bias item in the

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 , and we can obtain 𝜑 (F 𝑐,𝑟𝑡
𝑢 ) by obeying the same way.

4.4 Joint Optimization
In this section, we introduce the objective of DCMGNN model.

We leverage the BPR loss to learn corresponding parameters in

the model inference of DCMGNN. Formally, the BPR loss is defined

as follows:

L𝑐
𝐵𝑃𝑅 =

∑︁
(𝑢,𝑣+,𝑣− ) ∈𝑂𝑐

− ln(𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑦𝑐
𝑢,𝑣+ − 𝑦𝑐𝑢,𝑣− )) + 𝜆 | |Θ| |2 (20)

where 𝑦𝑐
𝑢,𝑣+ = 𝑒𝑐𝑢

T𝑒𝑐
𝑣+ , 𝑂𝑐 denotes the training samples of 𝑐-th

relation chain, i.e., 𝑂𝑐 = {(𝑢, 𝑣+, 𝑣−) | (𝑢, 𝑣+) ∈ R+, (𝑢, 𝑣−) ∈ R−}.
R+

and R−
denote the observed and unobserved interaction in

the corresponding behavior pattern, Θ represents the learnable

parameter. 𝐿2 regularization is adopted to prevent over-fitting, and

𝜆 is a coefficient to control the 𝐿2 regularization.

L𝐵𝑃𝑅 =
∑︁
𝑐∈𝐶

𝜑 (F𝑐,𝑟𝑡𝑢 ) · L𝑐
𝐵𝑃𝑅, (21)

L𝑟𝑐𝑙 =
∑︁

𝑟 ∈R−{𝑟𝑡 }
𝜑 (F 𝑟,𝑟𝑡

𝑢 ) · L𝑟,𝑟𝑡
𝑟𝑐𝑙

, (22)

where 𝐶 denotes the set of all relation chains, and 𝑟𝑡 denotes the

target relation.

L 𝑓 𝑖𝑛𝑎𝑙

𝐵𝑃𝑅
=

∑︁
(𝑢,𝑣+,𝑣− ) ∈𝑂

− ln(𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑦𝑢,𝑣+ − 𝑦𝑢,𝑣− )) + 𝜆 | |Θ| |2 (23)

where 𝑦𝑢,𝑣+ = 𝑒
𝑓 𝑖𝑛𝑎𝑙
𝑢

T
𝑒
𝑓 𝑖𝑛𝑎𝑙

𝑣+ .

The final loss of the proposed DCMGNN is as follows:

L = L𝐵𝑃𝑅 + 𝜇1L𝑟𝑐𝑙 + 𝜇2L 𝑓 𝑖𝑛𝑎𝑙

𝐵𝑃𝑅
(24)

5 EXPERIMENTS
5.1 Datasets
In our experiments, three real-world publicly available datasets are

utilized, i.e., Retail_Rocket (Retail for short) [29], Tmall [5], and

Yelp [13]. We detail the dataset description in the supplementary

material. The statistics of three datasets are summarized in Table 1.

5.2 Evaluation Metrics
For all experiments, we evaluate our DCMGNN and baselines in

terms of the top-𝑘 recommended items with the following metrics:

the Recall (𝑅@5, 𝑅@10, 𝑅@20, 𝑅@40) and the Normalized Dis-

counted Cumulative Gain (NDCG) (𝑁@5, 𝑁@10, 𝑁@20, 𝑁@40).

5.3 Baselines
We compare our DCMGNN with the following nineteen baselines,

which can be divided into two main categories: Single-behavior rec-

ommendation methods include BPR [31], LightGCN [17], HCCF
[45], DCCF [30], AutoCF [41], and LightGCL [2]; multi-behavior
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recommendationmethods containRGCN [32],NMTR [12],MBGCN
[19], MB-HGCN [51], MB-CGCN [5], MBGMN [46], CRGCN
[50], HMG-CR [52], S-MBRec [13], CML [37], KMCLR [49], and

BPHGNN [9]. More information can be found in the supplement.

