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Abstract— This paper presents a novel approach to enhance
Model Predictive Control (MPC) for legged robots through
Distributed Optimization. Our method focuses on decomposing
the robot dynamics into smaller, parallelizable subsystems,
and utilizing the Alternating Direction Method of Multipliers
(ADMM) to ensure consensus among them. Each subsys-
tem is managed by its own Optimal Control Problem, with
ADMM facilitating consistency between their optimizations.
This approach not only decreases the computational time but
also allows for effective scaling with more complex robot
configurations, facilitating the integration of additional sub-
systems such as articulated arms on a quadruped robot. We
demonstrate, through numerical evaluations, the convergence
of our approach on two systems with increasing complexity. In
addition, we showcase that our approach converges towards the
same solution when compared to a state-of-the-art centralized
whole-body MPC implementation. Moreover, we quantitatively
compare the computational efficiency of our method to the
centralized approach, revealing up to a 75% reduction in
computational time. Overall, our approach offers a promising
avenue for accelerating MPC solutions for legged robots, paving
the way for more effective utilization of the computational
performance of modern hardware. Accompainying video at
https://www.youtube.com/watch?v=0KcTnGYjJPw

I. INTRODUCTION

Planning and control for legged systems presents signifi-
cant challenges due to their inherently nonlinear dynamics.
Designing trajectories for such systems is a demanding
task, as these trajectories must satisfy system constraints,
including the robot’s kinematic limits, actuator torque limits,
and the constraints imposed by the surrounding environment,
such as obstacles or gaps. Model Predictive Control (MPC)
[1] has emerged as a powerful technique for generating
complex motions in robotic systems, particularly in the
domain of legged robots [2]. MPC approaches calculate the
optimal control inputs based on the modeled system, result-
ing in complex constrained optimization problems that need
to be solved rapidly enough to achieve online re-planning
of the optimal trajectory. Recent advancements in onboard
hardware computational power and the development of more
efficient Nonlinear Programming (NLP) solvers like [3], [4],
and [5] have opened doors to solving efficiently complex
Optimal Control Problem (OCP). However, the solution time
is still a crucial factor to be considered when designing
a control architecture for legged systems. To mitigate the
computational complexity associated with the whole-body
dynamics of the robot and speed up the solving time of the
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Fig. 1. Simulation snapshots of robotic systems controlled by the proposed
MPC with distributed optimization, performing different agile motions. On
the top, a quadruped standing up on two feet and walking forward. On
the bottom, a quadruped manipulator following a triangular spiral with the
manipulator end-effector, the reference is highlighted in blue while the actual
trajectory is in green.

OCP, the works [6], [7], and [8] opted to approximate the
robot with the centroidal model [9]. This approach reduces
the robot’s dynamics to its center of mass (CoM) motion,
neglecting the influence of individual limbs on the base.
Although this approximation may seem simplistic, it con-
siders the key dynamic effects on the system. Additionally,
it facilitates the integration of feasibility constraints, such
as contact friction. The centroidal model has demonstrated
effectiveness in stabilizing locomotion for both quadrupeds
and bipeds, although with the necessity for carefully crafted
reference trajectories to track agile motions.

