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ABSTRACT
Being more powerful and intrusive into user-device inter-
actions, LLMs are eager for on-device execution to better
preserve user privacy. In this work, we propose a new para-
digm ofmobile AI: LLM as a system service onmobile devices
(LLMaaS). Unlike traditional DNNs that execute in a stateless
manner, such a system service is stateful: LLMs execution
often needs to maintain persistent states (mainly KV cache)
across multiple invocations. To minimize the LLM context
switching overhead under tight device memory budget, this
work presents LLMS, which decouples the memory manage-
ment of app and LLM contexts with a key idea of fine-grained,
chunk-wise, globally-optimized KV cache compression and
swapping. By fully leveraging KV cache’s unique characteris-
tics, it proposes three novel techniques: (1) Tolerance-Aware
Compression: it compresses chunks based on their mea-
sured accuracy tolerance to compression. (2) IO-Recompute
Pipelined Loading: it introduces recompute to swapping-in
for acceleration. (3) Chunk Lifecycle Management: it opti-
mizes the memory activities of chunks with an ahead-of-time
swapping-out and an LCTRU (Least Compression-Tolerable
and Recently-Used) queue based eviction. In evaluations con-
ducted on well-established traces and various edge devices,
LLMS reduces context switching latency by up to 2 orders of
magnitude when compared to competitive baseline solutions.

1 INTRODUCTION
The recent progress of Large Language Models (LLMs) is
reshaping the mobile AI landscape. LLMs can comprehend
human language and handle most (if not all) language-based
ML tasks with a huge knowledge base, e.g., language trans-
lation [27, 63], Q&A [32, 57], and smart reply [3]. More im-
portantly, it catalyzes novel mobile applications such as UI
automation tasks based on user instructions, e.g., “forward
the recent 5 emails from Bob to Alice” [66]. In a nutshell,
LLM marks a giant step for mobile devices towards more
intelligent and personalized assistive agent [47].

Being more powerful and intrusive into user-device inter-
actions, LLMs are eager for on-device execution to better

preserve user privacy. For instance, mobile UI automation
task takes in the screen information (either in view hier-
archy [64, 66] or pixels [42, 58, 76]), which could contain
highly privacy-sensitive information like chatting history,
photos, and textual input. Beyond privacy, on-device LLM
also alleviates the huge resource intensity on datacenters and
guarantees functionality availability with weak network.
Indeed, there have been tremendous progress made to-

wards on-device LLM in the past year. On the one hand,
more compact and resource-efficient LLMs (e.g., Gemma-2B
and Falcon-1B [25, 35]) are released, and various compres-
sion algorithms (e.g., 4-bit or even 1-bit quantization [34, 49])
are proposed to effectively cut down the resource consump-
tion of LLMs. On the other hand, system- and hardware-
level support for LLMs are maturing [10, 59, 73, 75]. For
instance, Qualcomm claims Snapdragon 8gen3’s NPU to be
“meticulously designed with generative AI in mind”, capable
of executing LLM at 20 tokens/second [20]. Consequently,
smartphone vendors like Google [9] are exploring to built-in
LLM into their off-the-shelf devices.
LLM-as-a-Service (LLMaaS). In this work, we propose

a new paradigm of mobile AI: LLM as a system service on
mobile devices (LLMaaS). It indicates that, the mobile OS ex-
poses an LLM and its inference infrastructure as a system
feature to mobile apps, akin to the location or notification
services. The interface between apps and LLM Service is
based on prompts in nature language. This paradigm funda-
mentally differs from prior arts that apps own their models
separately, into which the OS has no visibility. Such a par-
adigm shift is natural in LLM era, motivated by following
observations: (1) LLM has world knowledge and can support
generic ML tasks [23, 29, 40, 62] through properly curated
or even learned prompts. (2) LLMaaS needs only one copy
of LLM weights in memory, regardless of how intensively
the LLM is used across apps; otherwise, the LLMs owned
by different apps easily blow up the device memory; (3) A
system-level LLM can be better customized for on-device
accelerator and enjoy the performance gain over commodity
hardware. An exemplification of LLMaaS paradigm is the
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recently released Android AICore [1], a standalone LLM sys-
tem service that is already in use by several Google apps for
on-device summarization and Gboard smart reply.
To fulfill the vision of LLMaaS, this work identifies and

tackles a unique system challenge: LLM context manage-
ment. Specifically, unlike traditional DNNs that execute in
a stateless manner, LLMs execution often needs to main-
tain persistent states (mainly KV cache [56]) across multiple
invocations. For example, a smart reply app [3] needs to
remember its historical conversation text to generate more
accurate reply suggestions compared to using only the last
message. According to our preliminary experiments in §2, a
single LLM context could consume significant device mem-
ory (e.g., 2GB for Llama2-7B with 4k context window size);
more of such LLM contexts soon dominate the memory us-
age of LLM Service. Consequently, how to properly manage
the persistent LLM contexts across apps becomes crucial to
improve the quality-of-LLM-service. One might treat the
LLM context memory as part of the app memory and reuse
the mobile memory manager (e.g., low memory killer [2]) to
manage them in a unified manner. This approach, however, is
inefficient due to the unique characteristics of LLM contexts
as will be demonstrated in §2.3.

LLMS This work presents a first-of-its-kind system towards
LLMaaS on mobile devices, named LLMS, that decouples the
memory management of LLM contexts from the app. LLMS
aims to minimize the LLM context switching overhead under
tight memory budget, akin to the traditional mobile mem-
ory mechanisms that focus on reducing the app cold-start
latency [26, 55, 77]. To alleviate the limited device memory,
LLMS introduces novel techniques on fine-grained, chunk-
wise, globally-optimized KV cache compression and swap-
ping. LLMS splits KV cache into series of chunks – memory
blocks covering the same number of tokens (all layers in
one token). Each chunk is compressed and swapped out/in
independently. In practice, the chunk size is determined em-
pirically based on the configurations of system and LLM,
e.g., 16 tokens. Similar to the OS’s paging mechanism, we
observe that the idea of chunking strikes good balance be-
tween the utilization of device memory and I/O bandwidth,
and outperforms token-level or context-level management.
Chunking fully leverages the unique characteristics of

KV cache for optimizing context switching. (1) KV cache is
easy to be chunked. As shown in §3.1, its layout grows at
the token dimension that can be divided into chunks with
flexible granularity. (2) KV cache is unevenly tolerant to com-
pression. A portion of KV cache can be compressed more
aggressively. Compressing in chunk-level allows for maxi-
mizing the compression potential of KV cache. (3) KV cache
can be recomputed. As an intermediate activation of LLM,
KV cache can be recomputed from the prompt text to recover
it into memory. By managing KV cache in chunks, during

context switching, chunks that need to be loaded from disk
can be concurrently recovered into memory through both
recompute and I/O, thereby fully utilizing hardware.

