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Abstract—Visualization for explainable and trustworthy machine learning remains
one of the most important and heavily researched fields within information
visualization and visual analytics with various application domains, such
as medicine, finance, and bioinformatics. After our 2020 state-of-the-art report
comprising 200 techniques, we have persistently collected peer-reviewed articles
describing visualization techniques, categorized them based on the previously
established categorization schema consisting of 119 categories, and provided
the resulting collection of 542 techniques in an online survey browser. In this
survey article, we present the updated findings of new analyses of this dataset
as of fall 2023 and discuss trends, insights, and eight open challenges for using
visualizations in machine learning. Our results corroborate the rapidly growing
trend of visualization techniques for increasing trust in machine learning models
in the past three years, with visualization found to help improve popular model
explainability methods and check new deep learning architectures, for instance.

T rust in machine learning (ML) models is a major
concern in leveraging these technologies for
real-world applications.1 Yet, ML models are

being deployed in different application fields, and their
role in decision-making processes is growing rapidly.
Fields such as healthcare and criminal justice increas-
ingly depend on ML models to make irreversible de-
cisions that impact human lives.2 However, the black-
box nature of some ML models poses a threat to their
adoption. Domain experts often hesitate to rely on ML
models for high-risk decision-making, as the inability
to understand their inner workings fosters mistrust.3

In response to the outlined challenges, researchers
in academia and industry have designed several in-
novative solutions. For example, Google’s Explainable
Artificial Intelligence (AI) Cloud and Descriptive mA-
chine Learning EXplanations (DALEX) package aims
to improve the collaboration among domain experts to
address the challenges posed by the complexity of AI.
Except for all the visualization techniques analyzed in
this survey article, recent frameworks set a founda-
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tion for developing techniques that facilitate users in
communicating and externalizing their trust explicitly
across varied ML stages and in understanding the
complexities of human and AI interactions.4,5 Other
works bridge the significant gap between ML outputs
and human cognition by promoting a cross-disciplinary
approach and building a robust model designed to
examine the sender’s explanation intention and its
ensuing impact on the receiver’s perception.6,7

We base this work upon the findings of our previ-
ously published survey articles8,9 and others that have
stressed the need for visual analytics (VA) to improve
trust and transparency in areas such as dimensionality
reduction (DR),11 deep learning (DL),12,13 and ML
in general.14,15 After our 2020 state-of-the-art report
(STAR) comprising 200 techniques,9 we have been
collecting peer-reviewed articles describing visualiza-
tion techniques for enhancing trust in ML, categorizing
them based on the previously established categoriza-
tion schema of 18 groups and 119 categories in total,
and providing the hand-curated compilation of 542
visualization techniques in an online survey browser
available at:

https://trustmlvis.lnu.se
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FIGURE 1. The 542 collected techniques by publication year.
Note:
(∗) The data collection was completed in September 2023.
(†) This technique was found in one article’s Related Work section.

Although this survey article follows the same styling
and overall structure as our STAR published in 2020,9

here, we made a new analysis of the updated dataset
and discuss the most recent findings that provide us
with an overview of the trust in ML visualization field as
of fall 2023, including insights about the visualization
community. The contributions of this article are:

• the 542 techniques from the past 15 years cat-
egorized in trust levels (TLs) of interactive ML
(compared to 200 in the 2020 STAR);

• the trends and category correlations found using
topic, temporal, correlation, and pattern mining
(new compared to the 2020 STAR) analyses;

• the interactive survey browser that aids domain
experts, ML experts, visualization researchers,
and others in exploring the field’s literature; and

• the eight open challenges in VA for increasing
the trustworthiness of the ML process (new com-
pared to the six challenges of the 2020 STAR).

In this survey article, we rely on the same literature
search methodology and run an identical analysis as
in our 2020 STAR.9 We also adopt the same general
definition of trust by Lee and See:10 “the attitude that
an agent will help achieve an individual’s goals in
a situation characterized by uncertainty and vulnera-
bility” towards a more detailed, multi-level model of
trust in ML that consists of five trust levels: the raw
data (TL1: source reliability and transparent collec-
tion process), the processed data (TL2: uncertainty
awareness, equality/data bias, comparison of struc-
tures, guidance/recommendation, and outlier detec-
tion), the algorithm/learning method (TL3: familiarity,
understanding/ explanation, debugging/diagnosis, re-
finement/steering, comparison, knowledgeability, and
fairness), the concrete model(s) for a particular task

TABLE 1. Number of visualization techniques # by publication
venues in either visualization (left) or other disciplines (right).

Note: Rows are conferences except if journals (‘J’) or workshops (‘W’).

(TL4: experience, in situ comparison, performance,
what-if hypotheses, model bias, and model variance),
and the evaluation and the subjective users’ expec-
tations (TL5: agreement of colleagues, visualization
evaluation, metrics validation/results, and user bias).
More details on methodology, trust levels, and our
categorization can be found in our 2020 STAR.9

GENERAL OVERVIEW
Time & Venues
Our collection includes 542 techniques sourced from
various journals, conferences, and workshops. Fig-
ure 1 shows the temporal distribution of these publica-
tions, with a stable growth in interest in the topic since
2009 and a remarkable increase evident in 2021, as
well as another significant rise in numbers for 2023.

Table 1 outlines the distribution of publication
venues. The majority of the techniques were primarily
published on visualization venues. Notable exceptions
include workshops such as WHI of ICML and special
journal issues such as the human-centered explain-
able AI of ACM TiiS, aiming to engage with the ML
community. Despite these efforts, the limited number
of publications in other discipline venues may imply
that visualization researchers struggle with external
outreach. This situation may also suggest that experts
from other fields remain largely unaware of the exten-
sive opportunities offered by the visualization field and
highlight the importance of visualization literacy.
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FIGURE 2. Co-authorship network for all articles, with the ten largest clusters in different colors. 1⃝– 6⃝ are interesting subclusters
within the blue cluster. The node size shows the in-degree centrality of each author, with the labels filtered to improve readability.

