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Quasiparticle excitations in material solids often experience a fictitious gauge field, which can be a potential
source of intriguing transport phenomena. Here, we show that low-energy excitations in insulating antiferromag-
netic skyrmion crystals on the triangular lattice are effectively described by magnons with an SU(3) gauge field.
The three-sublattice structure in the antiferromagnetic skyrmion crystals is inherited as three internal degrees of
freedom for the magnons, which are coupled with their kinetic motion via the SU(3) gauge field that arises from
the topologically nontrivial spin texture in real space. We also demonstrate that the non-commutativity of the
SU(3) gauge field breaks an effective time-reversal symmetry and contributes to a magnon thermal Hall effect.

Introduction.—Quasiparticles and gauge fields are funda-
mental concepts for describing low-energy excitations in ma-
terial solids. In certain materials, quasiparticles are not sim-
ple free particles but those with a fictitious gauge field, lead-
ing to anomalous transport phenomena. For example, elec-
trons moving through crystals with noncoplanar spin textures
experience a U(1) gauge field, namely a fictitious magnetic
field, manifesting as a complex hopping [1–10]. The U(1)
gauge field in real space generates a Berry curvature, ficti-
tious magnetic field in momentum space, and contributes to
the anomalous Hall effect [4–10]. Magnons, bosonic quasi-
particles in magnetic insulators, can also experience a U(1)
gauge field that arises from a Dzyaloshinskii-Moriya (DM)
interaction or noncoplanar spin textures [11–15]. Although
magnons are charge-neutral and do not feel the Lorentz force,
the U(1) gauge field can bend their propagation, leading to the
magnon thermal Hall effect [11–19].

The DM interactions or noncoplanar spin textures typically
yield a zero net flux. In this case, the magnon systems adhere
to the no-go condition that precludes the magnon thermal Hall
effect in edge-shared lattice geometries such as the square and
triangular lattices [12, 18]. There, due to the geometrically
equivalent cells with opposite fluxes in nearest neighbors, the
systems have the effective time-reversal symmetry that leaves
the flux pattern unchanged while converting the sign of the
thermal Hall conductivity [12, 18]. In contrast, lattices that
feature corner-sharing, such as the kagome and pyrochlore
lattices, escape this scenario; their geometrically inequivalent
neighboring cells allow for the finite thermal Hall conductiv-
ity [12, 18].

Ferromagnetic skyrmion crystals (FM-SkXs), character-
ized by their topologically nontrivial swirling spin textures,
yield a finite net flux, thereby contributing to the anoma-
lous transports even in the edge-shared lattices [20–29]. The
magnon thermal Hall effect is observed in the FM-SkX
phase of GaV4Se8 [29], where (V4Se4)5+ clusters form the
triangular-lattice FM-SkX in the [111] plane [30–33]. Re-
cently, the magnon thermal Hall effect is also observed in
the antiferromagnetic skyrmion crystal (AFM-SkX) phase of
MnSc2S4 [34], with Mn2+ ions forming the triangular-lattice
AFM-SkX in the [111] plane [35–38]. The AFM-SkXs on
the triangular lattice consist of three intertwined FM-SkXs
that are antiferromagnetically coupled, leading to a three-
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FIG. 1. Skyrmion crystals and gauge fields of magnons. (a), (b)
Schematic illustration of the real-space spin configuration of the (a)
FM-SkXs and (b) AFM-SkXs on the triangular lattice. The AFM-
SkXs consist of three intertwined FM-SkXs as shown in different
colors, giving rise to the three-sublattice structure. (c), (d) Schematic
illustration of the uniform flux in the low-energy magnon systems
for the (c) FM-SkXs and (d) AFM-SkXs. The clockwise (counter-
clockwise) arrows indicate the negative (positive) direction of the
flux. The three different colors on each site in (d) represent the three
internal degrees of freedom for the magnons. The uniform flux Φ
originates from the commutation relation of an SU(3) gauge field.

sublattice structure [39–43]. The net flux in the AFM-SkXs,
however, is naively expected to be zero because of their anti-
ferromagnetic coupling. To explain the origin of the magnon
thermal Hall effect in the AFM-SkXs, the authors in Ref. [34]
introduce the concept of an SU(3) gauge field of magnons.
However, how the spin textures in the AFM-SkXs are trans-
lated into the SU(3) gauge field has not yet been clarified well.