To fully explore the design space of chunk-level memory
management, LLMS incorporates three novel techniques.
(1) Tolerance-Aware Compression (§3.2). LLMS uses the

information density of a chunk as a metric to quantify its
tolerance to compression. It calculates the information den-
sity based on attention scores, which indicate the level of
attention that the tokens pay to each other. The rationale is
that a token that attracts more “attention” from other tokens
is more likely to be informative. LLMS then judiciously deter-
mines the compression rate for each chunk to maximize the
overall information intensity of a context, while meeting a
global average compression ratio configured by the OS.

(2) Swapping-Recompute Pipeline (§3.3). LLMS recomputes
chunks from their original text and overlaps the computa-
tion time with the I/O time of other chunks through pipeline.
However, chunks can be swapped independently, while the
LLM’s continuous position encoding and causal mask can-
not handle recompute of interleaved chunks. Thereby, LLMS
devises the encoding/mask to fit the interleaved chunks on
the fly.
(3) Chunk Lifecyle Management (§3.4). LLMS designs the

lifecycle of KV cache chunks to be more friendly to context
switching. Regarding which chunk to swap out, it employs
an LCTRU Least Compression-Tolerable and Recently Used)
queue to determine the eviction priority. Its rationale is that
swapping heavy and least recent used chunks out to disk can
better leverage chunks’ time locality and LLMS’s swapping-
recompute pipeline. Regarding when to swap out, it adopts
an ahead-of-time swapping-out approach to hide the time
for reclaiming memory during context switching.

Results We have fully implemented LLMS on Commercial
Off-The-Shelf (COTS) devices including Jetson Orin NX [7],
Jetson TX2 [8], and MI14 smartphone [15] with Llama2-
7B [62] and OPT-7B [83]. We then evaluate its performance
with a 72-hours-long context switching traces synthesized
from 6 representative datasets. The results show that LLMS
significantly outperforms its baselines. It reduces switch-
ing latency by up to 2 orders of magnitude compared to
managing contexts via the conventional app-level memory
manager low-memory killer [2], or directly managing con-
texts via disk swapping. Compared to the state-of-the-art
chunk-based context managing system vLLM [45] with stati-
cally quantizing all chunks to 8-bits [70], LLMS achieves up to
20× and on average 9.7× switching latency reduction. LLMS
achieves the aforementioned latency reduction without any
noticeable accuracy loss on 6 datasets. For the first time, LLMS
addresses the issue of LLM context switching, enabling LL-
MaaS to provide low switching-latency and stateful services
for mobile apps.
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Figure 1: Illustrations for LLM’s representative archi-
tecture and inference procedure.

Contributions This work makes following contributions.
• We paint a picture of LLM as a system service (LLMaaS)
to fully leash the power of LLM on devices, presenting its
strong motivations as well as the key challenge of LLM
context management in memory.

• We flesh out LLMaaS with LLMS, a concrete LLM Service
design based on fine-grained, chunk-wise KV cache com-
pression and swapping. LLMS aims tomaximize the context
switching speed through a set of novel techniques, includ-
ing tolerance-aware compression, swapping-recompute
pipeline, and strategic chunk lifecycle management.

• We prototype LLMS and comprehensively evaluate its per-
formance on COTS mobile devices and typical LLMs. The
results demonstrate the efficacy of LLMS compared to com-
petitive baselines.

2 LLM-AS-A-SERVICE: MOTIVATIONS
AND CHALLENGES

2.1 On-Device Large Language Model
Large language models. Large Language Models (LLMs),
such as GPT4 [23], Llama2 [62], Gemini [60], etc., are trans-
forming mobile AI. Many cutting-edge applications are em-
powered by LLM, encompassing agent-based UI automa-
tion [65, 67], app built-in chatbot [13], smart voice assis-
tant [11], automated email writer [5], etc.

We briefly introduce the model architecture and inference
procedure of LLMs. The main body of LLMs is a series of
stacked transformer [63] decoder layers shown in Figure 1a,
where input tokens (natural language word pieces) are pro-
cessed and new output tokens are predicted. Its key compo-
nent is the attention mechanism, where tokens are mapped
to Query, Key and Value tensors to compute the cross-token

connections. LLMs perform inference in an autoregressive
manner: in each iteration, it predicts a new token by his-
tory tokens (i.e., prompted tokens and generated tokens).
Specifically, LLM caches the Key and Value tensor of pre-
vious tokens, known as KV Cache [56], to avoid repeated
computations. We show such an inference procedure in Fig-
ure 1b. In iteration 1, the LLM is prompted by “You are a”.
The model predicts a new token “good”, and saves the KV
cache “You are a”. In iteration 2, a new token “boy” is jointly
predicted by input token ‘good” and KV cache “You are a”.
Meanwhile, the KV cache “good” is also saved. In iteration 3,
an “<EOS>” token is predicted by input token ‘boy” and KV
cache “You are a good”, and the LLM inference ends.
On-device LLM. A growing demand is to deploy LLMs on
devices to support privacy-preserving mobile AI. Taking
agent-based UI automation as an example, it takes screen
UI as input [66], which is extremely privacy-sensitive as it
might include chat history, photos and account information
rendered during UI operation. On-device LLM alleviates such
privacy concerns as no data leaves devices. Moreover, on-
device LLM improves service availability and cost efficiency
without relying on network and expensive cloud GPUs.

Recently, remarkable progress has been made towards the
fast and energy-efficient on-device inference of LLMs, en-
compassing a full-stack optimization from algorithm to hard-
ware [10, 20, 59, 73, 75]. For example, mobile SoC vendors
have already provided off-the-shelf hardware support for
LLMs. For instance, Qualcomm reports Snapdragon 8gen3’s
NPU (an ASIC specialized for DNN inference) to be “metic-
ulously designed with generative AI in mind”, capable of
executing LLM at 20 tokens/second [20].

2.2 On-Device LLM as a Mobile OS Service
We envision a major paradigm shift of mobile AI when on-
device LLM matures: LLM as a system service on mobile de-
vices (LLMaaS). It indicates that, the mobile OS exposes an
LLM (as well as the inference infrastructure) as a system
feature to apps for use, just like location and notification ser-
vices, instead of each app owning an LLM individually. This
vision is supported by a recent survey on mobile agent where
many industry experts explicitly call for OS-level LLM [47].
Meanwhile, Google has recently released a preview of such
LLMaaS design, named AICore, as an Android system ser-
vice [1]. The service is already in use by several Google
products, such as voice recorder and smart reply. The inter-
face between apps and LLM Service is text in nature lan-
guage: app sends prompts to LLM Service as LLM inputs;
LLM Service sends back tokens generated during LLM au-
toregressive inference. §3.1 will show a concrete API design
of LLM Service.
Such a vision is backed up by following observations.
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• LLMaaS is feasible. LLM has world knowledge and can
support generic ML tasks [23, 29, 40, 62]; in-context learn-
ing [33, 52] and PEFT [43, 50] are capable of further en-
hancing LLM’s capability on downstream tasks. A recent
study [81] shows that a 7B-sized LLM can achieve bet-
ter accuracy on most mobile AI tasks compared to the
non-LLM models.