Co-authorship Network
We performed co-authorship analysis in Gephi, weight-
ing author nodes by their number of co-authorship
edges (Figure 2). The network has 96 weakly con-
nected components, with the ten largest color-coded.

A dominant blue cluster accounts for ≈70% of all
network connections compared to ≈41% in the 2020
STAR. Within this cluster, the most influential authors
in 1⃝ are all based in China: Huamin Qu (HKUST),
Wei Chen (ZJU), and Shixia Liu (THU). 2⃝ features
Jürgen Bernard (UZH, Switzerland), Tobias Schreck
(TU Graz, Austria), Daniel A. Keim (U of Konstanz,
Germany), and Mennatallah El-Assady (ETH Zurich,
Switzerland) as the key names, with Siming Chen
(Fudan U, China) and others as an in-between node
shown in 3⃝. Prominent authors in 4⃝ include Kwan-Liu

Ma (UC Davis, USA), Jiazhi Xia (CSU, China), Han-
Wei Shen (OSU, USA), and Enrico Bertini (NEU, USA).

5⃝ is relatively isolated compared to 4⃝ and comprises
Bum Chul Kwon (IBM Research, USA), Remco Chang
(Tufts U, USA), Jaegul Choo (KAIST, South Korea),
and Alexandru C. Telea (UU, The Netherlands). 6⃝ in-
cludes Fred Hohman (Apple Research), Minsuk Kahng
(Google Research), and Bongshin Lee (Microsoft Re-
search) from the industry based in the USA, along
with academic collaborators like Duen Horng (Polo)
Chau and Zijie J. Wang from Georgia Tech, USA. This
industry subcluster stands somewhat apart from its
academic counterparts. Although it is more connected
than in the 2020 STAR, this finding suggests that in-
creased collaboration between these two sectors may
improve the visualization research output. The network
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TABLE 2. Overview of datasets ordered according to their usage with more than four occurrences.

Note: ‘#’ column shows the number of articles in this survey using a specific dataset; the datasets are also grouped based on this frequency.

also contains many smaller, color-coded clusters of
collaborative researchers (mostly from the same labs).
An analysis of authorship count distributions shows
≈75% unique authors out of 602 for 2020 and ≈73%
of 1,539 authors for 2023, indicating a similar trend for
the overall authorship (see supplemental material).

Datasets
We analyzed publicly accessible datasets from the 542
articles, sorted by frequency and then by recency.
Table 2 lists 35 datasets, found in at least four articles.

The most frequently occurring datasets are MNIST,
CIFAR-10/100, ImageNet, Wine Quality, Iris Flower,
Fashion MNIST, German Credit Risk, Adult Census,
20 Newsgroups, and Breast Cancer. Of these ten
datasets, four are about computer vision and are typi-
cally used in articles related to DL and neural networks
(NNs). Classification is by far the most frequent target
variable, followed by regression and clustering. Table 2
contains information about the number of instances
and features, as well as the number of classes (if there
are any available). The number of articles that used the
datasets is visible in the ‘#’ column of Table 2.

Survey Browser
The interactive survey browser’s user interface (UI)
consists of (1) a grid showcasing thumbnails of various

visualization techniques and (2) an interactive panel
that facilitates users to filter based on categories, time,
and text (see Figure 3). Clicking a thumbnail reveals
details and bibliographic references for that particular
technique. At the top of the webpage, links provide
access to dialogs containing detailed statistics for the
dataset and supplemental materials. We encourage
readers to explore the online survey browser and
suggest new articles via the "Add entry" dialog.

IN-DEPTH ANALYSIS
Trust in ML Visualization Revisited
Table 3 shows the most prevalent aspects of existing
visualization techniques for increasing trust in ML.

For Data, computer vision (≈33% of 542 articles;
↑ compared to the 2020 STAR), health (≈17%; ↑),
business (≈16%; ↑), and humanities (≈15%; ↓) are the
most prominent domains, while the biology ’s popularity
↓. Multi-class classification (≈55%; ↓↓) is still by far the
most frequently found target variable.

For ML methods, non-linear (≈17%; ↓↓) and then
linear DR (≈15%; ↓↓) techniques are commonly used
(the opposite was true in the 2020 STAR), followed
by bagging (ensemble learning) (≈14%) and CNNs
(≈13%) from the DL subcategory (≈64%; ↓↓). The vast
majority of the techniques address supervised learn-
ing (≈69%) and specifically classification problems
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FIGURE 3. Our interactive survey browser for easily exploring all identified visualization techniques (available at trustmlvis.lnu.se).

(≈53%; ↓), and then unsupervised learning (≈35%;
↓↓) with DR (≈19%; ↓↓↓) and clustering (≈13%; ↓).

The ratio of in-processing (≈29%; ↑) to post-
processing (≈67%; ↓↓) techniques has increased ↑↑
from ≈28% to ≈43% in the past three years. Most
techniques are built as model-agnostic (≈73%; ↑) to
target various ML methods and a bigger user audience.

The absolute majority of the visualizations rely
solely on 2D representations (≈99%; ↑). For visual
aspects and granularity, almost all techniques used
have at least a computed (≈92%; ↓) component that
is not directly mapped data (≈50%; ↓). Aggregated
information (≈86%; ↓) is more common than instance-
based/individual instances’ exploration (≈70%; ↓).

Popular visualizations are scatterplots (≈54%; ↓),
bar charts (≈45%; ↑), histograms (≈32%; ↑), line
charts (≈28%), heatmaps (≈27%; ↑), gylphs/icons
(≈24%; ↓), and node-link diagrams (≈24%). Simpler
ones, e.g., tables/lists (≈37%; ↓) and matrices (≈28%;
↑), work better with instance-based exploration.

On the interaction side, selection (≈91%; ↑↑), ex-
ploration (≈82%; ↓), and connection (≈73%; ↑↑) be-
tween different views are the three most common cat-
egories found in numerous articles, followed by other
interaction techniques, such as abstraction/elaboration
(≈65%; ↓↓↓), filtering out/searching for (≈58%; ↑)
specific instances, and encoding (≈54%; ↓).