5.4 Experimental Setting
In our experiments, our models are optimized using the Adam

optimizer. The embedding dimension 𝑑 and batch size are set from

{8, 16, 32, 64, 128, 256} and 128 for all methods, while the learning

rate is varied in the range {1e-2, 1e-3, 1e-4}. In addition, we initialize

themodel parameters (relation feature transformationmatrix) using

the Xavier initializer. The number of LightGCN layers per relation

is varied in the range {1,2,3,4}. Unless otherwise stated, for multiple

relations in a relation chain, we use solid three LightGCN layers. For

all baselines, we directly use their source code and the parameter

settings recommended in their papers to ensure that their method

achieves results as close as possible to their claims. Each experiment

is performed ten times and the average value is reported.

5.5 Overall Performance
We perform a performance comparison between DCMGNN and

all baselines, with results shown in Table 2. The best results are

highlighted in bold, and the second-best results are underlined.

As we can see, our DCMGNN achieves the optimal performance,

significantly outperforming all baselines across multiple metrics

on the three datasets, with specific emphasis on the improvement

relative to the state-of-the-art (SOTA). Our model yields notable

enhancements, achieving a 14.34% improvement in terms of 𝑁@10

on Retail dataset, a 11.84% improvement in terms of 𝑅@10 on Tmall

dataset, and a 12.12% improvement in terms of 𝑁@10 on Yelp

dataset. It is worth noting that the top three baselines, namely CML,

KMCLR, and MB-CGCN, have already demonstrated substantial

improvements on these datasets, providing strong evidence of the

effectiveness of our DCMGNN.

For multi-behavior recommendation models, most of them have

achieved better results than single-behavior recommendation mod-

els. These approaches try to model the complex relationship be-

tween users and items from graph structure learning, capture the

higher-order interaction information that is difficult to access by

collaborative filtering, and also achieve refreshing results. In addi-

tion, some works based on MBGCN (e.g., MB-RGCN, MB-CGCN,

MBGMN, and CRGCN), intend to capture more U-I interaction in-

formation by improving the graph convolution mechanism. CML

captures the dependency between different auxiliary behaviors

and the target behavior through the improvement of the contrast

learning mechanism, and KMCLR supplements the missing node

by introducing the knowledge graph attribute features. All in all,

the results of these methods further prove the superiority of our

method in capturing the impact of explicit multi-relational behavior

patterns and the effect of implicit relation chains on target relations

simultaneously.

5.6 Ablation Study
To evaluate the effectiveness of each component of our DCMGNN,

we further conduct ablation studies on different variants. To be

specific, we generate variants as follows:

(a) 𝑅@10 w.r.t 𝑑 (b) 𝑁@10 w.r.t 𝑑

(c) 𝑅@10 w.r.t 𝐿 (d) 𝑁@10 w.r.t 𝐿
Figure 2: Hyperparameter impact of embedding dimension
𝑑 and graph propagation layer 𝐿

• w/o E removes explicit behavior pattern representation learner.

• w/o M removes multiplex relation embedding aggregation.

• w/o R removes relation chain representation learning.

• w/o RCL excludes relation-based contrastive learning.

• w/o RCE excludes relation chain-aware encoder and L𝐵𝑃𝑅 .

• w/o FNL excludes the L 𝑓 𝑖𝑛𝑎𝑙

𝐵𝑃𝑅
.

We report the results for the recommendation task on the three

datasets in Table 3. Our five variants significantly perform worse

than DCMGNN model in terms of 𝑅@10 and 𝑁@10, which proves

that our proposed five variants are effective and necessary. Among

them, w/o R performs the worst, which demonstrates the effective-

ness of relation chains in extracting useful information from early

relations to help learn user and item embeddings in later relations,

as the latter relations in a relation chain are usually more revealing

of a user’s interactive preference for an item. w/o RCL performs

only better than w/o R, which demonstrates the importance of

contrastive learning in distinguishing between different relation

types and enhancing the learning process of characterizing the

target relation (e.g., ‘buy’). Meanwhile, based on the experimental

results of w/o M , it is important to take full advantage of the multi-

ple relations between users and items in our model. w/o RCE, on
the other hand, learns the correlations and dependencies between

different relations from a new perspective, especially considering

the effect of auxiliary relations in relation chains on the target

relation, and the experimental results also prove the importance

of this component. The results of w/o E once again confirm that

explicit multi-relational behavioral pattern representation learning

is crucial and reasonable for multi-behavior recommendation tasks.