• LLMaaS is desirable. Sharing one LLM across apps guar-
antees affordable, mostly static memory footprint; other-
wise, the LLMs owned by each app easily blow up the de-
vice memory. The apps might load the LLMs on demand to
save memory, yet the weights I/O time easily overwhelms
the token generation process: loading LLaMA-7B (4-bit)
takes 4.76 seconds, which equals the time to generating 95
tokens on MI 14 smartphone.

• LLMaaS facilitates hardware and OS design. On one
hand, LLMaaS facilitates the accelerator design on mobile
SoCs, since the LLM architecture becomes static and de-
terminable by device vendors. A recent paper [81] shows
that only the most common 13% of operators can be fully
executed on mobile NPUs. On the other hand, LLMaaS
grants the full visibility of LLM execution to OS, who
thus can schedule, batch, and cache-reuse the inference
requests from different apps for better energy efficiency
or throughput [36, 80].

2.3 LLMaaS Context Managing
A crucial system challenge this work identifies and tackles
is how to efficiently manage the LLM contexts. When an app
uses LLM Service, it maintains a stateful LLM context, in-
cluding mainly the KV cache as aforementioned. Notably,
long model contexts are important to LLM-powered mobile
apps to provide customized and stateful functionality. With a
long context, the mobile app can define more complex tasks
at a time and augment each task with more information so
that it can generate more accurate and personalized output.
Observation#1: LLM contexts are memory-intensive.
Since memory is a scarce resource in executing LLMs [24,
59, 79], we study the memory footprint of typical device-
affordable LLMs and break down it into three categories:
LLM weights, activation buffers, and contexts. As shown in
Figure 2a, the model contexts contribute significantly to the
memory footprint. For instance, a single context with the
maximal context window (4k tokens) of Llama2-7b consumes
over 2GB memory, which is over 50% of model weights. Note
that the LLM weights are shared across all LLM invocations
(thereby static), yet the memory usage of LLM contexts pro-
portionally scales with the number of active contexts and
longer context window (e.g., up to 128k for recent LLMs [6]).
Consequently, the LLM context is more likely to be the bot-
tleneck in LLM Service and needs to be carefully managed.

Observation#2: LLM contexts often need to be persis-
tent. In this work, we use the term “persistence” to indicate
that an LLM context needs to be memorized across multiple
invocations that could span hours or even days, regardless of
whether apps being switched to background or even killed.
For example, a multi-round conversation agent needs to re-
member the historical input/output (though with a maximal
context window size) whenever it is used, akin to ChatGPT
or any other web-based chatting bots. Besides, an UI au-
tomation agent needs to memorize its history operations to
serve users’ further interactions, such as “order a pizza in the
same restaurant as yesterday”. Furthermore, the smart reply
of Google Gboard calls LLM Service to realize “generating
reply suggestions based on the full context of a conversa-
tion, not just a single message.” [3]. Such persistence feature
fundamentally differentiates LLM from prior deep learning
models like CNN whose each invocation is independent.

Without system-level persistence support in LLM Service,
the apps could instead remember the LLM input/output and
feeding them to LLM to “replay” (or recompute) the whole
LLM context at each invocation. This approach, however,
not only incurs extra programming efforts to developers, but
are also highly inefficient on mobile devices. We conducted
preliminary experiments to showcase the resource cost of
such context recomputing. As shown in Figure 2b, recom-
puting a Llama2-7B’s context takes 22.92 seconds on MI14,
while decoding a token for users only takes 0.05 seconds. The
energy consumption of one recompute is roughly equivalent
to watching one minute of YouTube video.
Observation#3: the conventional app-level memory
management is not satisfactory. One intuitive and plausi-
ble design is to account the LLM context memory as part of
the whole app’s memory who actually uses the LLMaaS, and
rely on the app memory manager to manage them as a whole.
For example, mobile devices typically employ low-memory
killer (LMK) [2] that kills background apps and frees their
memory when system goes out of physical memory. In this
approach, the app memory and LLMaaS context memory are
managed together without differentiating them, e.g., both get
released if either of them is too large when out of memory.
However, we find this approach not efficient, since the

context memory and app memory are inherently different
in following aspects. (1) LLM contexts are more expensive
in terms of time/energy expenditure to obtain. Constructing
a context memory takes much time and energy, as this pro-
cedure is via LLM inference. As shown in Figure 2b, killing
an app and recomputing its KV cache incur huge time and
energy overhead (e.g., 22.92 seconds and 94.57 J). (2) LLM
contexts are relatively cold, e.g., used in low frequency, even
when LLM becomes an indispensable feature on mobile de-
vices. For instance, Gboard only invokes LLM Service for



LLM as a System Service on Mobile Devices Conference’17, July 2017, Washington, DC, USA

Llama2-7B
0

2

4

M
em

. (
GB

) 3.92

0.03

2.02

Weights Acti. Buff. Context

OPT-7B
0

2

4 3.81

0.04
1.02

(a) Memory breakdown.
Recomp. Decode

0

10

20

30

La
te

nc
y 

(S
ec

.) 22.92

0.05
Recomp. Youtube

0

50

100

En
er

gy
 (J

) 94.57 90.04

(b) Recompute overhead.

Figure 2: Experiments results on MI14. Experiments
in (a) is performed on Llama.cpp framework [10]. “re-
comp.” in (b) means recompute; “Decode” means gen-
erating a token; “Youtube” means watching videos on
YouTube for 1 minute.

Interface Descriptions

Class LLMService
A system service class that
is similar to the Android’s
android.app.Service class.

Class LLMCtx
A class that defines LLM context.
LLMService interacts with apps
via LLMCtx.

Method newLLMCtx(
Optional systemPrompt
)->LLMCtxStub

A method that returns a stub of
a new LLM context. On initializing,
optional system prompts can be
assigned to LLMCtx.

Method bindLLMService(
app
)->LLMService

A method that binds the
LLMService to an app.

Method callLLM(
LLMCtxStub, newPrompt
)->outputs

A method that calls LLMService
via an LLMCtx. It takes an
LLMCtxStub and a new prompt as
input, and returns the updated
LLMCtxStub and decoding results.

Method delLLMCtx(
LLMCtxStub
)

A method that deletes an LLMCtxStub.

Table 1: LLMS interfaces and descriptions.

smart reply functionality during chatting on telegram. Con-
sequently, a lightweight app could easily gets killed by OS’s
LMK if it possess an active LLM context, which though will
not be used in a near future. (3) LLM contexts are naturally
compressible, as will be discussed in §3.1, while app mem-
ory are mostly not. Treating the memory of LLM contexts
and app as a whole misses such optimization opportunity.
Instead, we propose decoupling the management of app and
model context memory for better LLM efficiency.