Color (≈100%; ↑) is the primary visual channel
employed for conveying information in various VA
tools and systems. The extensive utilization of opacity
(≈54%; ↑↑) for hiding data points/instances as well
as size/area (≈30%; ↓) for representing data variables
can be attributed to the widespread use of scatterplots.

As for the evaluation, ≈36% of the visualization
techniques we analyzed have not been evaluated by
users (↓↓), which is a huge improvement from the 51%
three years before. If we consider that the unevalu-
ated visualization techniques could undergo extensive
quantitative testing with different (synthetic) bench-
marking datasets (e.g., a common approach for DR
visualization), this shows a huge shift in how important
the visualization community considers evaluation.

For TL1, more works tackle source reliability prob-
lems (≈8%; ↑) rather than the transparent collection
process challenge (≈4%; ↑). For TL2, researchers
focus on the comparison of structures (50%; ↑),
an increase of 7% prior to the past three years,
and then outlier detection (≈32%; ↓) and guid-
ance/recommendations (≈26%; ↑). For TL3, under-
standing (≈58%; ↑↑), steering (≈30%; ↑), debugging
(≈24%; ↓), and comparing (≈21%; ↓↓) ML methods
are quite popular. Understanding became ≈10% more
common recently, and more techniques are designed
for debugging than comparing in the past three years.
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TABLE 3. ML visualization techniques categorization with the 2023 data (including comparison with the 2020 STAR data).

Domain 542

Biology 49 -5% ↓
Business 87 +6% ↑
Computer Vision 180 +3% ↑
Computers 9 -1% ↓
Health 90 +2% ↑
Humanities 81 -6% ↓
Nutrition 16 -1% ↓
Simulation 19 0% -

Social / Socioeconomic 58 0% -

Other 230 -5% ↓

Target Variable 542

Binary (categorical) 85 -4% ↓
Multi-class (categorical) 297 -9% ↓↓
Multi-label (categorical) 21 -1% ↓
Continuous (regression problems) 60 0% -

Other 147 +8% ↑

ML Methods 542

Convolutional Neural Network (CNN) 72 0% -

Deep Convolutional Network (DCN) 12 -2% ↓
Deep Feed Forward (DFF) 11 -3% ↓
Deep Neural Network (DNN) 55 0% -

Deep Q-Network (DQN) 11 -3% ↓
Generative Adversarial Network (GAN) 13 -3% ↓
Long Short-Term Memory (LSTM) 26 -2% ↓
Recurrent Neural Network (RNN) 31 -3% ↓
Variational Auto-Encoder (VAE) 22 -3% ↓
Other (DL methods) 92 +6% ↑
Linear (DR) 81 -14% ↓↓
Non-linear (DR) 94 -9% ↓↓
Bagging (ensemble learning) 74 0% -

Boosting (ensemble learning) 30 0% -

Stacking (ensemble learning) 10 -1% ↓
Other (generic) 233 -6% ↓

ML Types 500

Classification (supervised) 288 -3% ↓
Regression (supervised) 55 0% -

Other (supervised) 32 +2% ↑
Association (unsupervised) 14 0% -

Clustering (unsupervised) 69 -8% ↓
Dimensionality Reduction (unsupervised) 104 -14% ↓↓
Classification (semi-supervised) 40 0% -

Clustering (semi-supervised) 16 0% -

Classification (reinforcement) 4 0% -

Control (reinforcement) 11 0% -

Color Legend: 0 articles 271 articles 542 articles

ML Processing Phase 542

Pre-processing / Input 120 +4% ↑
In-processing / Model 156 +6% ↑
Post-processing / Output 363 -14% ↓↓

Treatment Method 542

Model-agnostic / Black Box 395 +1% ↑
Model-specific / White Box 165 -5% ↓

Dimensionality 542

2D 538 +1% ↑
3D 9 -1% ↓

Visual Aspects 542

Computed 497 -6% ↓
Mapped 273 -5% ↓

Visual Granularity 542

Aggregated Information 468 -6% ↓
Instance-based / Individual 377 -3% ↓

Visual Representation 542

Bar Charts 243 +4% ↑
Box Plots 39 +1% ↑
Matrix 153 +3% ↑
Glyphs / Icons / Thumbnails 131 -8% ↓
Grid-based Approaches 59 +1% ↑
Heatmaps 149 +4% ↑
Histograms 174 +4% ↑
Icicle Plots 9 -1% ↓
Line Charts 154 0% -

Node-link Diagrams 128 0% -

Parallel Coordinates Plots (PCPs) 73 -3% ↓
Pixel-based Approaches 20 0% -

Radial Layouts 90 +6% ↑
Scatterplot Matrices (SPLOMs) 26 -4% ↓
Scatterplot / Projections 294 -4% ↓
Similarity Layouts 190 +21% ↑↑↑
Tables / Lists 201 -6% ↓
Treemaps 13 -1% ↓
Other 207 +8% ↑

Interaction Technique 525

Select 491 +9% ↑↑
Explore / Browse 445 -3% ↓
Reconfigure 220 +4% ↑
Encode 294 -2% ↓
Filter / Query 314 +1% ↑
Abstract / Elaborate 354 -24% ↓↓↓
Connect 395 +9% ↑↑
Guide / Sheperd 169 +7% ↑
Verbalize 31 +1% ↑

Visual Variable 542

Color 540 +2% ↑
Opacity 294 +12% ↑↑
Position / Orientation 83 -14% ↓↓
Shape 89 -3% ↓
Size 164 -4% ↓
Texture 30 -3% ↓

Evaluation 542

Standard 132 +5% ↑
Comparative 27 -1% ↓
Before / During Development 140 +8% ↑
After Development 175 +8% ↑
Not Evaluated 196 -15% ↓↓

Trust Levels (TL) 1–5 542

Source Reliability 43 +2% ↑
Transparent Collection Process 21 +1% ↑

Uncertainty Awareness 84 0% -

Equality / Data Bias 57 +3% ↑
Comparison (of Structures) 271 +7% ↑
Guidance / Recommendations 142 +3% ↑
Outlier Detection 174 -2% ↓