To reduce the drawbacks of such a model, [10] and [11]
developed an MPC formulation based on the Kino-Dynamic
model, which takes into account joint position and velocity,
neglects the effect of limb acceleration on the base dynamics
while maintaining the effect of the robot joint configuration
on the inertia matrix. As a result, the Kino-Dynamic model
avoids the highly non-linear terms while simultaneously
providing a better approximation than the centroidal model.
In contrast, [12] and [13] used the full-body model, entirely
exploiting the robot’s capabilities. The complexity of the
OCPs considered in those implementations is remarkable
given the limited time budget available for solving them in
the feedback MPC scheme. Indeed, it needs to be considered
that the computational complexity of the NLP implementa-
tion increases with the number of state variables in the OCP,
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typically following a cubic O(n3) law [14]. This poses a
significant limitation on the number of variables that can be
feasibly included in the optimization process and restricts the
length of the MPC horizon. Despite the continuous growth of
the number of CPU cores of each generation of modern pro-
cessors, the algorithms presented earlier face limitations in
terms of parallelizability. This limits the effective utilization
of the computational resources and restricts how the solver’s
solution time scales with the number of decision variables.
A different paradigm that tries to reduce the computation
burden is presented in [15]. The authors worked towards
a reduction of the computational effort by decoupling a
quadruped robot into two bipeds. This brought a consis-
tent reduction in the number of optimization variables that
drastically decreased the computational time; nevertheless,
the formulation they employed limits the approach to only
the offline generation of periodic orbits, too slow to be
computed online in a feedback MPC scheme. In contrast,
[16] proposed a similar decoupling principle and applied it
to quadratic programming-based nonlinear controllers. While
the parallelizability of their approach leads to remarkable
performances, particularly in terms of disturbance rejection
properties inherited from the decoupling framework, their
implementation requires the knowledge of the centralized
system optimum. The approach is thus limited to tracking
pre-computed periodic orbits. Finally, [17] developed local
controllers based on the dynamic decomposition from [15],
which can stabilize the centralized system across various
scenarios. However, their approach is not suitable for gener-
ating highly dynamic motions due to the intrinsic limitations
of instantaneous controllers. The above-mentioned methods
also lack easy adaptability to more complex systems, such
as a quadruped robot with one or several articulated arms on
top.

Our approach divides the robot into multiple subsystems
while ensuring coherence between the solutions of the de-
coupled systems with a consensus formulation. In particular,
we designed an easily scalable method to speed up the
computation of the OCP on legged systems exploiting a par-
allelized implementation of the Alternating Direction Method
of Multipliers (ADMM). It is worth highlighting that ADMM
has already been successfully used in legged robotics by
[18]. Their work primarily focused on rigorously enforcing
consensus between simplified and whole-body optimizations
within a two-step optimization framework, which is common
in locomotion controllers. In contrast, our approach focuses
on decomposing the robot dynamics into reduced subsystems
and using ADMM to ensure consensus among them. In other
words, our approach boils down to running in parallel a
separate MPC for each sub-system we have divided our
robot into, using consensus ADMM to maintain consistency
between the optimizations. This allows our algorithm to
scale effectively with more complex robot configurations.
For instance, the issue of integrating an articulated arm
onto a quadruped is simplified to merely adding another
subsystem in parallel to the others and adding the relative
consensus. By adopting this methodology, our method is able

Fig. 2. Schematic of a quadruped robot with an articulated arm on top split
into three separate subsystems. Each section of the robot sees the dynamic
effect of the other parts through the interaction wrench F .

to solve complex whole-body motions (Fig. 1), overcoming
at the same time the curse of dimensionality that is normally
associated with the use of the robot’s full dynamics.

A. Contributions

The main contributions of this work are:
• the development of a novel scalable framework based

on ADMM that reduces the computational time of the
OCP problem, e.g. two times reduction for a quadruped
robot and up to four times for a quadruped plus a 6
Degrees of Freedom (DoF) arm on top, Fig. 2.

• a numerical evaluation of the scalability of the pro-
posed approach to systems of increasing complexity,
e.g. adding an arm on a quadruped robot does not affect
the computational time.

• a quantitative evaluation in simulation of the per-
formance and convergence property of the proposed
method against a state-of-the-art implementation of the
same whole-body MPC problem.

B. Outline

This paper is organized as follows. Section II presents the
necessary backgrounds on the ADMM algorithm and MPC.
Section III describes our approach in detail. Section IV-A
demonstrates the convergence property of our formulation,
while Section IV-B shows the performance in terms of
computational time of our distributed whole body MPC, in
a simulation environment. Finally, Section V draws the final
considerations and conclusions.

II. BACKGROUND

A. Alternating Direction Method of Multipliers

ADMM is an efficient approach for solving optimization
problems. It has been broadly adopted in both robotics and
machine learning fields [19], [20]. The ADMM algorithm
solves problems in the form:

min
w,z

f(w) + g(z)

s.t. Aw +Bz = c
(1)



Where A,B, and c are respectively the matrices and the
vector that define the equality constraint. w and z are two
separate decision variables. f(w) and g(z) are the two
objectives of the cost function. The augmented Lagrangian
for (1) is:

