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The Wilson-Fisher Fixed point revisited: importance of the form of the cutoff
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In this work we re-examine the Wilson Fisher fixed point. We study Wilsonian momentum space
renormalization group (RG) flow for various forms of the cutoff. We show that already at order
(4− d)1, where d is the dimension of the φ4 theory, there are changes to the position of the fixed
point and the direction of irrelevant coupling parameters. We also show in a multi-flavor φ4 model
that symmetries of the Lagrange function can be destroyed if the different flavors have different
cutoffs (that is the Lagrangian can flow to a non-symmetric fixed point). Some related comments
are made about a similar situation in parquet RG (pRG). In future works [1] we will study Wilsonian
RG to order (4− d)2 and find non-universal critical exponents that depend on the cutoff.

I. INTRODUCTION

One of the most successful approaches to the study
of both quantum and classical phase transitions is the
momentum space renormalization group (RG) [2–13].
The momentum space renormalization group provides
the mathematical underpinnings of both scaling and crit-
ical phenomena. These ideas were developed by Kadanoff
[14], Wilson [5–7] and others [2–4, 15] into powerful math-
ematical tools for tackling the physics problems associ-
ated with scaling, criticality and phase transitions. The
main idea supporting momentum space RG is due to
Kadanoff [14] is that close to a phase transition a crit-
ical system becomes scale invariant. That is, there are
very few relevant parameters (say the mass in φ4 theory)
which control the distance between the theory (system)
and the scale invariant critical theory where all correla-
tion lengths are infinite. Under a rescaling (integrating
out) of various degrees of freedom these relevant param-
eters rescale in a specific way and the system looks like
a scaled system with renormalized parameters. In the
simplest case when there is only one relevant parameter,
under a rescaling by a dilation factor of l, the relevant
parameter t and the correlation length ξ transform as
[2, 3, 15]:

t → t · lν , ξ → ξ · l (1)

For some exponent ν, which Wilsonian RG can compute.
In this case we see that we may read off the correlation
length from the value of the relevant parameter t:

tlν ∼ 1 → ξ ∼ 1,⇒ ξ ∼ t−1/ν (2)

The idea due to Wilson [5–7] and others was to systemat-
ically, in momentum space, integrate out the short wave-
length degrees of freedom thereby mimicking a rescal-
ing transformation and follow mathematically how rele-
vant and also irrelevant parameters transform. As such
Wilson [3, 5–7] and others were able to compute ν and
other critical parameters through perturbative momen-
tum space RG calculation.

There are roughly three different types of momentum
shell RG: 1) Wilsonian RG [2, 3, 5–7, 13, 15], 2) field
theoretic RG [8–11], 3) functional RG [12]. In Wilsonian

RG there is a cutoff, it is rescaled and the effect of inte-
grating out the high degrees of freedom in the effective
Lagrange function is accounted for systematically up to
some loop order [2, 3, 5–7, 13, 15]. In field theoretic RG
the theory is regularized, often by dimensional regular-
ization - where divergent integrals are analytically con-
tinued from dimensions where they converge, renormal-
ization conditions are demanded - where specific values
are set to Green’s functions at certain momenta - and the
Callan-Symanzik equation is set up to compute Green’s
functions at other momenta [8–11]. In FRG the propa-
gators are infinitely massive below a certain cutoff which
is then rescaled and the effective action is computed as a
function of the cutoff [12]. In each case a regularization,
cutoff is needed to make the theory finite and control the
divergences of various Feynman diagrams. The effect of
the nature of this cutoff on the RG procedure has been
studied with mixed success. For the Kondo model at two
loop order the Bethe Ansatz solution and the numerical
Wilsonian RG solution seem to differ, perhaps because
of the nature of the cutoff [16–18]. For field theoretic
RG different regulators have been compared with favor-
able results indicating similar physical properties for all
cutoffs [11, 12]. For FRG there have been numerous stud-
ies on the subject matter [19–22] with some universality
observed [20–22] though higher loop corrections seem to
dependent on the form of the cutoff [19].