Familiarity 24 +2% ↑
Understanding / Explanation 314 +10% ↑↑
Debugging / Diagnosis 129 -3% ↓
Refinement / Steering 164 -5% ↓
Comparison 114 -10% ↓↓
Knowledgeability 47 +4% ↑
Fairness 29 +2% ↑

Experience 31 +2% ↑
In Situ Comparison 135 -2% ↓
Performance 338 +8% ↑
What-if Hypotheses 87 -4% ↓
Model Bias 58 -1% ↓
Model Variance 34 -2% ↓

Agreement of Colleagues 21 -1% ↓
Visualization Evaluation 301 +12% ↑↑
Metrics Validation / Results 413 +11% ↑↑
User Bias 24 0% -

Target Group 542

Beginners 104 -2% ↓
Practitioners / Domain Experts 424 -3% ↓
Developers 113 +3% ↑
ML Experts 204 +1% ↑

Symbol Legend:
+/-[1 – 8]% ↑/↓
+/-[9 – 16]% ↑↑/↓↓
+/-[17 – 24]% ↑↑↑/↓↓↓

Note: Each row shows the total count of techniques per category (with heatmap-style icons), and the % difference compared to the 2020 STAR.

For TL4, performance (≈62%; ↑), in situ comparison
(≈25%; ↓), and what-if hypotheses (≈16%; ↓) are
commonly emerging categories associated with a con-
crete ML model selection. For TL5, metrics validation
and results observation is the most frequent category
covering ≈76% of all the articles (↑↑).

The visualization techniques have as a main target
group, usually practitioners/domain experts (≈78%; ↓),
followed by ML experts (≈38%; ↑) with a huge differ-
ence. The most underrepresented groups are model
developers (≈21%; ↑) and beginners (≈19%; ↓).

In summary, the ML side primarily relies on model
performance and metrics validation to increase trust in
ML, and the visualization side often opts for scalable
multivariate visualizations preferred by experts.

Temporal Trends
We have also analyzed the temporal distribution for
each category (normalized per respective year) to find
which categories have been more or less prominent in
the field in the last three years, as displayed in Figure 4.

These results suggest that business, computer vi-
sion, and health data are the most commonly targeted
domains. Multi-class data is steadily at the forefront of
research while multi-label data is still an underrepre-
sented category with no trend for a potential increase.

For ML methods, we see an increase in other DL
methods, such as explaining (vision) transformer NNs,
as well as CNNs as the specific NN architecture most
prominent compared to all others. Techniques for non-
linear DR are more likely to be researched in recent
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Data Domain ML Processing Phase Trust Levels (TL) 1-5
Radial Layouts

Business Input Source Realiability

Scatterplots
Com. Vision Model Trans. Coll. Process

Similarity Layouts
Health Output Equality / Data Bias

Interaction Technique
Comparison (of Str.)

Target Variable Treatment Method Verbalize

Multi-class Model-agnostic Guidance / Recomm.

Visual Variable
Multi-label Model-specific Outlier Detection

Color

ML Methods Visual Aspects Familiarity
Opacity

CNN Computed
Understanding

Position
Other (DL methods) Mapped

Refinement
Shape

Linear Visual Granularity
Knowledgeability

Aggregated Inf. Size
Non-linear

Instance-based Experience

Bagging Evaluation

Visual Representation Standard

ML Types Agree. of Colleagues
Bar Charts

Clustering (unsup.) Comparative
User Bias

Matrix
DR (unsup.) Before / During

Glyphs / Icons
Target Group

Classification (semi.) After
Heatmaps Beginners

Clustering (semi.) Not Evaluated
Histograms Developers

FIGURE 4. Sparklines visualizing the relative category popularity from 2007 to 2023 for the categories discussed in this article.
The complete plot can be found in the supplemental material. Each bar shows the support for each category within our dataset
(see Table 3) in relation to the total count of techniques for the same year (in light blue; the last three years are in dark blue).

years compared to linear DR methods. Bagging is
the most common ensemble learning method. For ML
types, we observe a small decline in visualization tech-
niques for clustering and DR, and a subtle increase
in semi-supervised learning. A more interesting result
here can be observed in the ML processing phase,
where in-processing is visualized increasingly most
often, then pre-processing, and finally post-processing.
Model-agnostic techniques are increasingly more com-
mon in the community compared to model-specific.
Computed and aggregated information are gradually
rising compared to their counterparts.

For the visual representation, the scatterplots and
similarity layouts, heatmaps, and radial layouts are
more and more commonly used compared to bar
charts, matrix representations, glyph/icons, and his-
tograms that remain constant or slightly decrease in
popularity. For the interaction techniques, verbalization
emerged in 2010 and has not drawn much attention
in the visualization community—but recently, there has
been some re-appearance compared to the past. Fur-
thermore, opacity, shape, and size are the most usual
ways to represent the data after color, while position
is almost extinct. Although evaluating visualizations
with comparative evaluations is very rare since each
technique does not have a suitable direct counterpart,

the number of evaluated techniques increases in total
compared to the past—expert interviews before, dur-
ing, or after tool development, but also user studies.

For the TLs, many techniques are not covered
much by articles, such as transparent collection pro-
cesses and source reliability. Notably, equality/data
bias started to emerge as a theme in the few articles
published in 2023. The visualization community could
also explore other intriguing research topics, such as
investigating how visualization can assist with the fa-
miliarity a user has for a learning method. Comparison
of structures, guidance, and outlier detection seem to
be in the spotlight based on Figure 4. Additionally,
understanding and refinement of learning methods
appear to peak in the last year. Knowledgeability about
learning methods and details available to diverse user
types are slightly better supported than in the past.
Moreover, customizable and reconfigurable visualiza-
tions that consider the users’ experience level to select
a specific ML model remain largely underresearched.
A few visualization techniques enable agreement of
colleagues and evaluate the use of provenance in VA
tools and systems to cover trust in ML issues. User
bias is absent from almost all VA systems.