5.7 Performance on Mitigating Data Sparsity
In this section, we explain that DCMGNN helps to mitigate the data

sparsity problem. Experimental results with different interaction

sparsity on Tmall dataset are shown in Figure 3. In the experiments,

we select several of the best-performing baselines, i.e., MB-CGCN,
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Table 2: Performance comparison of all models on three datasets. Improvement denotes the improvement of our results
compared with the second-best results. Marker * indicates the results is statistically significant (t-test with p-value < 0.01).

Method

Retail Tmall Yelp

𝑅@10 𝑅@20 𝑁@10 𝑁@20 𝑅@10 𝑅@20 𝑁@10 𝑁@20 𝑅@10 𝑅@20 𝑁@10 𝑁@20

BPR 0.0230 0.0316 0.0124 0.0144 0.0236 0.0311 0.0128 0.0152 0.0175 0.0287 0.0103 0.0129

LightGCN 0.0383 0.0438 0.0209 0.0233 0.0411 0.0546 0.0240 0.0266 0.0191 0.0302 0.0119 0.0144

HCCF 0.0396 0.0471 0.0214 0.0238 0.0424 0.0558 0.0242 0.0271 0.0189 0.0381 0.0133 0.0156

DCCF 0.0395 0.0476 0.0218 0.0239 0.0423 0.0561 0.0241 0.0279 0.0207 0.0405 0.0134 0.0161

AutoCF 0.0402 0.0477 0.0222 0.0238 0.0415 0.0525 0.0239 0.0277 0.0208 0.0399 0.0135 0.0174

LightGCL 0.0409 0.0489 0.0229 0.0242 0.0441 0.0597 0.0255 0.0289 0.0249 0.0451 0.0149 0.0189

RGCN 0.0363 0.0446 0.0188 0.0204 0.0315 0.0426 0.0234 0.0275 0.0305 0.0537 0.0204 0.0237

NMTR 0.0372 0.0448 0.0198 0.0210 0.0682 0.0842 0.0273 0.0303 0.0397 0.0579 0.0215 0.0266

MBGCN 0.0379 0.0457 0.0209 0.0227 0.0809 0.0991 0.0294 0.0350 0.0416 0.0634 0.0229 0.0258

MB-HGCN 0.0412 0.0472 0.0232 0.0258 0.1098 0.1783 0.0635 0.0852 0.0528 0.0698 0.0256 0.0274

MB-CGCN 0.0418 0.0492 0.0249 0.0253 0.1233 0.2007 0.0657 0.0876 0.0573 0.0725 0.0285 0.0302

CRGCN 0.0411 0.0471 0.0232 0.0252 0.0855 0.1369 0.0539 0.0776 0.0561 0.0682 0.0237 0.0269

MBCMN 0.0405 0.0478 0.0217 0.0241 0.0857 0.1578 0.0607 0.0763 0.0537 0.0698 0.0273 0.0287

HMG-CR 0.0363 0.0446 0.0213 0.0234 0.0854 0.1546 0.0663 0.0714 0.0555 0.0707 0.0263 0.0275

S-MBRec 0.0386 0.0461 0.0234 0.0248 0.0877 0.1691 0.0642 0.0795 0.0559 0.0723 0.0287 0.0311

CML 0.0428 0.0492 0.0251 0.0263 0.1203 0.2092 0.0661 0.0852 0.0577 0.0745 0.0294 0.0321

KMCLR 0.0428 0.0501 0.0247 0.0264 0.1185 0.2107 0.0659 0.0882 0.0578 0.0752 0.0297 0.0319

BPHGNN 0.0376 0.0449 0.0217 0.0245 0.0991 0.1806 0.0641 0.0836 0.0537 0.0705 0.0275 0.0289

DCMGNN 0.0471* 0.0544* 0.0287* 0.0293* 0.1379* 0.2304* 0.0727* 0.0943* 0.0626* 0.0835* 0.0333* 0.0351*

Improvement 10.05% 8.58% 14.34% 10.98% 11.84% 9.35% 9.98% 6.92% 8.30% 10.91% 12.12% 9.35%

Table 3: The comparison of DCMGNN and its variants.