Lρ(w, z,y) =f(w) + g(z) + yT (Aw +Bz − c)+
ρ

2
||Aw +Bz − c||2 (2)

where y is the dual variable associated with the equality
constraint and ρ is the penalty parameter related to the
constraint violation. The ADMM exploits the separation of
the cost terms between the w and z decision variables to
split the problem and thus tackling smaller and simpler sub-
problems at each iteration [19]. The solution to (1) can be
found iterating till convergence the following:

wn+1 = min
w
Lρ(w, zn,yn)

zn+1 = min
z
Lρ(w

n+1, z,yn)

yn+1 = yn + ρ(Aw +Bz − c)

(3)

where the superfixed n indicates the iteration number. In the
first two steps of (3), we update the two primal variables w
and z sequentially, and then we calculate the dual variable;
this results in a sequential implementation of the algorithm.
A widely adopted approach performs the updates of pri-
mal variables, wn+1 and zn+1 in parallel. Parallelization
is achieved at the expense of both the convergence rate
and convergence guarantees, prioritizing on the other hand
computational speed. [21] showed that including additional
regularization terms in the cost partially recovers conver-
gence rate and guarantees. In our method, we will use a
special case of ADMM called consensus ADMM [19], in
which the problem is in the form:

min
w̄,w1,w2,...,wNsys

Nsys∑
i=1

f i(wi)

s.t. wi = w̄i, i = 1, . . . , Nsys

(4)

where Nsys is the number of subsystems we split the main
problem into. wi is a local copy of a subvector of the global
decision variable w̄. The objective in this formulation is
to optimize w̄ through the separate optimization of the
wi variables. In this way, we transform the centralized
optimization involving only w̄ into a network of smaller
local independent problems. In our implementation, we will
divide the robot model into separate independent OCP,
which can be solved in parallel. The decision variables and
constraints of the global problem are reduced to the ones
related to the considered subsystems, making the problem
much smaller. The consensus is then established between
the optimizations, to avoid non-physical behaviors.

B. Model Predictive Control

In this section, we will first briefly introduce the dynamic
model we are using and then we will present the OCP. The
efficacy of the control input derived from an MPC strategy is

directly linked with the accuracy of its predictions. Carefully
modeling the dynamics of the robot is necessary to maximize
its performance. Therefore, we have chosen to employ the
articulated rigid body dynamics [22] with hard contacts to
characterize the dynamics of a legged robot accurately. We
define the state of the robot at instant k by the generalized
coordinates qk ∈ Rnq and the generalized velocity vk ∈
Rnv . We write the equation of motion of legged robots in
discrete time following a semi-implicit Euler scheme as:

vk+1 = vk −M−1(b− Sτ − JTλ)dt

qk+1 = qk ⊕ vk+1

(5)

where M ∈ Rnv×nv and b ∈ Rnv are respectively the
mass matrix and the ”bias” vector that includes the Coriolis,
centrifugal, and gravitational terms. The dependency of M
and b from qk and vk has been dropped in favor of
readability. The variable τ ∈ Rnu corresponds to the joint
torque, while S ∈ Rnv×nu is a selector matrix. Matrix
J ∈ Rnv×nc is the stack of jacobian associated with each
contact and λ ∈ Rnc is the stack of ground reaction forces.
Considering the dynamics described before, we can write an
MPC that solves the following OCP in a receding horizon
fashion:

min
x,u

lT (xN +

N−1∑
k=0

l(xk,uk) (6a)

s.t. vk+1 = vk −M−1(b− Sτ − JTλ)dt (6b)
qk+1 = qk ⊕ vk+1 (6c)
Jvk = ve (6d)
pk|z − pref k|z = 0 (6e)
uk ∈ Uk (6f)
xk ∈ Xk (6g)
x0 = x̂0 (6h)

where xk = [vk, qk]
T ∈ Rnv+nq and uk = [τ k,λk]