Wilsonian RG is arguably the simplest of the three
forms of RG. It has been used to study ϕ4 theory,
O (n) models, non-linear σ models, numerically the
Kondo problem, sine gordon theory, Hertz-Millis theory
[2, 3, 15, 17, 23–25]. Here we study the effect of the
nature of the cutoff on Wilsonian RG within the con-
text of the ϕ4 theory in the form of a 4 − d expansion.
Here we claim Wilson and others were somewhat care-
less as to the nature of what constitutes high frequency
and high energy modes as they introduced a hard cut-
off to separate high frequency and low frequency modes.
Here following the paradigmatic example of the Wilson
Fisher fixed point [7], which works well for φ4 theory
in the limit that we are working at nearly four dimen-
sions 4 − d ≪ 1, we show that the choice of hard cutoff
is a poor unjustified choice by comparing it top other
choices. By varying the form of the cutoff (see Eq. (4))
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we explicitly show that we can obtain different values
for the fixed point couplings (see Eq. (19)) and modify
the various relevant and irrelevant directions as well as
how they scale (see Eq. (24)). This invalidates, in part,
Wilson’s ideas as how to practically compute within the
momentum space RG flow the scaling transformations
introduced by Kadanoff as it is unclear which cutoff is
best. This has far ranging implications for modern day
condensed matter [2–4]. Condensed matter systems often
comes with a practical cutoff associated with the lattice
regularization (no modes with wave vector higher then
the inverse lattice spacing are needed for most calcula-
tions). However this regularization is often considered
far too difficult for practical calculations and a simpler
“spherical cow” regularization is chosen whereupon mo-
mentum space RG is performed within this regularization
[2–4]. The results of this work, where we choose a model
(φ4 theory) where it is practically possible to compare
several different regularizations and obtain different re-
sults already at one loop level, casts strong doubts as
to the validity of the procedure commonly carried out
by many condensed matter physicists. Furthermore we
show that variations in the cutoff for different field fla-
vors, in multi-flavor φ4 models, can lead to changes of
the symmetry of the system whereby a symmetric (we
chose the example of O (2) symmetric) action can flow to
non symmetric fixed points (see Eq. (28)). As such the
symmetries and minimal Lagrange function relevant to
the order parameter action can change due to different
cutoffs [2, 4]. We also point out that a similar effect hap-
pens in parquet RG (pRG) and is arguably an even worse

concern. In future works we will go to order (4− d)2 to
further confirm these results [1].

II. MAIN IDEA

We consider the φ4 theory with the action being given
by:

S = −
∫

ddx

[

φ (x)
1

2

[

−∇2 + r
]

φ (x) +
1

4!
gφ4 (x)

]

(3)

We now regularize the theory by replacing:

∫

ddx →
∫

ddk

(2π)d
F 1/2

( |k|
∆

)

(4)

For some large cutoff ∆ with F (0) = 1 and F (∞) → 0
rapidly and the square root is for future convenience. It
is straightforward to see that the main effect of this regu-
lator on Feynman diagrams is to change the propagator:

1

Q2 + r
→

F
(

|Q|
∆

)

Q2 + r
(5)

Here Q is the momentum. This makes the procedure
similar to FRG 16 [12]. The main interest in this work is
how the form of the cutoff effects the Wilson Fisher fixed
point [7] to order (4− d)

1
, for order (4− d)

2
see 11 [1].

Now we see that the action is dimensionless so we may
write that the scaling dimensions are given by [φ] = d−2

2 ,
and [g] = 4− d. As such we can rewrite Eq. (3) as:

S =

∫

ddx

[

φ† (x)
[

−∇2 +∆2R
]

φ (x) +
1

4!
∆4−dGφ4 (x)

]

(6)
with R and G dimensionless. Now we perform a step of
RG whereby:

∆ → ∆(1− ε) (7)

To compute the new action we first we do the tree level
RG step (that is to order (4− d)

0
) where:

∆2R = ∆2 (1− ε)
2
R′

⇒ R
′

=R (1 + 2ε) (8)

∆4−dG = ∆4−d (1− ε)4−d
G′

⇒ G
′

=G (1 + ε (4− d)) (9)