3 LLMS DESIGN
3.1 LLMS Overview.
This work advances the vision of LLMaaS with LLMS, a first-
of-its-kind LLM Service design on devices with a dedicated
memory management mechanism of LLM contexts.
LLMSAPIs. As shown in Table 1, we design LLMS’s interfaces
to be compatible with Android Services. Apps interact with

LLMService via LLMCtx. Specifically, we show a chatbot app
in Figure 3. Each round, an app appends new prompts to
LLMCtx and invokes LLMService. When token generation
completes, LLMCtx is updated. Such a chatbot can hold mul-
tiple contexts, which are persistent until the app explicitly
deletes them through delLLMCtx(). LLMS globally config-
ures the maximal context numbers per app and the maximal
context length. LLMS allows each app to hold up to K (a con-
figurable system parameter) active LLM contexts. Note that
each active LLM context has a maximal memory usage with
a maximal context window size supported by the LLM.
LLMS’s design goal. As a system service, LLMS optimizes for
the Quality-of-Service (QoS) it exposes to apps. Specifically,
LLMS’s design centers around the memory inefficiency chal-
lenge as presented in §2.3, aiming to minimize the context
switching latency, akin to how the mobile memory managers
minimize the app cold start latency [26, 55, 77]. For exam-
ple, in Figure 3, LLMS ensures fast context preparation (i.e.,
make it in memory for LLM inference) when a context is
invoked. This goal has not been explored in prior literature,
and is fundamentally different with (as well as orthogonal
to) LLM inference speed optimizations during continuous
token generation [59, 73].
LLMS’s context memory model. LLMS exploits a unique
design space: unlike the conventional app memory, LLM
context memory is essentially data chunks that can be ap-
proximated. We show the main body of context memory,
KV cache’s memory details in Figure 4(a/b). Its layout is a
growing token sequence that can be divided into chunks
with flexible granularity; each token is a tensor whose num-
bers can be approximated (e.g. through quantization [70]
or sparsification [85]). Identifying the above characteristics,
LLMS further introduces data swapping to extend the limited
device memory, and builds its memory model with swap-
pable and approximatable chunks. As shown in Figure 4(c),
a context is divided to swappable fragment (KV cache) and
memory-resident fragment (prompt/output texts) by LLMS.
The swappable fragment is managed in chunks. Each chunk
has the same in-chunk compression ratio and same numbers
of tokens. In doing so, LLMS makes full use of the limited de-
vice RAM and exposes ample virtual memory to contexts. By
carefully selecting the chunk size, LLMS can utilize memory
with minimal fragmentation compared to managing the con-
text as a whole; compared to token-level managing, a chunk
can make better use of IO bandwidth. Such a chunk size is
set empirically to a default number 16 tokens. We demon-
strate its effectiveness and discuss its selection rationale with
experiments in §5.4.
Overview of LLMS’s context memory management. Fig-
ure 5 shows an overview of LLMS. The core of LLMSmanages
chunks of context memory during their lifecycle. It performs
the following primitives: 1○Claim, which directly allocates
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4 pr ivate void newSess ion ( ) {
5 / / b ind LLM s e r v i c e t o c u r r e n t app
6 LLMService l lm S e r v i c e =
7 b indLLMServ ice ( curApp ) ;
8 / / new LLM c o n t e x t
9 LLMCtxStub l lmCtx = newLLMCtx ( ) ;
10 / / c h a t b o t l o g i c
11 while ( prompt = ge tTex t ( ) ) {
12 S t r i n g r e s u l t =
13 l lm S e r v i c e . ca l lLLM ( l lmCtx , prompt ) ;
14 Log . d ( r e s u l t ) ;
15 }
16 / / d e l e t e LLM c o n t e x t when s e s s i o n end s
17 delLLMCtx ( l lmCtx ) ;
18 } }

Figure 3: Left: a workflow of a chatbot app calling LLM Service via LLMS. Right: pseudo codes in Java.
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free memory to a chunk; 2○Reclaim, which swaps a chunk
out to disk and reallocates its memory to a new chunk when
memory is under pressure; 3○Load, which moves a missing
chunk from disk to memory before LLM inference; 4○Fault,
which moves a missing chunk from disk to memory at each

LLM inference iteration. In the rest of the section, we intro-
duce the three key techniques of LLMS to meet its design goal:
(1) Tolerance-Aware Compression (§5.2) adopts chunk-wise
compression to minimize I/O overhead without noticeable ac-
curacy loss; (2) Swapping-Recompute Pipeline (§3.3) further
utilizes the idle computing to accelerate context switching;
(3) Chunk Lifecycle Management (§3.4) judiciously decides
which chunk and when to swap-out to enhance LLMS’s QoS.

3.2 Tolerance-Aware Compression
Chunks exhibit different accuracy tolerance to com-
pression. KV cache compression methods such as quanti-
zation or sparsity have been studied by many recent liter-
ature [70, 85]. However, such methods treat the context as
a whole and do not make full use of the idea of chunking.
LLMS’s key idea is that, different chunks do not contribute co-
equally to LLM inference. For instance, a context chunk with
tokens like “context management system” should contain
more information than an “and so on” chunk, and the latter
should show stronger tolerance to compression (i.e., can be
further compressed). Recognizing that, LLMS’s chunk com-
pression is tolerance-aware: it first applies a conservative
KV cache compression to all chunks first, and then itera-
tively compresses those with higher accuracy-loss tolerance
aggressively.
Measuring the tolerance. Compression tolerance is mea-
sured by the information density. Information density 𝐷𝑖 of
the 𝑖𝑡ℎ chunk is calculated by the attention scores:

𝐷𝑖 =
1

𝑞 − 𝑝

𝑞∑︁
𝑐𝑜𝑙=𝑝

1
𝐿

𝐿∑︁
𝑙=0

1
𝐻

𝐻∑︁
ℎ=0

( 1
𝑅 − 𝑟𝑜𝑤

𝑅∑︁
𝑟𝑜𝑤=0

𝐴
𝑙,ℎ

𝑟𝑜𝑤,𝑐𝑜𝑙
)), (1)
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Figure 6: LLMS’s tolerance-aware compression.

where 𝐴𝑙,ℎ
𝑟𝑜𝑤,𝑐𝑜𝑙

is the attention score of the 𝑙𝑡ℎ layer and ℎ𝑡ℎ
head, and the 𝑖𝑡ℎ chunk contains tokens from the 𝑝𝑡ℎ to 𝑞𝑡ℎ .
Specifically, as shown in Figure 6a, the attention score is a 𝑅
rows and 𝐶 columns lower triangular matrix calculated by
𝐴 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑚𝑎𝑠𝑘 (𝑄 ·𝐾𝑇