Dataset Retail Tmall Yelp

Metrics 𝑅@10 𝑁@10 𝑅@10 𝑁@10 𝑅@10 𝑁@10

w/o E 0.0371 0.0246 0.0982 0.0554 0.0475 0.0261

w/o M 0.0345 0.0211 0.0927 0.0494 0.0461 0.0232

w/o R 0.0311 0.0173 0.0868 0.0466 0.0391 0.0219

w/o RCL 0.0334 0.0199 0.0928 0.0489 0.0443 0.0247

w/o RCE 0.0412 0.0238 0.1182 0.0628 0.0527 0.0275

w/o FNL 0.0325 0.0185 0.0912 0.0458 0.0405 0.0229

DCMGNN 0.0471 0.0287 0.1379 0.0727 0.0626 0.0333

(a) 𝑅𝑒𝑐𝑎𝑙𝑙@10 (b) 𝑁𝐷𝐶𝐺@10

Figure 3: Performance comparison w.r.t different sparsity
degrees on Tmall dataset.

S-MBRec, CML, KMCLR, and BPHGNN. Specifically, we catego-

rized users into six groups ("[0,4)", "[4,5)", "[5,6)", "[6,7)", "[7,10)",

and "[10,60)") based on the number of interactions they had. The

model performance measured by R@10 and N@10 (shown on the

right axis in Figure 3) is the average of all users in each group. The

total number of users in each group is shown on the left axis in

Figure 3. Based on the experimental results, we observe that: i) An

increase in the number of user interactions improves the recom-

mendation accuracy of all the methods. This is because high-quality

relational embeddings are more likely to be learned through suffi-

cient user-item interactions. ii) Considering that CML and KMCLR

have better results inmitigating the data sparsity problem alone, our

model consistently outperforms them, which confirms the fact that

DCMGNN is indeed better at mitigating the data sparsity problem.

5.8 Parameter Sensitivity
5.8.1 The Effect of Hidden Embedding Dimensionality. As shown
in Figure 2(a-b), our model achieves the best when 𝑑 = 64 on Retail

and Tmall datasets, which indicates that our DCMGNN can improve

the performance with smaller hidden embedding dimensions.

5.8.2 The Effect of Graph Propagation Layers. It can be concluded

from Figure 2(c-d) that the more graph propagation layers the better

the performance of the model when 𝐿 ≤ 3. However continuing to

superimpose more layers may bring such things as noise effects,

over-smoothing problems, etc. to the user and item representations.

5.8.3 The Effect of Relation Order. We consider six containment

order relation chains on two datasets: 𝐶1 : ⟨𝑏𝑢𝑦 −→ 𝑣𝑖𝑒𝑤 −→ 𝑐𝑎𝑟𝑡⟩,
𝐶2 : ⟨𝑏𝑢𝑦 −→ 𝑐𝑎𝑟𝑡 −→ 𝑣𝑖𝑒𝑤⟩, 𝐶3 : ⟨𝑣𝑖𝑒𝑤 −→ 𝑏𝑢𝑦 −→ 𝑐𝑎𝑟𝑡⟩, 𝐶4 :

⟨𝑐𝑎𝑟𝑡 −→ 𝑏𝑢𝑦 −→ 𝑣𝑖𝑒𝑤⟩, 𝐶5 : ⟨𝑐𝑎𝑟𝑡 −→ 𝑣𝑖𝑒𝑤 −→ 𝑏𝑢𝑦⟩, and 𝐶6 :

⟨𝑣𝑖𝑒𝑤 −→ 𝑐𝑎𝑟𝑡 −→ 𝑏𝑢𝑦⟩. The performance of the relation chains with

different orders on the two datasets is shown in Figure 4. It can

be found that the relation chains in which the target buy relation

is the last relation show the best performance, i.e., 𝐶5 and 𝐶6 are

consistently better than other relation chains with different orders.
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(a) Retail (b) Tmall

Figure 4: Effects of orders in relation chains
Since the relation chains are with order, the embedding learned

from the previous relations will directly influence the embedding

learned from the next relation. Therefore, pre-setting a reasonable

relation order is necessary to enhance the recommendation effect.

The order of relation chains designed and adopted in this work has

achieved significant advantages, which also shows that the impact

of the order of different relations in the relation chains on the target

relation is also different and crucial for item recommendations.