T ∈
Rnu+nc are respectively the state and control input. l(x(·))
is a quadratic cost including a tracking term and a regular-
ization one. Jvk = ve slacks the non-slipping condition for
each contact to avoid numerical instability [23]. pk|z is the
position of the foot along the z-axis and it is constrained to
guarantee that the legs in stance are touching the ground.
Uk is the set of feasible control input limits by the friction
cone and torque limits at the joint. The set Xk represents the
feasible states constrained by the joint kinematic limits. x̂0

is the state initial condition.
The described nonlinear optimization problem poses signif-
icant challenges when used for controlling legged robots
since, due to their complexity, they are difficult to solve at
high frequencies. Even with the latest advancements high-
lighted in [12], the update rate of the final MPC is limited
to 50Hz. Our approach aims to enhance the capabilities
of modern solvers by diving the OCP into independent
problems with a reduced number of decision variables that
are solved in parallel. For instance, decoupling a quadruped
into two parts, as illustrated in Fig. 2, results in a reduction



with respect to the centralized approach by 25% of the
number of variables in each subsystem’s optimization. While
the number of variables of the system incorporating also the
additional arm on top is reduced by 40%. More details on
the computational time gains derived from this reduction are
provided in Section IV-B.

III. DISTIBUTED WHOLE BODY MPC

The main contribution of this work is to leverage the
efficiency and parallelizability of the consensus ADMM to
speed up the solution time of the NLP in (6). Our method
provides a framework for partitioning the original OCP
into smaller, independent problems while ensuring consensus
among the solutions. Through this approach, we can signif-
icantly decrease the computational time while augmenting
our system’s complexity, such as incorporating an articulated
arm onto a quadruped robot, without significantly impacting
the solution time, as reported in Section IV-B. We can
effectively decouple the robot into distinct subsystems, as
illustrated in the example in Fig. 2. The consensus ADMM
implementation is used to enforce the consistency of the
dynamic between the different subsystems and prevent them
from drifting apart. Without consensus, we will only have
decoupled independent systems that are no longer solving
together the centralized OCP in (6).

A. Decomposed dynamics

The decomposition of the robot dynamics is based on the
idea of considering the separated subsystems interacting with
each other through a wrench F . For the ith subsystem the
wrench F i synthesizes the dynamic effect of the other j
subsystems that we are splitting the robot into. The equations
of motion of the ith subsystem also considering the rigid
body connection constraint are written as:

vi,k+1 = vi,k −M−1
i (bi − Sτ i − JT

i λi − JT
F,iF i)dt

(7a)
JF,ivi,k = JF,jvj,k ∀j ̸= i (7b)

for i, j ∈ X where X is the set of subsystems we have
divided our robot into. JF,i is the Jacobian that maps the
generalized velocity of the subsystems into the velocity at
the interface with the other systems. Manipulating (7) we
can write F i as:

F idt = (J̄FM̄
−1

J̄
T
F )

−1∆vtot,k (8)

Here, M̄ = diag(M0, . . . ,MNsys) and J̄F =[
JF,0 . . . JF,Nsys

]T
. ∆vtot represent the sum of the effect

of all systems and is defined as:

∆vtot ≡
∑
∗∈X

JF,∗

(
v∗,k +M−1

∗ (b∗ − Sτ ∗ − JT
∗ λ∗)dt

)
(9)

It is worth noting that ∆vtot is obtained by applying the
dynamic of (7) to each subsystem composing the considered
body. The obtained coupling wrench in (8) depends on all
subsystem’s generalized velocity and coordinates. Given the
parallelization employed in this work, it is not possible to

have the jth subsystems variables beforehand. This forced
us to utilize the past information at algorithm iteration n
when calculating the n+ 1 update for the ith subsystem as
done in the ADMM. Such an approximation, deriving from
the subsystem decoupling, does not affect the optimization
performances, as empirically demonstrated in section IV-A.
Indeed, such an approximation is comparable to the one
already used in centralized MPC employing Newton-base
NLP solvers, which linearized at each iteration based on
the previous optimal solution [24]. Finally, the subsystem
dynamics in (7a) can be rewritten explicating the dependency
of F i as:

vn+1
i,k+1 =vn+1

i,k −M−1
i (bi − Sτn+1

i − JT
i λ

n+1
i +

−JT
F,iF (qn+1

i ,vn+1
i ,λn+1

i , τn+1
i , qn

j ,v
n
j ,λ

n
j , τ

n
j ))dt

(10)
Equation (10) now only depends on the ith system current
decision variables, while the jth subsystem’s influence only
appears as a parameter coming from the last nth iteration.
The system dynamics are reduced to only the floating base
plus the joints considered in the ith subsystem. We have lost
the direct dependency on the other joints, but we gained a
model of reduced size that can be utilized in our distributed
MPC.