√
𝑑𝑘

)) [63]. Each row represents the
“attention score” that a token pays to others. The scores are
softmaxed and sums to 1.0 at each row. For instance, the
number “0.5” at “a” row and “are” col means that the token
“a” pays 50% attention to “are”. If a token is always paid more
attention by other tokens, it should be more informative.
Thereby, LLMS estimates a token’s information density by
averaging its column in attention score matrix. In Figure 6a,
the information density of token “a” is (0.3+0.5+0.1)/3 = 0.3.
As shown in Equation 1, such token-level information density
is further accumulated by heads, layers and tokens to achieve
chunk-level density, i.e., compression tolerance.
Compressing chunks. LLMS provides multiple levels of
compression ratio for chunks, denoted as {𝑟𝑎𝑡𝑖𝑜𝑤}. Before
compression, LLMS computes each chunk’s 𝐷𝑖 and deter-
mines its ranking𝑅𝑎𝑛𝑘𝑖 (%) among all other chunks in the con-
text. Then a series of thresholds {𝜎𝑟𝑎𝑡𝑖𝑜 } are formed. Chunk
𝑖 is compressed to 𝑟𝑎𝑡𝑖𝑜𝑤 based on 𝑅𝑎𝑛𝑘𝑖 , s.t.,

𝜎𝑟𝑎𝑡𝑖𝑜𝑤+1 < 𝑅𝑎𝑛𝑘𝑖 ≤ 𝜎𝑟𝑎𝑡𝑖𝑜𝑤 . (2)
Specifically, the thresholds are formed by maximizing the
overall information intensity of a context under a given
global average compression ratio 𝑟𝑎𝑡𝑖𝑜𝑔𝑙𝑜𝑏𝑎𝑙 , which is con-
figurable by the OS. LLMS maximizes

𝑐𝑡𝑥𝐼𝑛𝑓 𝑜 =
∑︁
𝑤

1
𝑟𝑎𝑡𝑖𝑜𝑤

∑︁
𝜎𝑟𝑎𝑡𝑖𝑜𝑤+1<𝑅𝑎𝑛𝑘𝑖≤𝜎𝑟𝑎𝑡𝑖𝑜𝑤

𝐷𝑖 ,

𝑠 .𝑡 .,
∑︁
𝑤

𝑟𝑎𝑡𝑖𝑜𝑤 · (𝜎𝑟𝑎𝑡𝑖𝑜𝑤 − 𝜎𝑟𝑎𝑡𝑖𝑜𝑤+1 ) = 𝑟𝑎𝑡𝑖𝑜𝑔𝑙𝑜𝑏𝑎𝑙 .

(3)

In practice, LLMS adopts quantization for compression.
During LLM inference, the generated KV cache is quan-
tized by state-of-the-art context-level quantization meth-
ods [14, 70] that have already been built in LLM. LLMS further
performs channel-wise linear [39] quantization with lower

bitwidth. For instance, atop an 8-bits quantization method,
LLMS can further provide 4-bits and 2-bits quantization for
some chunks. Formula 3 can be optimized through a simple
differentiation in this case, as there is only one variable. Note
that LLMS’s tolerance-aware compression is general. When
the LLM’s default KV quantization algorithm is 4-bits, it can
still work by providing 2-bits and 1-bit further quantization.
Micro experiments are conducted to show the effective-
ness of LLMS’s tolerance-aware compression. We adopt the
KV cache quantization method of a state-of-the-art LLM
inference framework LMDeploy [14], whose default quan-
tization bitwidth is 8-bit (INT8). We set LLMS compression
ratios to {𝑟𝑎𝑡𝑖𝑜𝑤} = {8/8, 4/8, 2/8}. With the global com-
pression ratio 𝑟𝑎𝑡𝑖𝑜𝑔𝑙𝑜𝑏𝑎𝑙 set to 50%, we run language mod-
eling with Llama2-7B model on WikiText-2 dataset [51]. As
shown in Figure 6b, we compare our method to LMDeploy’s
8-bits (LMDeploy) and 4-bits (LMD-4bits) quantization. Our
method achieves comparable accuracy (perplexity) to 8-bits
quantization and comparable memory consumption com-
pared to 4-bits quantization. We show detailed discussion of
our method’s efficacy and rationale of ratio selection in §5.2.

3.3 Swapping-Recompute Pipeline
The Load primitive in LLMS loads missing chunks from disk
to memory upon calling callLLM(). LLMS introduces recom-
pute to swapping-in to further accelerate it, as processor is
idle during disk I/O. Recompute here means that use the orig-
inal prompt text peices to calculate a portion of KV cache,
as KV cache is essentially LLM activations. By recomputing
some chunks in a pipelined maner instead of loading them
through disk I/O, we can fully utilize the hardware.
Making interleaved chunks recomputable. Recall that in
LLMS’s context memory model, each chunk can be swapped
out to disk. Thereby, LLMS faces a challenge: employing re-
compute to recover interleaved non-contiguous chunks. To
do so, LLMS refines the LLM recompute procedure. Given
a chunk-wise KV cache C = {𝑐ℎ𝑢𝑛𝑘𝑖 } and corresponding
prompt text T = {𝑡𝑒𝑥𝑡𝑖 }, LLMS recovers the missing chunks
{𝑐ℎ𝑢𝑛𝑘𝑜 } through {𝑡𝑒𝑥𝑡𝑜 } and {𝑐ℎ𝑢𝑛𝑘𝑖 } − {𝑐ℎ𝑢𝑛𝑘𝑜 }. Specifi-
cally, Figure 7 gives an example of LLMS’s chunk-recomputing
procedure. In Figure 7, the KV cache of a text sequence “a
b c d e f” is partly swapped out of memory (“c” and “e”). To
recover, LLMS embeds “c” and “e” to tokens, and recomputes
them to get Q, K and V tensors. Here, LLMS applies a global
position encoding to Q and K, i.e., encoding “c” with position
3 and “e” with position 5. Then, the recomputed K/V of “c”
and “e” is inserted to the K/V of “a”, “b”, “d” and “f”; the entire
K/V is recovered in current layer. After that, Q is calculated
with the recovered K to get the attention scores. The atten-
tion mask is a causal mask [63] that retains all tokens before
the current token. In Figure 7, the attention mask masks out
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Figure 8: Swapping-recompute pipeline.