6 CONCLUSION
In this work, we propose a model called DCMGNN for multi-

behavior recommendation task, the purpose of each component in

it is to learn feature embeddings of users and items from different

perspectives, especially in relation chain-aware encoder we rein-

force the correlations and dependencies between different auxiliary

and target relation, which is one of the most important innovations

of our model. Experiments on three real-world datasets show that

DCMGNN outperforms state-of-the-art multi-behavior recommen-

dation models with decent performance gains. Further ablation

studies validate the effectiveness of each feature embedding learn-

ing part of our model.
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A SUPPLEMENT
A.1 Notations

Table 4: Summary of key notations.

Notation Definition

G the input multiplex bipartite graph

U,V the set of users/items

X the node attribute feature matrix

E the collection of various interactive edges in G
R the set of all interaction types in G
𝑢, 𝑣 a user/item

A𝑟 the adjacency matrix for 𝑟 -th relation of G
Ā𝑝 the adjacency matrix of BBP type 𝑝

𝑎𝑝 , 𝑏𝑝 the learnable weights for BBP type 𝑝

Ã𝑙𝑜𝑐 the local aggregated adjacency matrix

B the global behavior pattern matrix

Ã𝑔𝑙𝑜 the global behavior pattern similarity matrix

H𝑙𝑜𝑐 ,H𝑔𝑙𝑜 the hidden representation for nodes

𝑑 the dimension of embeddings

𝑁,N the number of nodes/BBPs

N𝑟
𝑢 ,N𝑟

𝑣 the neighbor set of user/item for 𝑟 -th relation

𝑒
(𝑟,𝑙 ),𝑒 (𝑟,𝑙 )𝑣
𝑢 user/item embedding at 𝑙-th layer for 𝑟 -th relation

𝑒
(𝑟 )
𝑢 , 𝑒

(𝑟 )
𝑣 user/item relation-specific embedding for 𝑟 -th relation

𝑒
𝑖, 𝑗
𝑢 the user emb. at 𝑗-th relation in 𝑖-th relation chain

𝑒
𝑖, 𝑗
𝑣 the item emb. at 𝑗-th relation in 𝑖-th relation chain

𝑒𝑐𝑢 , 𝑒
𝑐
𝑣 the user/item embedding of relation chains

W𝑖, 𝑗
𝑢 ,W𝑖, 𝑗

𝑣 trans matrix of user/item in relation chains

𝐶,𝐶𝑖 the set of relation chains, the 𝑖-th relation chain

F𝑐,𝑟𝑡𝑢 relation chain-aware knowledge

F 𝑟,𝑟𝑡
𝑢 relation-aware knowledge between embeddings

The key notations used in this work are summarized in Table 4

in the supplement.

A.2 Detailed Dataset Description
Three datasets are adopted for evaluation:

• Retail_Rocket (Retail for short) [29]: This is a benchmark

dataset collected from the Retail_rocket recommendation

system. In this dataset, user interactions include page views

(View), add-to-cart (Cart), and transactions (Buy). According

to previous research on multi-behavior recommendations

[19, 43], the ‘Buy’ relation is set as the target relation, and the

other types of relations are considered as auxiliary relations.

• Tmall[5]: This dataset is collected from Tmall, one of the

largest e-commerce platforms in China. It contains three

interaction relations, i.e., page view (View), add to cart (Cart),

and purchase (Buy), where the ‘Buy’ relation serves as the

target relation and the other relations serve as auxiliary

relations.

• Yelp[13]: This dataset is collected from Yelp, which contains

four interaction relations, i.e., tip (Tips), dislike (Dislike),

neutral (Neutral) and like (Like), where the ‘Like’ relation

serves as the target relation and the other relations serve as

auxiliary relations.

A.3 Baselines
We compare our DCMGNN with the following 18 baselines, which

can be deeply divided into three categories: Single-Behavior Rec-
ommendation Methods:
• BPR [31]: It is a widely adopted matrix factorization model

with the optimization criterion of Bayesian personalized ranking.