Finally, beginners and model developers are the
two least represented target groups.
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Category Correlations & Patterns
We have conducted a correlation analysis for our cate-
gorization (see Table 3). Individual articles were the in-
stances/observations, and categories were the dimen-
sions/variables. We employed linear correlation analy-
sis to gauge the relationship between category pairs.
Given the extensive size of the correlation matrix, we
have only provided a small thumbnail representation
of it in Table 4(a), with the complete table available in
the supplemental material. Table 4(b) shows Pearson’s
r coefficient values and highlights distinctive patterns,
as well as notable instances of positive (green) and
negative (red) correlations among the categories.

In the remainder of this subsection, we focus on the
correlations different from our previous survey article
published in 2020,9 but for the sake of completeness,
we refer the reader to Table 4 so as to check all
interesting correlations found in our dataset’s entirety.

The new findings for negative correlation is that
techniques not evaluated by users do not involve vi-
sualization interactions, supporting our previous claim
that static visualizations are being evaluated via quan-
titative experiments (if at all). For example, the corre-
lation between linear and non-linear DR with no eval-
uation is because of the use of synthetic datasets for
quantitative experiments. Additionally, beginners rarely
use abstract as an interaction technique.

Cases with positive correlation start with an obvious
case of a continuous target variable being associated
with regression problems. Abstracting further the data
leads to more in-depth elaboration with different views
that require to be better connected.

Similarity layouts are usually represented with
scatterplots compared to other visualizations (e.g., a
similarity-based matrix). The comparison of structures
is a moderately correlated category with the goal to
provide further guidance at the data exploration phase.

Computed data and statistics lead to aggregated
information visualization. The model performance is
typically tested with metrics validation to choose a
concrete ML model. In situ comparison of models
occurs most probably for examining model-specific ML
algorithms. The comparison of models correlates with
knowledgeability and bagging since knowing about
how different weak learners work is necessary to use
them in an ensemble. Understanding an ML model
weakly correlates with techniques for specific models.

Visualizing 2D DR projections with scatterplots is
rather usual. Additionally, visualization techniques for
pre-processing are correlated with the TLs of raw data
and data as a whole. CNNs are the most common ML
algorithms for computer vision. Investigating fairness
and model bias in ML reassures that models and

TABLE 4. The correlation matrix for the categories in Table 3.
(a) shows all categories’ pair-wise correlations as a thumbnail.
(b) shows important findings, with cases sorted based on
absolute correlation strengths and opposed to our 2020 STAR.

 

- 

 

Important Findings Correlation 2020 STAR 
model-agnostic vs model-specific -92% -76% 
not evaluated vs user expectation for vis. evaluation -81% -90% 
regression & continuous +68% new 
2D vs 3D -66% -66% 
in-processing vs post-processing -62% -53% 
abstract & connect +60% new 
source rel. & transp. col. process +58% +60% 
in-processing vs model-agnostic -55% new 
multi-class vs other (target variable) -52% -46% 
mapped & instance-based +51% +48% 
scatterplots & similarity layouts +48% new 
linear DR & non-linear DR +45% new 
comparison of structures & guidance +43% new 
model bias & model variance +40% +53% 
boosting & stacking +39% +73% 
aggregated information & computed +39% new 
model performance & metrics validation +38% new 
in-situ comparison & model-specific +37% new 
multi-class & computer vision +36% +37% 
comparison of models & knowledgeability & bagging +28% to +37% new 
(developers & ML experts) vs domain experts -27% to -38% -27% to -29% 
DQN & reinforcement learning +29% to +35% new 
DL models +1% to +63% +28% to +82% 
understanding & model-specific  +31% new 
scatterplots & DR +29% new 
visualization interactions -3% to +60% -19% to +55% 
raw data & data & pre-processing +19% to +37% new 
CNNs & computer vision +28% new 
DL & ensemble learning -3% to +56% +12% to +86% 
fairness & model bias +26% new 
performance & classification +26% new 
guide & refinement +26% new 
domain experts vs computer vision -25% new 
understanding & debugging & in-processing +23% to +26% new 
developers & debugging +24% +27% 
scatterplots & outlier detection +24% new 
domain experts & comparison of structures +23% new 
domain experts vs debugging -22% new 
fairness & social / socioeconomic data +21% new 
mapped & tables / lists +21% new 
beginners & experience +20% new 
shape & glyph +20% new 
size & node link diagrams +20% new 
not evaluated & linear DR & non-linear DR  +19% to +20% new 
not evaluated vs visualization interactions -4% to -34% new 
boosting & business +18% new 
beginners vs abstract -18% new 
opacity & visualization interactions 0% to +35% new 
linear DR & biology +16% +19% 

(a) Correlation matrix overview (b) Table for showing important correlation findings 
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–

Note: We use red for negative correlations and green for positive ones.
Cases highlighted in bold refer to broader groups of categories.

systems operate equitably without replicating existing
biases or introducing new ones, thus making more
robust predictions. Model performance in classification
problems aims to monitor (and increase) the model
accuracy. Guide and refinement visualization loops are
important for well-calibrating ML models.

Gaining a deeper understanding and effectively
debugging in-processing mechanisms of ML models
are central to improving their reliability and usability.
Scatterplots are invaluable for outlier detection, offering
visual insights into data distributions and aiding in iden-
tifying anomalies that might otherwise go unnoticed.
Domain experts are uniquely positioned to compare
and analyze various structural frameworks, leverag-
ing their specialized knowledge to offer deep insights
and critiques. Addressing fairness in the context of
social and socioeconomic data tries to ensure that
ML technologies do not worsen societal inequalities
and disparities. Mapped tables and lists contribute to a
more structured and organized representation of data,
enhancing accessibility and comprehension for diverse
users. For beginners, accumulating hands-on experi-
ence is essential in solidifying their understanding and
promoting skill development. We also found a weak
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TABLE 5. The top eight terms and their weights for each of the respective ten topics created by LDA when applied to all articles.