“d e f” for “c” and “f” for “e”. Finally, the tokens that input to
the next layer are calculated by the attention scores and the
recovered V. In doing so, LLMS realizes the exact recompute
of any chunks.
Swapping-recompute pipeline. LLMS concurrently recom-
putes a portion of chunks and swaps other chunks into mem-
ory from disk. As shown in Figure 8, I/O and recompute
are overlapped in a pipeline, where the next layer’s I/O is
performed during the current layer’s recompute.
Such a pipeline is elastic: LLMS can adjust the loading

configuration (i.e., which chunks are recomputed and which
chunks are swapped) to maximize the efficiency. LLMS plans
the configuration of each loading based on offline profiled
hardware information.

i. Profiling. Recompute delay𝑇𝑟𝑒 (𝑥, 𝑓 , 𝑒) is a function w.r.t.
the number of chunks 𝑥 , the hardware frequency 𝑓 and the
energy mode 𝑒 . IO delay 𝑇𝐼𝑂 (𝑚) is a function w.r.t. the size
𝑚 of on-loading chunks. In practice, we approximate𝑇𝑟𝑒 and
𝑇𝐼𝑂 with linear functions. LLMS performs a cost-effective one-
shot measurement with discrete test points at installation
time. The above functions fit these test points.

ii. Planning. LLMS plans its elastic pipeline by solving the
following optimization. Given the on-loading memory size𝑚
and the number of chunks {𝑥𝑟𝑎𝑡𝑖𝑜𝑤 } with different compres-
sion ratios, LLMS minimizes the following equation by de-
termining a proper number of recomputed chunks {𝑥𝑟𝑒𝑟𝑎𝑡𝑖𝑜𝑤 }

with different compression ratios.

𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝐷𝑒𝑙𝑎𝑦 =𝑚𝑎𝑥 [𝑇𝑟𝑒 (
∑︁
𝑤

𝑥𝑟𝑒𝑟𝑎𝑡𝑖𝑜𝑤 ),

𝑇𝐼𝑂 (𝑚 −
∑︁
𝑤

𝑟𝑎𝑡𝑖𝑜𝑤 · 𝑥𝑟𝑒𝑟𝑎𝑡𝑖𝑜𝑤 )],

𝑠 .𝑡 .,∀𝑤, 𝑥𝑟𝑒𝑟𝑎𝑡𝑖𝑜𝑤 < 𝑥𝑟𝑎𝑡𝑖𝑜𝑤 .

(4)

Such a problem is solved by a linear programming, which
incurs negligible overhead on devices.

3.4 Chunk Lifecycle Management
LLMS manages the lifecycle of KV cache chunks to be more
friendly to context switching. It mainly decides which chunk
and when to swap out. Regarding which chunk to swap
out, it employs an LCTRU queue to determine the eviction
priority. Regarding when to swap out, it adopts an ahead-of-
time swapping-out approach to hide the time for reclaiming
memory during context switching.

i. AoT Swapping. Compared to complex memory modifi-
cation timing of apps [38, 46, 89], LLM Service’s memory
modification is much easier to monitor: chunks are sequen-
tially modified during LLM inference. Thus, swapping-out
can be performed ahead of relaim. LLMS swaps out all the
modified chunks at the returning stage of callLLM() (even
when not under memory pressure). Its delay is imperceptible
to the LLM Service caller. In doing so, the reclaim primitive
at context preparation stage is overhead-free.

ii. LCTRU-Queue-based Eviction. A good eviction policy
can reduce the overhead of swapping. App memory manag-
ing methods, such as LMK, evict memory based on the app
types (ranked by oom_adj_score). As a system service, LLMS
does not differentiate the type of context owner. Its eviction
policy is based on two principles: i) leveraging contexts’ time
locality; ii) heavy chunks should be evicted first. Principle ii
is derived by the swapping-recompute pipeline in §3.3. Given
memory size𝑚, the total number of chunks is inversely pro-
portional to the number of less-compressed chunks. Accord-
ing to Equation 4, under the same memory size, a smaller
number of chunks will result in a lower pipeline delay, as the
recomputing delay 𝑇𝑟𝑒 (𝑥, 𝑓 , 𝑒) is irrelevant to memory size.

Based on the above principles, LLMS’s employs an LCTRU
(Least Compression-Tolerable and Recently-Used) queue.
The LCTRU queue consists of multiple concatenated sub-
queues with different compression ratios, i.e., 𝑄𝐿𝐶𝑇𝑅𝑈 =

{𝑄𝑟𝑎𝑡𝑖𝑜𝑤 }. Each sub-queue is ordered by the recently ac-
cessed time of its in-memory chunks. 𝑄𝐿𝐶𝑇𝑅𝑈 is updated
upon each invocation of callLLM(). When memory reclaim-
ing occurs, LLMS pops out the corresponding number of ele-
ments from 𝑄𝐿𝐶𝑇𝑅𝑈 based on the required memory size.
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Device Name RAM Disk Hardware Accelerator
Jetson Orin NX 8 GB NVMe SSD 1024-core Ampere™ GPU
Jetson TX2 8 GB SATA HDD 256-core Pascal™ GPU
MI14 Smartphone 8 GB UFS 4.0 Hexagon™ 8Gen3 NPU

Table 2: Details of mobile/edge devices we use.

Besides, LLMS manages a context’s chunks as a memory-
resident working set: during callLLM(), LLMS locks the con-
text memory, forbidding reclaiming their own chunks. In
doing so, LLMS avoids system thrashing and realizes being
transparent to LLM inference. Notably, although it will not
be triggered by LLMS, the Fault primitive is still retained for
robustly handling exceptions such as system crush.

4 IMPLEMENTATION AND
METHODOLOGY

LLMS implementation. We have fully implemented a LLMS
prototype with 3.5k LoC in Python/C++. We implement an
LLM Service on three representative COTS mobile/edge de-
vices shown in Table 2. Jetson Orin NX/TX2 [7, 8] are high-
end edge boards for autonomous robotics or cars. MI14 [15]
is a smartphone equipped with UFS4.0 storage and Hexagon
8Gen3 NPU. We build LLM Service atop Huggingface Trans-
formers [68] and mllm [53]. The former is the most pop-
ular off-the-shelf LLM deployment framework on devices
with Pytorch support [19]. On smartphones, we choose the
latter because it is lightweight and resource-efficient. The
LLM Service runs as an independent process. It receives
inference requests from client processes through socket IPC.
Except for the client processes and the LLM Service pro-
cess, we do not run any other non-essential application pro-
cesses on device. We select two LLMs: Llama2-7B [62] and
OPT-6.7B [83], with a maximal context length as 4K and
2K, respectively. We apply a sliding window [71] to the con-
text to enable LLM inference in a streaming manner. The
weights are downloaded from the official repositories on
huggingface website. We quantize LLM weights to 4-bit in-
tegers with GPTQ [34]. The KV cache is stored in 8-bits
integer by default [70]; LLMS further applies chunk-wise
compression to it with its tolerance-aware compression tech-
nique (§5.2) with a global compression ratio 𝑟𝑎𝑡𝑖𝑜𝑔𝑙𝑜𝑏𝑎𝑙 as
50%. We select three levels of chunk-wise compression ratio,
i.e., {𝑟𝑎𝑡𝑖𝑜𝑤} = {8/8, 4/8, 2/8}.