In this Letter, we bridge this gap by constructing the effec-
tive field theory of magnons in the AFM-SkXs from a spin
model on the triangular lattice. We show that the three sub-
lattices in the AFM-SkXs introduce the three internal degrees
of freedom for the magnons, which are coupled with their ki-
netic motion via the SU(3) gauge field originating from the
combined effect of the spin textures of three FM-SkXs and
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the local antiferromagnetic coupling between them. We also
find that the commutation relation of the SU(3) gauge field
generates a uniformly distributed flux, which is responsible
for the magnon thermal Hall effect.

Effective field theory of magnons in FM-SkXs.—Before
we explore the effective field theory of magnons in the AFM-
SkXs, it is instructive first to briefly discuss that in the FM-
SkXs [20–29]. We start from a spin Hamiltonian on the trian-
gular lattice,

Ĥ = J
∑
⟨i, j⟩

Ŝi · Ŝ j + · · · , (1)

where ⟨i, j⟩ denotes the pair of nearest-neighbor i and j sites,
Ŝi = (Ŝ x

i , Ŝ
y
i , Ŝ

z
i ) is the spin-S operator at site i, J is the

Heisenberg exchange coupling constant, and ellipsis indicates
terms that stabilize the FM-SkXs (AFM-SkXs) for J < 0
(J > 0) such as a DM interaction, magnetic field, or single-ion
anisotropy. We only focus on the Heisenberg exchange inter-
action term since the other terms do not essentially affect the
following discussion.

Given the slow spatial variation of spin orientations in the
FM-SkXs (see Fig. 1(a)), the low-energy theory is expected to
be described by a continuously varying spin-density operator
ŝ(r). Adopting this assumption, the effective field theory is
derived by substituting Ŝi with vŝ(r) and

∑
i with (1/v)

∫
d2r,

where v =
√

3a2/2 is the volume per site with lattice constant
a. Applying these substitutions to Eq. (1) leads to the effective
Hamiltonian

ĤFM
eff = 3Jv

∫
d2r ŝ(r) ·

(
1 +

a2

4
∇2

)
ŝ(r), (2)

where we drop higher-order derivative terms, which are irrel-
evant at low energies. To describe the magnon excitations, we
employ the Holstein-Primakoff transformation [44]

ŝ(r) ≃

√
S
v

(
b̂(r)e−(r) + H.c.

)
+

(S
v
− b̂†(r)b̂(r)

)
m(r),

(3)

where b̂(r) (b̂†(r)) is the magnon annihilation (creation) op-
erator at r, m(r) is the unit vector pointing in the direction
of the spin in the classical ground state, and e±(r) = (ex(r) ±
iey(r))/

√
2 with the unit vectors, ex(r) and ey(r), satisfying

ex(r) × ey(r) = m(r). The three unit vectors, ex(r), ey(r),
and m(r), form a local orthonormal basis (see Fig. 2(a)). We
neglect constant terms, terms quadratic in the derivative of
e±(r), and magnon-magnon interaction terms, which are only
relevant at high energies [45, 46]. From Eqs. (2) and (3), we
obtain the effective magnon Hamiltonian as

ĤFM
eff ≃

3
2

JS a2
∫

d2r b̂†(r) (∇ − iA(r))2 b̂(r), (4)

with a U(1) gauge field Aµ(r) = ie+(r) · ∂µe−(r) (µ = x, y).
The associated fictitious magnetic field, B(r) = ∂xAy(r) −
∂yAx(r), is calculated as [20–29]

B(r) =m(r) ·
(
∂xm(r) × ∂ym(r)

)
, (5)

(b)(a)

FIG. 2. Local orthonormal basis. (a) Local orthonormal basis in
the FM-SkXs. The spatially varying ex(r) and ey(r) lead to the
finite A(r) in the effective magnon Hamiltonian (4). (b) Three lo-
cal orthonormal bases in the AFM-SkXs. The three unit vectors
mℓ(r) (ℓ = 1, 2, 3) are on the same plane due to the local constraint∑
ℓmℓ(r) = 0. We take the unit vector n(r) = ex

ℓ (r) to be orthogo-
nal to this plane.

which takes the finite value due to the spatial variations in
m(r). Therefore, the low-energy excitations in the FM-SkXs
are described by the magnons coupled with the U(1) gauge
field, which arises from the spatially varying spin texture in
real space [20–29].