https://github.com/bbc/theano-bpr

• LightGCN [17]: it simplifies the GCN-based recommendation ar-

chitecture by removing the feature transformation and nonlinear

activation operations. https://github.com/gusye1234/LightGCN-

PyTorch

• HCCF [45]: It is a new self-supervised recommendation frame-

work that can jointly capture local and global collaborative rela-

tions with a hypergraph-enhanced cross-view contrastive learn-

ing architecture. https://github.com/akaxlh/HCCF

• DCCF [30]: It realizes intent disentanglementwith self-supervised

augmentation in an adaptive fashion, and with the learned dis-

entangled representations with global context, it is able to not

only distill finer-grained latent factors from the entangled self-

supervision signals but also alleviate the augmentation-induced

noise. https://github.com/HKUDS/DCCF

• AutoCF [41]: It automatically perform data augmentation for

recommendation and focuses on the generative self-supervised

learning frameworkwith a learnable augmentation paradigm that

benefits the automated distillation of important self-supervised

signals. https://github.com/HKUDS/AutoCF

• LightGCL [2]: It is a simple yet effective graph contrastive learn-

ing paradigm that mitigates these issues impairing the generality

and robustness of CL-based recommenders, and it exclusively

utilizes singular value decomposition for contrastive augmen-

tation, which enables the unconstrained structural refinement

with global collaborative relation modeling. https://github.com/

HKUDS/LightGCL

Multi-Behavior Recommendation Methods:
• RGCN [32]: It differentiates the relations between nodes via

edge types in the graph and designs different propagation layers

for different relations. This model can adapt to multi-behavior

recommendation. https://github.com/SS-00-SS/MBCGCN

• NMTR [12]: It combines the multi-task learning framework and

neural collaborative filtering to investigate multi-typed user inter-

action behaviors based on the predefined cascading relationships.

https://github.com/weiwei1206/CML.git

• MBGCN [19]: It is a GCN-based model by capturing the multi-

behavioral patterns over the constructed user-item interaction

graph, and the high-order connectivity is considered during the

information propagation. https://github.com/weiwei1206/CML.

git

• MB-HGCN [51]: It is a a novel multi-behavior recommendation

model that uses a hierarchical graph convolutional network to

learn user and item embeddings from coarse-grained on the

global level to fine-grained on the behavior-specific level.

• MB-CGCN [5]: It is a novel multi-behavior recommendation

model with cascading graph convolution networks, in which

https://github.com/bbc/theano-bpr
https://github.com/gusye1234/LightGCN-PyTorch
https://github.com/gusye1234/LightGCN-PyTorch
https://github.com/akaxlh/HCCF
https://github.com/HKUDS/DCCF
https://github.com/HKUDS/AutoCF
https://github.com/HKUDS/LightGCL
https://github.com/HKUDS/LightGCL
https://github.com/SS-00-SS/MBCGCN
https://github.com/weiwei1206/CML.git
https://github.com/weiwei1206/CML.git
https://github.com/weiwei1206/CML.git
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Table 5: Performance comparison of all models on three real-world datasets. Improvement denotes the improvement of the
best results compared with second-best results. The best results are shown in bold and the best among baselines is underlined.
Marker * indicates the mean of the results is statistically significant (t-test with p-value < 0.01).

Method

Retail Tmall Yelp

𝑅@5 𝑅@40 𝑁@5 𝑁@40 𝑅@5 𝑅@40 𝑁@5 𝑁@40 𝑅@5 𝑅@40 𝑁@5 𝑁@40

BPR 0.0212 0.0434 0.0102 0.0166 0.0216 0.0494 0.0112 0.0193 0.0134 0.0475 0.0095 0.0161

LightGCN 0.0357 0.0513 0.0201 0.0255 0.0341 0.0874 0.0214 0.0338 0.0154 0.0676 0.0101 0.0187

HCCF 0.0359 0.0537 0.0198 0.0258 0.0347 0.0899 0.0215 0.0346 0.0157 0.0687 0.0112 0.0196

DCCF 0.0358 0.0538 0.0212 0.0253 0.0344 0.0901 0.0215 0.0357 0.0151 0.0692 0.0120 0.0198

AutoCF 0.0361 0.0546 0.0212 0.0256 0.0370 0.0866 0.0209 0.0338 0.0155 0.0686 0.0119 0.0205

LightGCL 0.0366 0.0555 0.0223 0.0256 0.0401 0.0935 0.0227 0.0381 0.0178 0.0721 0.0137 0.0221