The context memory management module of LLMS is em-
bedded within LLM Service. We use pickle [17] and pickle-
in-cpp [18] to implement memory-disk swapping. The chunk
size is set to 16 tokens. Since the sub-byte data format is not
natively supported by the LLM inference framework, LLMS
utilizes parallel bit-shift operations to pack the compressed
data into a supported INT8 format. The swapping-recompute

Task Dataset Delta length
News Classification AGnews [84] 0.2k–0.5k
Document Summary Xsum [54] 1k–2k
Chat History Summary Samsum [37] 0.1k–0.3k
Text Comprehension cnn dailymail [41] 0.5–1k
Translation WMT17-de-en [28] 0.1k–0.5k
Sentiment Classification SST-2 [28] 0.01k–0.1k

Table 3: Datasets we use for trace synthesis. An en-
try in a dataset is regarded as one LLM calling. "Delta
length" refers to the length of context growth after
each callLLM().

pipeline is implemented by multithread. We use an indepen-
dent I/O thread to load chunks from disk to memory. The
computation thread proceeds to the next layer only after the
I/O thread for the current layer (reading the next layer’s KV
cache) has completed.
Context switching trace. To the best of our knowledge,
there is no publicly available trace of LLMaaS context switch-
ing on devices. In order to comprehensively and accurately
evaluate LLMS, we synthesized a trace that formulated by

𝑇𝑟𝑎𝑐𝑒 = {(𝑇𝑖𝑚𝑒𝑖 ,𝐶𝑡𝑥𝑡𝐼𝐷𝑖 , 𝑃𝑟𝑜𝑚𝑝𝑡𝑖 , 𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ𝑖 )}, (5)

Where𝑇𝑖𝑚𝑒𝑖 is the 𝑖𝑡ℎ calling time of callLLM()with𝐶𝑡𝑥𝑡𝐼𝐷𝑖 ,
and 𝑃𝑟𝑜𝑚𝑝𝑡𝑖 and 𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ𝑖 are the input and ideal out-
put text. The prompts and groundTruths for a context are
derived from a dataset in Table 3, while a dataset can derive
multiple contexts. We generate calling time𝑇𝑖𝑚𝑒𝑖 using Pois-
son distribution with different calling rates. Akin to apps’
switching [26, 55, 77], context switching pattern could be
complex: it can be either irregular or with preference (e.g.,
influenced by invoke history or workloads). Recognizing
that, we construct the following various patterns of context
switching to simulate real-world scenarios.
• Random. Contexts are switched with the same probability.
• Markov. Context switching is determined by a first-order
Markov process, which assigns higher priority to recently
used contexts.
• Gaussian. Context switching follows a Gaussian distribu-
tion w.r.t delta length. In this pattern, a context with moder-
ate workload is more likely to be requested by the apps.

Note that LLMSwill not try to predict the context switching
pattern, as such a pattern cannot be known as a priori.

We synthesize 72-hours-long traces with different settings
to evaluate LLMS. We will make the traces used in our ex-
periments publicly available for reproducibility and further
research on on-device LLMaaS.
Baselines.We compare LLMS to the following alternatives
by reporting the performance on the same trace:
• LMK. Contexts are killed by a low-memory killer [2] when
memory is under pressure. The killed contexts need to be
recomputed when called again.
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(a) Llama2-Orin (b) OPT-Orin

(d) OPT-TX2(c) Llama2-TX2

(f) OPT-MI14(e) Llama2-MI14
Figure 9: On-average context switching latency on a 72-hours-long trace.
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Figure 10: Performance under variousmemory budgets.
Model: Llama2; device: Orin.
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Figure 11: Performance under variousmaximal context
lengths. Model: Llama2; device: Orin.

• Swapping. Contexts are swapped out to disk as a whole
when memory is under pressure. The swapped-out contexts
need to be swapped-in when called again.

• VLLM-S. VLLM [45] is a state-of-the-art KV cachemanaging
system without compression. We reproduce its chunk-wise
KV cache managing on devices. Chunks are swapped under
memory pressure.
• VLLM-SQ. KV cache chunks in VLLM-S are further com-
pressed by a state-of-the-art activation quantization algo-
rithm SmoothQuant [70]. Chunks are equally quantized to
the same level (INT8).
Metrics. We mainly report two metrics of LLM Service’s
context switching QoS: Context Switching Latency on Aver-
age and Maximal Number of Active Contexts. The former is
under a given number of active contexts; the latter is under
a given switching latency constraint. “Active context” refers
to contexts that are persistent (have not been deleted by
delLLMCtx()) and could be invoked.

5 EVALUATION
5.1 End-to-End Context Switching

Performance
We first evaluate to what extent LLMS enhances the context
switching QoS of LLM Service.
End-to-end switching latency. We report the on-average
switching latency of 2/4/6/8/12/16 active contexts by running
the synthesized trace in §4. The maximal retained context
length is set to the LLM’s default context window (4k for
Llama2 and 2k for OPT). The calling rate is one request in five
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minutes on average. All remaining memory after running
the LLM Service on the device is dedicated to contexts. The
experimental results are shown in Figure 9. The y-axis has
been taken with symmetric logarithmic scale. We have the
following observations.
In general, compared to the de facto app memory man-

aging method LMK, LLMS achieves a significant reduction
in switching latency by up to 2 orders of magnitude; com-
pared to the vanilla Swapping baseline, LLMS reduces switch-
ing latency by 1–2 orders of magnitude; compared to other
strong baselines that applies chunking+swapping (VLLM-S)
and chunking+swapping+compression (VLLM-SQ) to KV cache
managing, LLMS still achieves up to 20× and on average 9.7×
reduction.

LLMS brings substantial context switching speed improve-
ments across various context switching patterns, devices,
and LLMs. We conducted experiments with identical set-
tings for the three patterns (Random, Markov and Gaussian).
The results indicate that LLMS can consistently handle dif-
ferent context access patterns. On three different devices
(Orin/TX2/MI14), LLMS consistently demonstrates signifi-
cant performance improvements. Notably, on the TX2, the
overall switching latency is longer compared to the other
two devices. This is due to its lower disk bandwidth (SATA
HDD) and less-powerful hardware accelerators, which re-
strict LLMS’s swapping and swapping-recompute pipeline.
Nevertheless, LLMS still outperforms baselines significantly,
owing to its context compression and chunk lifecycle man-
agement. Additionally, LLMS achieves substantial performance

improvements across different LLMs. On the OPT model, the
switching latency is lower, attributed to its smaller context
window (traded for shorter memory and lower in-context
learning ability).
Various memory budgets. We report the maximal num-
ber of active context under different switching latency con-
straints. As shown in Figure 10, under a 10 ms latency con-
straint, LLMS supports the switching between 4.32/10.72/16.32
contextswith 1GB/2GB/3GBmemory budget, 1.99×/2.48×/2.85×
higher than baselines; under a 25 ms latency constraint,
LLMS supports the switching between 9.28/19.34/27.38 con-
texts with 1GB/2GB/3GB memory budget, 4.16×/3.62×/3.57×
higher than baselines.
Various maximal context lengths.We evaluate maximal
number of active context under various maximal context
lengths. As shown in Figure 11, under a 10 ms latency con-
straint, LLMS supports 2.57×/2.95×/3.31×/3.73×/2.24× more
active contexts with 256–4096 maximal context lengths.