Importantly, the topologically nontrivial spin texture in the
FM-SkXs induces a uniform component of the fictitious mag-
netic field, B̄ = (1/V)

∫
d2r B(r), which is proportional to the

skyrmion density (1/4πV)
∫

d2r m(r) · (∂xm(r) × ∂ym(r)),
where V is the system’s volume. The finite B̄ generates
magnon Landau levels and contributes to the magnon thermal
Hall effect [20–29]. In terms of the original lattice, the fi-
nite B̄ gives rise to the uniformly distributed flux ϕ = B̄v/2
as illustrated in Fig. 1(c), which breaks the effective time-
reversal symmetry that prohibits the finite thermal Hall con-
ductivity [12, 18].

We also comment on gauge redundancy. The presence of
A(r) in Eq. (4) does not necessarily indicate the emergence
of the U(1) gauge field, as it can also be artificially introduced
by a local U(1) gauge transformation, b̂(r) → eiφ(r)b̂(r) and
A(r) → A(r) +∇φ(r). The latter transformation is equiv-
alent to the rotation of the local orthonormal basis by −φ(r)
around m(r), leading to e±(r) → e±iφ(r)e±(r). The local
U(1) gauge transformation originates from the redundancy of
the description and hence all physical quantities should be
gauge invariant. Therefore, the emergence of the U(1) gauge
field should be characterized by finite B(r), not A(r).

Effective field theory of magnons in AFM-SkXs.—We
turn to the effective field theory of magnons in the AFM-
SkXs. A key observation is that, since the AFM-SkXs con-
sist of three intertwined FM-SkXs, we need to introduce three
continuously varying spin-density operators ŝℓ(r) with sub-
lattice index ℓ = 1, 2, 3 to describe the low-energy excita-
tions [34]. The spin operator Ŝi is substituted with v′ŝℓ(r)
when site i belongs to the sublattice ℓ, and

∑
i is substituted

with (1/v′)
∫

d2r
∑
ℓ, where v′ = 3v. By these substitutions,
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we obtain the effective Hamiltonian from Eq. (1) as

ĤAFM
eff =

3Jv′

2

∫
d2r

∑
ℓ

∑
ℓ′,ℓ

ŝℓ(r) ·
(
1 +

a2

4
∇2

)
ŝℓ′ (r). (6)

As in the case of the FM-SkXs, we define a local orthonor-
mal basis, ex

ℓ (r), ey
ℓ
(r), and mℓ(r), with sublattice index ℓ as

shown in Fig. 2(b). The unit vector mℓ(r) denotes the direc-
tion of the spin at r with index ℓ. To incorporate the local
120◦ order in the AFM-SkXs, we impose the local constraint∑
ℓmℓ(r) = 0, indicating that the three unit vectors mℓ(r)

are on the same plane. We introduce the unit vector n(r) that
is orthogonal to this plane as n(r) = (2/

√
3)m1(r) ×m2(r),

and take ex
ℓ (r) = n(r) for all ℓ = 1, 2, 3, which simplifies

the following calculations. Applying the Holstein-Primaloff
transformation (3) with index ℓ and unit volume v′ to Eq. (6)
leads to the effective magnon Hamiltonian

ĤAFM
eff ≃

1
2

∫
d2r

∑
ℓ,ℓ′

(
b̂†
ℓ
(r) b̂ℓ(r)

)
H̃ℓ,ℓ′ (r)

(
b̂ℓ′ (r)
b̂†
ℓ′

(r)

)
, (7)

where b̂ℓ(r) (b̂†
ℓ
(r)) is the magnon annihilation (creation) op-

erator with sublattice index ℓ and H̃ℓ,ℓ′ (r) is the 2 × 2 matrix
defined as H̃ℓ,ℓ(r) = 3JS τ0 for ℓ = ℓ′ and