 

Topic 1 
systems for prediction 

explanations and 
participatory evaluation 

(49 papers) 

 Topic 2 
tree-based decisions on 

subsets of points, 
attributes, and classes 

(42 papers) 

 Topic 3 
ML experts training NNs for 

image applications and 
agent reinforcement learning 

(45 papers) 

 Topic 4 
transformers attention 

and embedding spaces 
for text applications 

(46 papers) 

 Topic 5 
 instance-level and NN neuron 

explanations with projection 
space for image applications 

(101 papers) 
explanation 
participant  

system 
prediction 

study 
decision 

task 
effect 

0.0180 
0.0133 
0.0090 
0.0072 
0.0067 
0.0067 
0.0055 
0.0046 

 tree 
attribute 
variable 

node 
class 

decision 
subset 
point 

0.0160 
0.0099 
0.0078 
0.0074 
0.0072 
0.0069 
0.0053 
0.0052 

 layer 
training 
image 
expert 

learning 
network 
agent 

system 

0.0099 
0.0086 
0.0078 
0.0072 
0.0069 
0.0064 
0.0062 
0.0059 

 attention 
word 

embedding 
cluster 
point 

sentence 
space 

document 

0.0111 
0.0086 
0.0084 
0.0082 
0.0067 
0.0065 
0.0062 
0.0055 

 class 
projection 

image 
point 

instance 
space 
neuron 
training 

0.0120 
0.0099 
0.0094 
0.0076 
0.0058 
0.0051 
0.0051 
0.0048 

    
    
    
    
    
    

         
Topic 6 

subspace clusters and 
DR (for topic analysis) 

(65 papers) 

 Topic 7 
analysts examining 

distances in clustering and 
individual points 

(32 papers) 

 Topic 8 
instance labeling in semi-

supervised learning 
(35 papers) 

 Topic 9 
ML experts designing 

systems for graph NNs 
(in text applications) 

(50 papers) 

 Topic 10 
systems for prediction 

performance of rule-based ML 
(77 papers) 

cluster 
clustering 
dimension 
subspace 
algorithm 

item 
point 
topic 

0.0238 
0.0119 
0.0084 
0.0069 
0.0066 
0.0052 
0.0050 
0.0050 

 point 
cluster 
analyst 
distance 

distribution 
pruning 
measure 

task 

0.0078 
0.0068 
0.0052 
0.0047 
0.0047 
0.0043 
0.0042 
0.0041 

 instance 
label 
task 

concept 
labeling 

class 
state 

system 

0.0163 
0.0088 
0.0078 
0.0078 
0.0076 
0.0059 
0.0053 
0.0052 

 view 
node 

prediction 
word 

expert 
graph 
design 
system 

0.0116 
0.0095 
0.0068 
0.0057 
0.0056 
0.0054 
0.0052 
0.0050 

 rule 
system 
learning 

performance 
machine 

tool 
task 

prediction 

0.0080 
0.0069 
0.0058 
0.0054 
0.0045 
0.0042 
0.0038 
0.0038 

    
    
    
    
    
    

Note: The proposed topic titles are in italics. Every topic is encoded by one distinct color. A gray colormap is used for the weight of each term.

correlation of shape to design glyphs in visualizations
Size is crucial in node-link diagrams, where the dimen-
sions can effectively convey hierarchical relationships
and relative importance among interconnected entities.

Furthermore, while the correlation analysis results
discussed above focus on pairs of categories, we also
conducted frequent pattern mining with our survey data
to uncover interactions between multiple categories.
Focusing on the patterns with at least 10% support
in the data (as the number of possible category com-
bination patterns is otherwise overwhelming), we have
detected 12 patterns with 15 categories recurring in
our data (the list is provided as part of supplemental
materials), while further patterns with 14 or fewer cate-
gories could also be considered. The top pattern in the
current survey data is supported by 66 articles (12%),
and it provides a glimpse into the profile of typical
VA approaches in this field: 2D visual representations
for computed aspects and aggregated information;
support for select, explore/browse, encode, filter/query,
abstract/elaborate, and connect tasks; use of color
and opacity visual channels; involving the performance
aspects, visualization evaluation as well as metrics
validation/results, and practitioners/domain experts.

Topic Modeling
Following the same methodology as in our previous
articles,8,9 we have conducted a topic analysis using
latent Dirichlet allocation (LDA) based on the full texts
from the PDFs. This approach assigns documents
to different clusters with various weights (see sup-
plemental material) and identifies descriptive terms

for each cluster. While the topic modeling outcomes
are partly influenced by the chosen parameters, they
offer insights that complement those obtained from our
manual analysis. Thus, the topic analysis confirms and
deepens our understanding of the categorized articles.

In our approach, documents get assigned into one
of ten clusters according to the topmost weight, with
eight descriptive terms per cluster, as shown in Table 5.
Based on a thorough review of the top terms and the
content of the articles, we manually assigned the topic
titles for each topic. Finally, the results are visualized
as a DR projection and bar charts (see Figure 5).8,9

Topics
Here, we summarize the ten topics (see Table 5).

T1 This topic comprises 49 articles, focusing on
the understanding/explanation of ML models. Multiple
visualization tools belonging to this category have been
evaluated with user studies involving diverse partici-
pants, such as domain and ML experts. Additionally,
an unresolved challenge related to this topic is de-
termining the most effective strategies for developing
visualization tools that account for ML trustworthiness.

T2 A common theme here is the use of visual-
ization in explaining decision trees (found in 42 arti-
cles). Other subtopics are the exploration of behavior
regarding the decomposition of instances (or points if
DR is used), the user’s role in reasoning with subsets
of attributes, and showing how classes are formed in
connection to the internal parts of rule-based models.

T3 The 45 articles focus mainly on DL for image
data. A recent subtopic here is federated learning, that
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is, a decentralized training approach allowing distant
clients to learn from data while private information is
kept hidden. Visualization can help inspect and detect
anomalies and errors during training ML algorithms in
federated learning. Moreover, this topic is connected to
reinforcement learning problems, where more research
is needed to study what behaviors are associated with
low and high reward levels and to track their evolution
throughout the training phase.

T4 This topic has 46 articles allocated, focus-
ing on the use of projections for explaining NN ar-
chitectures. For example, the recent trend of using
transformers for text data—and even extending their
use in image applications with the so-called vision
transformers—is covered by this topic, with new VA
solutions being invented to check how they work.