5.2 Compression Efficacy
Recall that LLMS employs various levels of compression for
different chunks. We evaluate its overall efficacy and discuss
the rationale of parameter selection specified in §4. In Fig-
ure 12, we compare statically quantizing all chunks to the
same bitwidth to our quantization. We choose [70] for static
quantization. The accuracy and compression ratio are aver-
aged across datasets mentioned in Table 3. The 𝑟𝑎𝑡𝑖𝑜𝑔𝑙𝑜𝑏𝑎𝑙
and {𝑟𝑎𝑡𝑖𝑜𝑤} are same to §4.
Overall efficacy.We observe that our approach outperforms
static methods. Due to plenty of extreme outliers [70], ag-
gressively compressing the entire KV cache into 4-bits/2-bits
incurs significant accuracy loss (up to 59%/99%). In compar-
ison, our method achieves a compression ratio 2× higher
than static methods with negligible loss in accuracy.
Rationale of 4-bits/2-bits compression. Generally, as
shown in Figure 12, a three levels compression have pro-
vided substantial space for almost lossless approximation.
From the perspective of implementation, 2-bits and 4-bits
compression are more hardware-friendly on mobile SoCs.

5.3 Ablation Study
We further conduct a breakdown analysis of the benefit
brought by LLMS ’s each technique. The experiments are per-
formed on Jetson Orin NX. The results are illustrated in Fig-
ure 13.We observe that all techniques have non-trivial contri-
bution to the improvement. For instance, when using Llama2
model to serve 8 active contexts that called in a Markov pat-
tern, LLMS takes 0.27 seconds to switch to a new context
on average. Without our chunk lifecycle management, this
number becomes 0.62 seconds; without our tolerance-aware
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Figure 14: Influence of chunk size. Device: Orin; model:
Llama2; active contexts: 8.

compression or swapping-recompute pipeline, this number
becomes 0.42 seconds and 1.62 seconds, respectively.

5.4 Chunk Size Selection
LLMS manages KV cache in chunks. In our all experiments,
the chunk size is set to 16 tokens. Here we evaluate the
influence of chunk size on context switching to validate
this setting. In Figure 14, we report the context switching
latency under various token numbers in a chunk. We observe
that a too large or too small chunk size incurs undesirable
switching latency. The reasons are two fold: small chunks
cannot fully utilize disk bandwidth; large chunks result in
redundant swapping. Therefore, LLMS selects the optimal
trade-off point to fully utilize the idea of chunking.

5.5 Service Stability Analysis
We analyze LLMS’s influence on the stability of LLM Service.
Influence on LLM inference. By design, LLMS aims to
minimize the context switching latency. In Figure 15a, we
compare the performance of LLM inference between scenar-
ios with and without the use of LLMS. As observed, there is
no significant performance difference (within 5%).
Sensitivity to service calling frequency. Recall that we
generate the trace’s LLMaaS calling time with a Poisson dis-
tribution, which is influenced by the calling rate, i.e., service
calling frequency. In Figure 15b, we report the switching
latency under various request interval with 16 active con-
texts on Jetson Orin NX. LLMS demonstrates stable context
switching latency at both high and low calling frequencies.

6 RELATEDWORK
Foundation models on devices. AI has become a preva-
lent workload on mobile devices. Empowered by the recent
progress, especially LLMs in ML community, some work
proposes replacing fragmented task-specific models with a
one-size-fits-all foundation model [48, 60, 62, 69, 75, 78, 81].
Such models have larger parameter sizes, stronger general-
purpose task capabilities, and support multiple modalities.
For instance, M4 [81] achieves comparable accuracy to spe-
cializedmodels on fivemodalities (image/text/audio/IMU/mix)
with a multi-path executed architecture. With the support of
corresponding software [10, 53, 59, 61, 73] and hardware [20],
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Figure 15: LLMS’s influence on LLMaaS stability. “w/”
and “w/o” in (a) meansmanaging contextmemory with
and without LLMS, respectively.

a plethora of revolutionary mobile applications [4, 12, 16, 30,
66, 72, 74] are built based on foundation models. One killer
app among them is the LLM agent-based UI automation [47,
66]. For instance, Autodriod [66] employs Vicuna [31] to
complete an arbitrary task by interacting with the smart-
phone GUI. LLMS sheds light on deploying the aforemen-
tioned foundation models on devices. At the OS level, LLMS
provides opportunities to leverage NPU or batching; at the
application level, by treating context as LLMaaS interface,
LLMS can provide personalized and stateful services for apps.
Swapping-based mobile OS memory management. A
considerable amount of work [38, 44, 46, 88, 89] employs
swapping to mitigate the cold-start latency caused by low-
memory killer. For instance, MARS [38] optimizes Linux
swapping to enhance performance on flash storage devices.
By deactivating garbage collection, it reclaims memory from
background apps. Exploiting the opportunity of KV cache,
LLMS’s swapping differs from these approaches. For instance,
its swapping operates at the granularity of token chunks,
rather than pages or objects. Also, in contrast to lossless
app memory compression (e.g., zram [21]), LLMS introduces
approximations for chunks.
KV cache approximation. KV cache facilitates LLM in
memorizing historical knowledge. Some recent work [22, 70,
82, 85, 87] focuses on optimizing KV cache by sparsification
or quantization. Dynamic sparsification methods, such as Big
Bird [82], only mitigates the compute overhead; static spar-
sification methods, such as 𝐻2𝑂 [85], reduces memory foot-
print by permanently removing tokens from subsequent LLM
decoding. Regarding quantization, a considerable amount of
work [14, 39, 70] can losslessly quantize KV cache to 8-bit
integers. Some work [86] even propose quantizing it to 4
bits, partly sacrificing generation quality for lower mem-
ory consumption. LLMS’s compression is orthogonal to these
techniques. Atop them, it further performs more aggressive
quantization on less informative chunks to achieve a better
accuracy-memory trade-off.
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7 CONCLUSION
This work advocates LLM as a service on mobile devices
(LLMaaS), a new paradigm to fully unleash the power of
on-device LLM. We then present an end-to-end LLMaaS de-
sign named LLMS with an efficient memory management
system of LLM contexts. LLMS enables low-overhead LLM
context switching under tight memory constraint through
fine-grained, chunk-wise, globally-optimized KV cache com-
pression and swapping. Extensive experiments demonstrate
the efficacy of LLMS.
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