H̃ℓ,ℓ′ (r) =
3JS

4

(
1 +

a2

4
∇2

)
(τ0 + 3τx)

+
3JS a2

8
[
Aℓ(r)(τy − iτz) −Aℓ′ (r)(τy + iτz)

]
·∇

+
3JS a2

8

∑
ℓ′′

ϵℓℓ′ℓ′′

 ξ(r)(τ0 − τx) ·∇, (8)

for ℓ , ℓ′ with unit and Pauli matrices τµ (µ = 0, x, y, z)
and Levi-Civita symbol ϵℓℓ′ℓ′′ . Here, we introduce four vector
fields as Aℓ,µ(r) = ie+ℓ (r) · ∂µe−ℓ (r) and ξµ(r) = (1/3)[m1(r) ·
∂µm2(r) +m2(r) · ∂µm3(r) +m3(r) · ∂µm1(r)] (µ = x, y).
In particular, Aℓ(r) can be interpreted as the U(1) gauge field
arises from the FM-SkX on the sublattice ℓ.

The effective magnon Hamiltonian (7) is complicated and
conceals its gauge structure. To elucidate the hidden gauge
structure, we introduce new bosonic operators γ̂n(r) (n =
1, 2, 3) as the linear combination of b̂ℓ(r) and b̂†

ℓ
(r) such

that the resulting effective Hamiltonian has the following two
properties; (i) the conventional 120◦ order, namely spatially
uniform mℓ(r), gives rise to three decoupled magnons with
well-known linear dispersions and (ii) the equation of mo-
tion for γ̂n(r) is relativistic, which is expected in antiferro-
magnets. We find the Bogoliubov transformation that satisfies
these properties as

γ̂1(r) =
1
√

3

∑
ℓ

(
cosh χb̂ℓ(r) + sinh χb̂†

ℓ
(r)

)
, (9)

γ̂2(r) = i

√
2
3

∑
ℓ

cos θℓ
(
cosh χb̂ℓ(r) + sinh χb̂†

ℓ
(r)

)
, (10)

γ̂3(r) = i

√
2
3

∑
ℓ

sin θℓ
(
cosh χb̂ℓ(r) + sinh χb̂†

ℓ
(r)

)
, (11)

with θℓ = 2π(ℓ−1)/3 and χ = (1/2)arctanh(1/3). The effective
Hamiltonian (7) is transformed as

ĤAFM
eff ≃

1
2

∫
d2r Ψ̂†(r)H(r)Ψ̂(r), (12)

where Ψ̂(r) = (γ̂1(r), γ̂†1(r), γ̂2(r), γ̂†2(r), γ̂3(r), γ̂†3(r))T and

H(r) =
3
√

2
8

JS a2
[
Ĩ ⊗ τx∇2 − iT (r) ⊗ (τ0 + 3τx) ·∇

]
+

9
√

2
4

JS I ⊗ (τ0 + τx), (13)

with Ĩ = diag(2, 1, 1) and I = diag(1, 1, 1). Here, we ignore
terms that give higher-order contributions to the equation of
motion for γ̂n(r). The difference Ĩ , I reflects the fact that
one spin-wave mode has a different velocity in the 120◦ or-
der phase of the triangular-lattice antiferromagnet [47]. For
simplicity, we neglect this difference and replace Ĩ with I in
the following. The 3 × 3 matrix Tµ(r) (µ = x, y) is given by
T (r) = T (2)(r)λ2 + T

(5)(r)λ5, where

T (2)(r) =
1
3

∑
ℓ

Aℓ(r) cos θℓ, (14)

T (5)(r) =
1
3

∑
ℓ

Aℓ(r) sin θℓ, (15)

and λα (α = 1, 2, . . . , 8) are Gell-Mann matrices

λ2 =

0 −i 0
i 0 0
0 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 . (16)

Since Tµ(r) is Hermitian and traceless, it belongs to the Lie
algebra of the SU(3) group.