B. Distributed optimization
In this subsection, we will delve into the formulation of

the distributed OCP. The peculiarity of such implementation
lies in the fact that we are going to solve (6) defining
Nsys optimization problems, one per each subsystem we are
dividing the robot into. Such problems are smaller than the
problem of (6), and can be solved in parallel, thus speeding
up the computation. Each subsystem optimization problem
is defined utilizing the system dynamic in (10) and the
constraint (7b). Such constraint serves to ensure coherence
between velocities at the interface of the subsystems, thereby
preventing them from drifting apart. Since we are decoupling
the subsystems to enable parallel optimization, analogously
to what we did for the decomposed dynamics, (7b) cannot
be directly used, but it can be formulated as a consensus
problem. Defining the residual between the subsystems i and
j at the time k as :

ri,j = JF,ivi − JF,jvj (11)

it is possible to formulate each single subsystem optimiza-
tion. We take the consensus ADMM implementation illus-
trated in section II-A and tailor it for the OCP in (6). For
convenience, we utilized the scaled dual variable ȳ = y/ρ.
In this way, the Lagrangian in (2) is reduced to its quadratic
term. We defined the cost for the subsystem i as:

Φi = lT (xi(N)) +

N−1∑
k=0

[
l(xk,i,uk.i)+

+
∑
i,j∈X

||ri,j − ȳn
i,j ||2ρ

]
+ ||xi − xn||2σ

(12)

where the first two terms are the components of the original
cost in (6) that depend on the ith subsystem decision



Fig. 3. Block scheme of the proposed control framework highlighting the
communication bus between the decomposed Subsystem Optimizations.

variables. ρ and σ are positive weight parameters that pe-
nalize consensus violations and regularize the solution for
the whole-body. The last term of (12) introduced by [21]
works as a regularizer towards the optimal values found at
the previous iteration and it has proven to be crucial for
increasing the numerical stability of the algorithm.
Thus, the global OCP in (6) is reduced to the iterative
solution, executed in parallel, of the local OCPs:

min
xi,ui

Φi s.t. eq. (10) , eqs. (6c) to (6h) (13)

where only the states and control corresponding to the
ith subsystem appear as a decision variable. The dynamics
constraint in (6b) is replaced by (10), the cost function is the
one shown in (12), and the constraint form (6) relative to the
subsystem’s variables are passed to the local OCP. During
each iteration of the distributed algorithm, we perform a sin-
gle full Newton step for each subsystem optimization before
updating the dual variable. An outline of the implementation
is reported in Algorithm (1), where the Map() function only
extracts the subsystem variables from the global one. As for
[25] we defined the stopping criteria of our algorithm based
on the l2-norm of the residual:

||rn||2 < ϵ (14)

where ϵ is a positive scalar threshold on the residual.
Our algorithm does not come with convergence guarantees,
however, similar to other ADMM-based implementations on
nonconvex problems such as those in [25] and [18], the solver
has empirically proven to be reliable, as shown in Section
IV-A.

C. Distributed MPC

For the online execution of our framework, instead of
running the described algorithm to convergence at each
control loop, we implemented a receding horizon scheme.
In this scheme, each local solver receives the last optimal
solution from the other subsystems and the feedback from the
robot. Then, we execute one Newton step for each subsystem
and apply only the torque calculated at the first step of the
horizon to the robot. We then shift the rest of the solution

Algorithm 1 Distributed Whole-body Optimization
Data: xguess, uguess

repeat
for subsystems do in parallel

xn
i , un

i ←− Map(xguess, uguess)
xn+1
i , un+1

i ←− SubSystemSolver(xn
i , un

i ) (13)
end for
ȳn+1 = ȳn + rn+1

xguess, uguess ←− xn+1, un+1

until stopping criterion
return xn+1, un+1

by one time-step and send it back to the communication
bus to update the dual variable and provide the current local
optimal to the other optimizations for the next control loop.
A schematic of the control framework used in the simulation
is presented in Fig. 3.