RGCN 0.0305 0.0503 0.0134 0.0241 0.0134 0.0411 0.0111 0.0260 0.0169 0.0843 0.0185 0.0295

NMTR 0.0347 0.0515 0.0155 0.0249 0.0237 0.1034 0.0107 0.0383 0.0165 0.0824 0.0185 0.0305

MBGCN 0.0359 0.0508 0.0195 0.0253 0.0389 0.1117 0.0231 0.0455 0.0183 0.0858 0.0201 0.0294

MB-HGCN 0.0372 0.0553 0.0207 0.0251 0.0415 0.1234 0.0565 0.0834 0.0187 0.0876 0.0209 0.0312

MB-CGCN 0.0381 0.0564 0.0223 0.0262 0.0986 0.3322 0.0564 0.1134 0.0225 0.1071 0.0241 0.0322

CRGCN 0.0375 0.0550 0.0218 0.0260 0.0744 0.2325 0.0403 0.0866 0.0197 0.0940 0.0217 0.0315

MBCMN 0.0367 0.0529 0.0211 0.0255 0.0791 0.2529 0.0563 0.0855 0.0201 0.0879 0.0220 0.0318

HMG-CR 0.0341 0.0554 0.0197 0.0252 0.0606 0.2584 0.0551 0.0817 0.0213 0.0884 0.0223 0.0299

S-MBRec 0.0372 0.0593 0.0220 0.0269 0.0711 0.2593 0.0547 0.0880 0.0227 0.1135 0.0241 0.0337

CML 0.0408 0.0579 0.0224 0.0272 0.0915 0.3055 0.0573 0.1272 0.0249 0.1157 0.0258 0.0342

KMCLR 0.0407 0.0577 0.0228 0.0273 0.0920 0.3235 0.0574 0.1269 0.0243 0.1157 0.0259 0.0349

BPHGNN 0.0361 0.0537 0.0205 0.0261 0.0895 0.2703 0.0554 0.1089 0.0227 0.0976 0.0240 0.0332

DCMGNN 0.0446* 0.0624* 0.0248* 0.0298* 0.1099* 0.3466* 0.0618* 0.1368* 0.0275* 0.1237* 0.0282* 0.0382*

Improvement 9.31% 5.23% 8.77% 9.16% 11.46% 4.33% 7.67% 7.55% 10.44% 6.91% 8.88% 9.46%

the embeddings learned from one behavior are used as the in-

put features for the next behavior’s embedding learning after

a feature transformation operation. https://github.com/SS-00-

SS/MBCGCN

• CRGCN [50]: It adopts a cascading GCN structure to model

multi-behavior data. The behavioral features learned from a be-

havior is delivered to the next behavior with a residual design.

This method also adopts the multi-task learning in optimization.

https://github.com/SS-00-SS/MBCGCN

• MBGMN [46]: It empowers the user-item interaction learn-

ing with the capability of uncovering type-dependent behav-

ior representations, which automatically distills the behavior

heterogeneity and interaction diversity for recommendations.

https://github.com/akaxlh/MB-GMN

• HMG-CR [52]: It proposes the concept of hyper meta-path to

construct hyper meta-paths or hyper meta-graphs to explicitly

illustrate the dependencies among different behaviors of a user.

• S-MBRec [13]: It executes the GCNs to learn the user and item

embeddings and designs a supervised task, distinguishing the

importance of different behaviors, to capture the differences be-

tween embeddings. https://github.com/HKUDS/SSLRec

• CML [37]: It is a multi-behavior contrastive learning framework

to distill transferable knowledge across different types of be-

haviors via the constructed contrastive loss. https://github.com/

weiwei1206/CML.git

• KMCLR [49]: It designs the multi-behavior learning module

to extract users’ personalized behavior information for user-

embedding enhancement, and utilize knowledge graph in the

knowledge enhancementmodule to derivemore robust knowledge-

aware representations for items.

• BPHGNN [9]: It is a multiplex graph neural network representa-

tion learning method which can be set to obtain the embeddings

of users and items in the multi-behavior recommendation task.

https://github.com/FuChF/BPHGNN

A.4 Detailed Experimental Setting
For the recommendation task, we treat the connected user-item

pairs as positive node pairs, and consider other unlinked node pairs

as negative pairs. We divide the positive node pairs into the training

set and test set according to the proportion of 75% and 25%. At the

same time we randomly select the same number of negative node

pairs to add to the training set and test set.

For our DCMGNN, we set the number of aggregation layers in

LightGCN to 2, and 𝜏 to 0.1, then we set 𝜇1 to 0.1 and 𝜇2 to 0.5.