The role of T (r) becomes more apparent upon deriving the
equation of motion for γ̂(r) = (γ̂1(r), γ̂2(r), γ̂3(r))T . From
the effective Hamiltonian (12), we obtain the equation of mo-
tion for Ψ̂(r, t) as iℏ∂tΨ̂(r, t) = (I ⊗ τz)H(r)Ψ̂(r, t). Then the
equation of motion for γ̂(r, t) is derived as

ℏ2 ∂
2

∂t2 γ̂(r, t) =
27
8

(JS a)2 (∇I − iT (r))2 γ̂(r, t). (17)

For the conventional 120◦ order, we have T (r) = 0 and
the low-energy excitations are described by three indepen-
dent magnons with linear dispersion ε(k) ≃ (3/2)3/2JS a|k|.
For the AFM-SkXs, the real-space spin texture induces finite
T (r), which couples the three species of magnons with their
kinetic motion and can be interpreted as the SU(3) gauge field.

We remark that when Tx(r) and Ty(r) commute, there ex-
ists the unitary matrix U(r) that diagonalizes Tx(r) and Ty(r)
simultaneously, and the equation of motion (17) can be de-
composed into three independent magnons with U(1) gauge
fields as

ℏ2 ∂
2

∂t2 γ̂
′
n(r, t) =

27
8

(JS a)2 (
∇ − iA′n(r)

)2 γ̂′n(r, t), (18)
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where γ̂′n(r) =
∑3

m=1 U∗m,n(r)γ̂m(r) (n = 1, 2, 3) and A′n(r) is
the U(1) gauge field determined by the eigenvalues of Tµ(r)
(µ = x, y). Since Tµ(r) is the traceless matrix, the U(1)
gauge fields satisfy

∑
n A

′
n(r) = 0 and the associated mag-

netic fields B′n(r) = ∂xA′n,y(r)−∂yA′n,x(r) cancel out each other,∑
n B′n(r) = 0. This cancellation indicates that the net thermal

Hall conductivity from three species reduces to zero. There-
fore, T (r) with [Tx(r),Ty(r)] = 0 does not contribute to the
magnon thermal Hall effect.

Next, we consider the effect of finite [Tx(r),Ty(r)]. To
this end, we focus on the field strength defined as Fxy(r) =
∂xTy(r) − ∂yTx(r) − i[Tx(r),Ty(r)], which is the counterpart
of the fictitious magnetic field in the U(1) gauge field. Since
Fxy(r) belongs to the Lie algebra of the SU(3) group, it can
be expanded as Fxy(r) =

∑8
α=1 F(α)

xy (r)λα. The field strength is
characterized by the eight real values F(α)

xy (r), whose nonzero
elements are calculated from Eqs. (14) and (15) as

F(2)
xy (r) =

1
3

∑
ℓ

cos θℓBℓ(r), (19)

F(5)
xy (r) =

1
3

∑
ℓ

sin θℓBℓ(r), (20)

F(7)
xy (r) =

1
4
n(r) · (∂xn(r) × ∂yn(r)), (21)

where Bℓ(r) = mℓ(r) · (∂xmℓ(r) × ∂ymℓ(r)) is the ficti-
tious magnetic field on the sublattice ℓ. In particular, F(7)

xy (r)
comes from the commutation relation [Tx(r),Ty(r)] and is de-
termined by the scalar chirality of the vector field n(r).

In analogy to the case of the FM-SkXs, we focus on the
uniform elements of the field strength by replacing F(α)

xy (r)
with F̄(α)

xy = (1/V)
∫

d2r F(α)
xy (r). F̄(2)

xy and F̄(5)
xy are writ-

ten in terms of the average fictitious magnetic field B̄ℓ =
(1/V)

∫
d2r Bℓ(r). We also assume B̄1 = B̄2 = B̄3 since three

FM-SkXs in the AFM-SkXs typically have the same skyrmion
density [39–42]. Within this approximation, F̄(2)

xy and F̄(5)
xy are

reduced to zero, whereas F̄(7)
xy takes the finite value which is

proportional to the skyrmion density of the vector field n(r)
defined as (1/4πV)

∫
d2r n(r) · (∂xn(r)× ∂yn(r)). Returning

to the original lattice, finite F̄(7)
xy generates a uniformly dis-

tributed flux Φ = F̄(7)
xy λ7v′/2 as shown in Fig. 1(d), which

breaks the effective time-reversal symmetry and contributes
to the magnon thermal Hall effect.