IV. RESULT

In this section, we present the results of different analyses
to demonstrate the benefits of the proposed approach. We
analyze the performance of our algorithm considering two
different systems: a quadruped robot and a quadruped with
a manipulator on top, which we will call a quadruped
manipulator. In the first case, we split the robot into two
parts: front and back. All subsystems include a floating base
and the decision variables linked with the considered joints,
e.g. the front section will consider only the front legs’ joint
torques, positions, velocities, and the corresponding ground
reaction force. This reduces the decision variables per stage
from R61 to R37, since we are discarding the 24 states and
control linked with the joints included in the other half of the
robot. Thanks to this reduction in the state we can solve the
local OCP faster, as exemplified by the case of the quadruped
manipulator, where the distributed approach can run 4 times
faster than the centralized one. Indeed, as depicted in Fig.
6, for the quadruped manipulator case, the solving time is
on average 10 ms for the distributed case, while for the
centralized one is 40 ms.

In the case of the quadruped manipulator, we include
a third subsystem in the optimization consisting of the
articulated arm, as shown in Fig. 2. In our example, the
articulated arm has 6 DoF and thus it adds 18 decision
variables per node (joint position, velocity, and torque for
each DoF) to the centralized optimization problem. In our
formulation, on the other hand, the arm is treated as an
independent third optimization with 31 decision variables
executed in parallel to the other two. It is worth remembering
that the complexity of the optimization scales with the
cube of the number of stage decision variables. Indeed, a
naive centralized implementation is cursed by the increased
dimension of the problem, while our implementation utilizes
unexploited computational power by parallelizing the addi-
tional subsystem optimization.

In the remainder of this section, we will first focus on
the convergence analysis of the proposed approach, showing
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Fig. 4. The two plots on the left show the trend of the l2 norm of the residuals along the iteration of Algorithm 1. On top is the residual for the quadruped
with no arm, while on the bottom are the residuals for the quadruped manipulator. The right side plots show the time plot of the residual norm while the
robot is trotting in simulation. Again, the top plot is for the robot with no arm, and the bottom one is for the quadruped manipulator.

the residual trend with both systems and comparing our
distributed MPC approach with a centralized MPC imple-
mentation. Subsequently, we will demonstrate the benefits of
our approach in terms of solving time and provide examples
of agile maneuvers that are possible thanks to the whole-
body implementation. The distributed optimization approach
and the centralized one have been implemented using Adam
[26], an open-source library for rigid-body dynamics and
Acados [4], an open-source Sequential Quadratic Program-
ming solver tailored for optimal control. We chose to utilize
Acados for its ease of use, but our method is not tailored to
any specific solver and can be reused with other NLP solvers.
Both formulations utilize a prediction horizon of 50 nodes
with a discretization time of 0.01 seconds, and they are both
run at 50Hz for the sake of comparison. All the presented
results have been obtained using an Intel Core i7 13700H
laptop CPU. For the simulations, we utilized Mujoco [27] as
physics engine.

A. Convergence analysis

In this subsection, we aim to empirically analyze the
convergence properties and stability of our algorithm. We
begin by examining the l2 norm of the residual, as calculated
in (11). This metric provides insight into the quality of
the consensus achieved. Fig. 4 illustrates the trend over
the iterations of Algorithm 1. As previously explained, we
consider two scenarios: one with the quadruped split in half
and the other with the robot plus the arm. It should be noted
that in the former case, the residual is one, while in the latter
case, they become 3, indicating consensus among the three
subsystems. The plots depict the average over one hundred
simulations, with the system initialized in different config-

urations and with randomized warm starts. The variance is
represented by the colored area around the mean value. As
shown, the residual converges within a few iterations to small
values. Notably, the value the residual reaches corresponds to
an error between the subsystems at the end of the predicted
trajectories in the orders of millimeters or less. In the second
column of Fig. 4, we display the trend of the residual norm
of the MPC. In this case, we reported how the residual value
remains in the order of 10−3 when the distributed approach is
utilized in a receding horizon fashion. The data was recorded
while the robot was trotting in simulation following a desired
speed of 0.3m

s .
Finally, in Fig. 5 we compare, in simulation, the central-

ized and the distributed approach, reporting the phase plot
for each joint. The figure illustrates that the steady-state
solutions of both methods converge close to the same values,
depicting how our solver response is the same as one from
a centralized implementation.