T5 In DL, significant research efforts have been
devoted to understanding the activation of neurons
within NNs and visually representing them. Various vi-
sualizations, such as 2D saliency and activation maps,
have been widely utilized for depicting the activation
levels of neurons in diverse DL models, particularly
those related to image processing. This topic contains
101 articles that discuss techniques for visualizing the
inner workings of NNs during training to detect how
they behave in specific instances using projections.

T6 The projection of points with DR is useful
for guiding subspace exploration. VA systems are de-
veloped for analyzing projection segments to perform
error analysis and mine insightful patterns from it.
This subtopic and the other about visual analysis of
relations between points and dimensions within the
various projection spaces were found in 65 articles.

T7 Another area of exploration with 32 articles
involves identifying the appropriate distance function.
It is essential to ensure that these distances are main-
tained in the 2D projection generated from the high-
dimensional space. This aspect should align with the
users’ cognitive expectations of observable clusters.

T8 Incremental data labeling and active learning
are a few common themes in this topic of 35 articles.
VA systems can suggest which unlabeled instances
should be picked first and why to achieve improved
predictive performance. Counterfactual explanations
are also important for users with systems proposing
specific examples that are worthy of investigation.

T9 A prevalent shared aspect among most of
the 50 articles in this topic class is their graph NN
algorithms and RNNs for text data. Delving into the
hidden states of these networks appears to recover
lost information that could increase ML trustworthiness
under the appropriate guidance of an expert. A hidden
subtopic with a few techniques is relevant for the outlier

detection catergory that stands out in our categoriza-
tion with 174 articles in total, as shown in Table 3.

T10 This topic comprises 77 articles that specif-
ically refer to rule-based ML, such as bagging and
boosting methods. Rule-based ML models are suc-
cessful with tabular data and arguably easier for an-
alysts to understand. However, they sometimes reach
a level of complexity similar to that of DL, thus it can
still be difficult to simplify them.

Compared to our 2020 STAR,9 Topics 2, 4, 8, 9,
& 10 are entirely new due to the recent advancements
in graph NNs and (vision) transformers, as well as
the need for simpler tree- and rule-based systems
for transparent decision-making and ML explanation.
The remaining topics are similar but slightly changed
compared to the 2020 counterparts. Notably, Topic 1
now refers explicitly to explaining the predictions rather
than the ML’s inner workings and evaluating with user
studies. Topic 3 is more prominent than before, but
hyperparameter tuning is currently disregarded. Ex-
plaining individual instances and using DR projections
for NN explanation also greatly surged lately (Topic 5).

Topic Embedding
Figure 5(a) presents a 2D projection of the ten-
dimensional space of topics. Figure 5(b) reveals that
Topics 5 & 10 cover ≈33% of all articles, followed by
Topics 6 & 1, 9 & 3, and the others. Based on Fig-
ure 5(c), some interesting top terms are “clusters”, “ex-
planations” (cf. understanding in Table 3), “instances”
(instance-based visualization), “trees” (bagging), “par-
ticipants” (evaluation), “projections” (DR), “layers” (DL),
and “image data” (computer vision).

The t-SNE projection in Figure 5(a) shows the
purest clusters color-encoded in brown and gray, which
are about unique topics (Topics 6 & 8, respectively).
Additionally, the misclassification of blue (Topic 1) &
cyan (Topic 10) points along with green (Topic 3) &
purple (Topic 5) points in the projection occurs because
of two conceptual terms shared across these topic
pairs, namely, the terms “systems”, “prediction” for 1
& 10 and “NN” and “image” for 3 & 5. Despite Topic 7
being a specific topic, it is associated with the general
term: “point”. Thus, a few points in the projection are
from Topics 2, 5, 8 & 10 because the individual “points”
are related to specific “instances” (or similar terms).

The automatically produced topics further support
our categorization. For instance, Topics 1 & 10 rep-
resent VA systems focusing on the visualization of
prediction explanations with participatory evaluation
and prediction performance for rule-based ML, respec-
tively, to facilitate understanding/explanation. Topic 3 is
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4. transformers attention 
and embedding spaces
for text applications

5. instance-level 
and NN neuron 
explanations with 
projection space
for image applications

2. tree-based 
decisions on subsets 
of points, attributes,
and classes

9. ML experts designing systems 
for graph NNs (in text applications)

7. analysts examining distances in clustering and individual points

10. systems for prediction 
performance of rule-based ML

(a)

(c)(b)

1. systems for
prediction explanations 
and participatory evaluation

3. ML experts training 
NNs for image applications and
agent reinforcement learning

6. subspace clusters 
and DR (for topic analysis)

8. instance labeling 
in semi-supervised 
learning

FIGURE 5. Visualization of the ten topics extracted from the 542 articles. (a) t-SNE projection of articles, color-coded according
to their topics. The black outlines were manually added over the image, and the tags are the full topic titles. (b) Bar chart of
the summed-up weights for all articles per topic (scaled between 0 and 1). (c) Horizontal bar chart of the top terms across all
topics. Here, topics are double-encoded with color and number (in parentheses); a single term might appear in multiple topics.

about diagnosing/debugging the reinforcement learn-
ing’s training procedure. In contrast, Topics 6 & 7 reflect
the comparison of data structures using projections/DR
and clustering, respectively. Finally, Topic 2 focuses on
the comparison of different tree-based algorithms.

OPEN CHALLENGES
To familiarize readers with each topic, we provide rep-
resentative references per open challenge (O1–O8).