For NTMR, we xxxxxx. For MBGCN, we xxxxxx. For MB-HGCN

and MB-CGCN, we xxxxxx. For CRGCN, we xxxxxx. For MBCMN,

we xxxxxx. For HMG-CR, we xxxxxx. For S-MBRec, we xxxxxx.

For CML, we xxxxxx. For KMCLR, we xxxxxx. For BPHGNN, we

xxxxxx.

A.4.1 Time and Space Complexity Analysis. The DCMGNN con-

sists of three critical components: explicit behavior pattern repre-

sentation learner, implicit relation chain effect learner and relation

chain-aware contrastive learning.

For explicit behavior pattern representation learner, the time

complexity of aggregating all basic behavior pattern is 𝑂 (N𝑁 2),
and with the graph convolution, the time complexity of local behav-

ior pattern aggregation is𝑂 (N𝑁 2) +𝑂 (𝑁 2𝑑𝑙 +𝑁𝑑 +𝑁𝑑2 (𝑙 − 1)) =
𝑂 (𝑛2 (N+𝑑𝑙)+𝑁𝑑+𝑁𝑑2 (𝑙−1)). Similarly, the time complexity of lo-

cal behavior pattern aggregation is also𝑂 (𝑛2 (N+𝑑𝑙)+𝑁𝑑+𝑁𝑑2 (𝑙−

https://github.com/SS-00-SS/MBCGCN
https://github.com/SS-00-SS/MBCGCN
https://github.com/SS-00-SS/MBCGCN
https://github.com/akaxlh/MB-GMN
https://github.com/HKUDS/SSLRec
https://github.com/weiwei1206/CML.git
https://github.com/weiwei1206/CML.git
https://github.com/FuChF/BPHGNN
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(a) 𝑅@10 (b) 𝑁@10

Figure 5: Performance comparison w.r.t different relation
sparsity degrees on Retail dataset.

(a) 𝑅𝑒𝑐𝑎𝑙𝑙@10 (b) 𝑁𝐷𝐶𝐺@10

Figure 6: Performance comparison w.r.t different relation
sparsity degrees on Yelp dataset.
1)). So the total time complexity of explicit behavior pattern repre-

sentation learner is 𝑂 (𝑛2 (N + 𝑑𝑙) + 𝑁𝑑 + 𝑁𝑑2 (𝑙 − 1)). For implicit

relation chain effect learner, the time complexity of multiplex rela-

tion embedding aggregation is𝑂 (𝑁 2𝑑𝑙 +𝑁𝑑 +𝑁𝑑2 (𝑙 −1)), the time

complex of relation chain representation learning is𝑂 (𝑁 2𝑑𝑙 +𝑁𝑑),
so the total time complexity of implicit relation chain effect learner

is𝑂 (𝑁 2𝑑𝑙 +𝑁𝑑 +𝑁𝑑2 (𝑙 − 1)). For relation chain-aware contrastive

learning, the time complexity is 𝑂 (𝑁 2𝑑 + 𝑁𝑑). Therefore, the total
time complexity of our DCMGNN is𝑂 ((N+𝑑𝑙)𝑁 2+(𝑑+𝑑2 (𝑙−1))𝑁 ).

A.5 Additional Experiments
A.5.1 Performance on Mitigating Data Sparsity. In this section, we

explain that DCMGNN helps to mitigate the data sparsity problem.

Figure 5 shows the comparison of experimental results with dif-

ferent interaction sparsity on Retail dataset in Figure 5 and Yelp

dataset in Figure 6. In our experiments we select several of the

best-performing baselines, MB-CGCN, S-MBRec, CML, KMCLR

and BPHGNN. Specifically, we categorized users into six groups

("[0,4)", "[4,5)", "[5,6)", "[6,7)", "[7,10)", and "[10,60)") based on the

number of interactions they had. The model performance measured

by R@10 and N@10 (shown on the right side of the y-axis in Fig-

ure 5) and Fig 6 is the average of all users in each group. The total

number of users belonging to each group is shown on the left side

of Figure 5 and Figure 6.

A.5.2 Overall Performance w.r.t . 𝑅@5, 𝑅@40, 𝑁@5 and 𝑁@40.
Table 5 shows the rest experimental results of the performance

comparison of all models.
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