We finally comment on SU(3) gauge redundancy. The
SU(3) gauge transformation is given by the local rotation of
the internal degrees of freedom, namely γ̂(r) → W(r)γ̂(r)
and T (r) → W(r)T (r)W†(r) − i(∇W(r))W†(r) with W ∈

SU(3). The latter transformation corresponds to the rotation
of the vector field F(α)

xy (r) in the eight-dimensional space, in-

dicating that the length of the vector field
√∑8

α=1(F(α)
xy (r))2 is

gauge invariant. Therefore, the emergence of the finite Fxy(r)
is not an artifact of the gauge choice and characterizes the ef-
fect of the spin texture in the AFM-SkXs.

Discussion.—We have shown that the AFM-SkXs give rise
to the SU(3) gauge field of magnons, and its commutation

(b)(a)

FIG. 3. Staggered flux in the triangular-lattice ferromagnet with
the DM interaction. (a) Schematic illustration of the triangular-
lattice ferromagnet with the DM interaction. Gray arrows indicate
the order of spins in Di, j · (Ŝi × Ŝ j). The magnons acquire a phase
ϕD/3 = − arctan(D/J) when they hop between two sites. (b) Stag-
gered flux pattern generated by the DM interaction. The system has
the π-rotation symmetry along any straight line in the triangular lat-
tice, which prohibits the finite thermal Hall conductivity.

relation leads to the uniform flux. The emergence of the uni-
form flux is particularly important since otherwise the no-go
condition precludes a finite thermal Hall conductivity on the
triangular lattice [12, 18]. Here, we briefly demonstrate this
fact by considering the triangular-lattice ferromagnet with the
DM interaction shown in Fig. 3(a). We assume that the direc-
tion of the spin in the classical ground state aligns with that
of the DM vector Di, j. The DM interaction leads to the com-
plex hopping of magnons as JŜi · Ŝ j + Di, j · (Ŝi × Ŝ j) ≃√

J2 + D2S (eiϕD/3b̂†i b̂ j + H.c.), where D = |Di, j|, ϕD/3 =
− arctan(D/J), and b̂i (b̂†i ) is the magnon annihilation (cre-
ation) operator at site i. The DM-induced complex hopping
results in the staggered flux pattern shown in Fig. 3(b), which
is preserved under a π-rotation along any straight line in the
triangular lattice. This rotation, however, converts the sign of
the thermal Hall conductivity, indicating that the DM-induced
flux does not contribute to the magnon thermal Hall effect.
The FM-SkXs and AFM-SkXs, in contrast, generate the uni-
form flux patterns due to the finite skyrmion density, thereby
circumventing the no-go condition and contributing to the
magnon thermal Hall effect.

Conclusions and outlook.—We have shown that low-
energy excitations in the AFM-SkXs on the triangular lattice
are effectively governed by the magnons with the SU(3) gauge
field. We have also demonstrated that the finite commutation
relation of the SU(3) gauge field breaks the effective time-
reversal symmetry and underpins a measurable magnon ther-
mal Hall effect. There are several promising directions for
future work. For example, it would be interesting to explore
fictitious gauge fields in different classes of skyrmions [48],
including two-sublattice AFM-SkXs [49–51]. Our framework
is readily applicable to these systems. Elucidating how an un-
derlying gauge structure qualitatively changes a thermal Hall
conductivity would also offer an interesting research direction.
Moreover, we could verify the effective field-theoretical de-
scription by comparing magnon bands and physical quantities
with those obtained by the linear spin-wave theory.
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[48] B. Göbel, I. Mertig, and O. A. Tretiakov, Beyond skyrmions:
Review and perspectives of alternative magnetic quasiparticles,
Phys. Rep. 895, 1 (2021).

[49] X. Zhang, Y. Zhou, and M. Ezawa, Antiferromagnetic
Skyrmion: Stability, Creation and Manipulation, Sci. Rep. 6,
24795 (2016).
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