O1: Improving Popular XAI Methods
Most of the well-known XAI approaches that involve
the use of visualization for communicating results were
made by experts from other fields. The increasing pop-
ularity of these model-agnostic techniques lies in their
view of a model as a mathematical function. These

functions can be simplified, and interpretation methods
can then assess these simpler parts’ behavior. Visu-
alization researchers can contribute to developing VA
systems for improving these methods’ interactivity and
visual representations,16 or directly upgrading the tech-
niques’ algorithmic components with their expertise.17

O2: New NN Approaches & Self-Supervision
The ML community continually invents new NN archi-
tectures or applies existing ones in different settings,
while visualization researchers are slow to adopt and
work on them. For example, transformer NNs have
been used in computer vision settings with promising
results compared to convolutional NNs, but still, the
visualization community has hardly ever experimented
with helping users explore them visually.18,19 Similarly,
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self-supervision is another area of rapid advancement
that requires the visualization community’s attention,20

as well as prompt engineering and model checkers for
“hallucinations” of large language models (LLMs).21

O3: Multiverse & Confirmatory VA
Most VA solutions, as of recently, were arguably focus-
ing on exploratory visual analysis. There is a trend in
utilizing visual representations for confirmatory anal-
ysis and hypothesis testing, as well as causal rea-
soning (e.g., counterfactual reasoning, causal learn-
ing, and causal inference), which could be enhanced
by visualizations.22 Another question is how can VA
systems guide users through an exhaustive multiverse
analysis for choosing the optimal model strategies that
will help them understand how a complex model works
and decide upon a specific action plan?23

O4: Input/Output Uncertainty Quantification
Although the majority of the VA systems aim to help
users understand models, quantifying the uncertainty
of input and output, as well as checking their robust-
ness and sensitivity to changes, are two major chal-
lenges because people want to deploy dynamical, well-
calibrated models in real-world practical scenarios.24

While uncertainty quantification and sensitivity analysis
are popular in other fields, visualization research is still
limited in checking the inputs and outputs of models,
such as with the conformal prediction method that
provides statistical guarantees.25

O5: Rigorous Evaluation & Benchmarking
Effective collaboration with domain experts from di-
verse fields often faces substantial communication
challenges. These arise from differences in terminol-
ogy, expectations, and areas of expertise, demand-
ing huge efforts to align objectives and solutions. To
mitigate the need for costly user evaluations, the ex-
ploration of AI-assisted, simulated evaluation methods
is very important. The state-of-the-art benchmarking
datasets should also become more rigorous since they
may contain non-negligible errors.26 The development
of rational agent benchmarks that estimate the need
for and benefits of visualization can also assist XAI
methods evaluation.27 Therefore, such benchmarks
potentially minimize the dependency on extensive hu-
man participation, thereby reducing associated costs.

O6: Model Deployment & Visual Channels
Scaling VA systems to manage numerous instances,
features, and algorithms presents significant chal-

lenges, particularly in multi-class classification scenar-
ios. Progressive VA combined with incremental learn-
ing is one notable solution, but alternative methods for
designing less complex, but more robust systems are
essential in real-world settings, where covariate and
label shifts are common phenomena.28 The concurrent
use of visual channels, such as color and opacity, for
other encoding tasks increases the complexity. Many
users find it difficult to navigate these advanced tools,
especially at initial exposure. Visualization literacy can
partially alleviate this problem by educating people.
Additionally, complementary to existing tutorials, story-
telling can further illustrate tool functionalities, while the
integration of sonification and verbalization can boost
user understanding and ease of use of VA systems.

O7: Advancing the Impact & Reproducibility
Many application-specific VA systems are never de-
ployed in the real world, making them susceptible to
concept and distribution drifts.29 This practice high-
lights the need for further exploration into the out-of-
domain/distribution applicability of models, emphasiz-
ing the urgency to transform specialized models into
more versatile ML solutions.30 Ensuring the accessibil-
ity and usability of VA systems for a broader user base
can be achieved through various means,31 includ-
ing the integration of visualizations into computational
notebooks32 and offering combined programmatic API
and interactive UI solutions that elicit user feedback
over long periods of time.33,34 Here, the adoption of
open-source practices is vital since it not only promotes
community involvement and contribution, but also ad-
dresses significant challenges related to the replication
and reproducibility of ML models used in VA systems.

O8: Underexplored Areas
All underrepresented categories may spark novel re-
search ideas for non-TL categories, implicitly influenc-
ing trust in ML. For example, the rareness of visual-
ization tools targeting boosting and stacking ensemble
learning methods. Multi-label and regression problems
receive less attention than classification. In unsuper-
vised learning, association/pattern mining is less cov-
ered by VA tools. Reinforcement learning is also mostly
ignored. Finally, the targeted users that require further
focus are beginners and people of various experience
levels who want to analyze their data in general.

DISCUSSION
A retrospective reflection on the 2020 STAR’s open
challenges in relation to Table 3 reveals that the vi-
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sualization community further researched (a) security
vulnerabilities with VA systems for federated learning
and adversarial attacks, (b) fairness of the model pre-
dictions and counterfactual scenarios, but still without
an emphasis on alternative strategic action plans for
decision-making (O3), and (c) various forms of biases
except for intrinsic visualization and user biases (O5).

Reoccurring challenges in this survey article are
O6, O7, and O8, but with further concerns regarding
visualization research reproducibility, as well as the
deployment of models and VA systems in the wild.
Additionally, the demand for approaches fostering visu-
alization literacy and advancing the real-world impact
with user-friendly systems that encourage interdisci-
plinarity collaboration is evident.

Finally, the remaining open challenges (O1, O2,
O4) are entirely new and were identified by manually
reviewing the content of the categorized articles.

CONCLUSION
In this survey article, we have provided an overview of
the updated analyses of the trust in ML visualization
techniques dataset maintained by us and provided via
an online survey browser. We categorized and con-
ducted various analyses based on the 542 collected,
peer-reviewed articles that present a broad range of
visualization techniques to improve the trustworthiness
of ML models and their outputs. Through our topic,
temporal, correlation, and pattern mining analyses, we
sought to uncover hidden connections and patterns,
as well as identify emerging topics and trends over
time for the categorized articles. Our findings reveal
the rising enthusiasm for implementing VA tools and
systems to enhance trust in ML across diverse data
domains, tasks, and interdisciplinary applications. In
the future, we plan to keep the online survey browser
up to date by continuing to collect and categorize
data, especially since LLMs, computer vision, and self-
supervision research have recently been thriving with
the hope of achieving artificial general intelligence.
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