B. Performance evaluation

In this subsection, we show the main benefits of our imple-
mentation. As displayed in Fig. 6 we compared the solving
time of the distributed and centralized implementation for
the quadruped and quadruped manipulator. We showed the
occurrence of the solving times recorded in a 5 second
simulation reporting in the histogram the relative frequencies.
In simulation, the robot is asked to follow a desired velocity
of 0.3m/s and is perturbed repeatedly by an external force
of random direction and magnitude in the range between
±30N for 0.1s each time. The graph shows that the solving
times for the distributed controller are on average half of the
ones of the centralized implementation for the quadruped
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Fig. 5. Phase plots of the robot trotting with the centralized (dashed blue
line) and distributed (orange line) solutions. The plot shows a recording of
the robot trotting in simulation at a desired speed of 0.3 m/s. Where RF-LF-
LH-RH stands for Right Front, Left Front, Left Hind, Right Hind and, HAA,
HFE, KFE stand for Hip Abduction/Adduction, Hip Flexion/Extension, and
Knee Flexion/Extension.

robot while for the quadruped manipulator, the solving time
is reduced by a factor of four.

It is worth noting that our implementation is not affected
by the increased complexity of the system. Adding the arm
on the quadruped robot does not increase the computational
time. It should be mentioned that the times reported for
the distributed implementation are the one of the slowest
subsystem optimizations. This consideration remains valid,
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Fig. 6. Relative frequencies for the occurrence of the solution time of the
receding horizon problem in (6) recorded over one hundred simulations. In
blue is our distributed implementation while in orange is the centralized
one. On the top, the solution refers to the quadruped robot model while on
the bottom plot the quadruped plus the arm.

as long as the new system we want to include can be
considered as an additional subsystem that can be processed
in parallel as it has been done for the arm. As already
mentioned, even though the reported times refer to our
implementation using Acados, changing the solver at the
core of our implementation will not affect the relative gains,
but only the absolute numbers in the same way for both
centralized and distributed approaches.

Finally, to demonstrate the benefit of a whole-body imple-
mentation and the robustness of our formulation, we show
the robot performing complex maneuvers that need whole-
body coordination. In the top part of Fig. 1 we show the
quadruped stand-up and walk on two feet. No particular
effort is required in designing the reference trajectories
since the MPC can generate and stabilize agile maneuvers
starting from simple unfeasible trajectories. Indeed, for the
emergence of the biped walking behavior, it was sufficient
a step function for the robot’s desired base pitch equal to
π/2 and a reference constant velocity to the base equal to
0.2m/s.

The bottom part of Fig. 1 shows the quadruped manipu-
lator trotting while its end-effector is tracking a triangular
spiral defined in the world frame. In this case, the only
reference we are passing to the MPC is the desired spiral
trajectory for the arm’s end-effector.

Both simulations can be seen in the accompanying video.

V. CONCLUSION

This paper presented a novel approach to decompose the
robot dynamics into reduced and more tractable subsystems
to accelerate MPC for legged robots. Utilizing ADMM
we ensure consensus among the parallel subsystem’s opti-
mization demonstrating significant improvements in com-
putational efficiency. The parallelizability of our method



facilitates the integration of additional limbs such as articu-
lated arms without compromising the solving time, and thus
making the system easily scalable. Through extensive nu-
merical simulations, we have validated the convergence and
performance of our approach across two systems of varying
complexity, highlighting its effectiveness compared to state-
of-the-art whole-body MPC implementations. The quanti-
tative simulations have underscored the substantial reduc-
tion in computational time; in particular, for the quadruped
model we gained a reduction of two times while for the
quadruped manipulator, the achieved reduction is four times.
These gains derive from the fact that we have added a
new subsystem to be solved in parallel with the others so
the computational time for our approach remains constant,
while for a centralized whole-body optimization it drastically
increases due to a higher number of decision variables per
node. These gains in computational time come from our more
effective use of modern hardware resources.

As future work, we plan to test our implementation on
hardware and include other popular nonlinear solvers such
as [3] and [5] in our framework allowing to choose the most
suitable solver for a given scenario. We are also going to
extend our work to other robot morphologies, e.g. humanoid
robots.
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