Now we perform RG to one loop level where we have
that:

∆2R → ∆2R− ε∆4−dG
V
(

Sd−1
)

2 (2π)
d

∫ ∞

0

dk
∂

∂ε

[

F

(

k

∆
(1 + ε)

)]

1

k2 +∆2R
kd−1

1

4!
∆4−dG → 1

4!
∆4−dG+ 3ε

(

∆4−dG
)2 V

(

Sd−1
)

2 (2π)
d

∫ ∞

0

dk
∂

∂ε

[

F 2

(

k

∆
(1 + ε)

)][

1

k2 +∆2R

]2

kd−1 (10)

As such we have that:

−
∫ ∞

0

dk
∂

∂ε

[

F

(

k

∆
(1 + ε)

)]

1

k2 +∆2R
kd−1

=

∫ ∞

0

dk

(

k

∆

)

1

k2 +∆2R
kd−1 ∂

∂
(

k
∆

)F

(

k

∆

)

(11)

∫ ∞

0

dk
∂

∂ε

[

F 2

(

k

∆
(1 + ε)

)][

1

k2 +∆2R

]2

kd−1

= −
∫ ∞

0

dk
k

∆

[

1

k2 +∆2R

]2

kd−1 ∂

∂
(

k
∆

)F

(

k

∆

)

(12)
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We now introduce K = k
∆ and obtain:

∫ ∞

0

dk

(

k

∆

)

1

k2 +∆2R
kd−1 ∂

∂
(

k
∆

)F

(

k

∆

)

= ∆d−2

∫ ∞

0

dK
∂

∂K
F (K)

1

K2 +R
Kd (13)

∫ ∞

0

dk
k

∆

[

1

k2 +∆2R

]2

kd−1 ∂

∂
(

k
∆

)F 2

(

k

∆

)

= ∆d−4

∫ ∞

0

dK
∂

∂K
F 2 (K)

[

1

K2 +R

]2

Kd (14)

Now we have that:

R → R − εG
V
(

Sd−1
)

(2π)
d

∫ ∞

0

dK
∂

∂K
F (K)

1

K2 +R
Kd

∼= R+ εG
V
(

Sd−1
)

(2π)
d

I
F,d
1 (R)

G → G+ 3εG2V
(

Sd−1
)

(2π)
d

∫ ∞

0

dK
∂

∂K
F 2 (K)

[

1

K2 +R

]2

Kd

∼= G− 3εG2V
(

Sd−1
)

(2π)
d

I
F,d
2 (R) (15)

As such combining with Eq. (??) we obtain:

∂R

∂ε
= 2R+

1

2
G
V
(

S3
)

(2π)
4 I

F,d
1 (R)

∂G

∂ε
= (4− d)G− 3

2
G2 V

(

S3
)

(2π)
4 I

F,d
2 (R) (16)

Where

I
F,d
1 (R) = −

∫ ∞

0

dK
∂

∂K
F (K)

1

K2 +R
Kd

I
F,d
2 (R) = −

∫ ∞

0

dK
∂

∂K
F 2 (K)

[

1

K2 +R

]2

Kd (17)

Working only to order 4 − d ≪ 1 and working only to
order (4− d) (that is ignoring order (4− d)2 terms) we
need only consider the integrals:

I
F,4
1 (0) = −

∫ ∞

0

dK
∂

∂K
F (K)K2 = 2

∫ ∞

0

dKF (K)K

I
F,4
2 (0) = −

∫ ∞

0

dK
∂

∂K
F 2 (K) = 1 (18)

See supplementary online information [26]. We now look
for a fixed point and again work only to order 4− d ≪ 1
then:

Gfix =
2 (4− d) (2π)4

3V (S3)
, Rfix = − (4− d) IF,4

1 (0)

6
(19)

We note that this is not the value of the Willson Fisher
fixed point given by [2, 3, 7]:

G
fix
WF =

2 (4− d) (2π)
4

3V (S3)
, R

fix
WF = − (4− d)

6
(20)

We see that the exact position of the fixed point has

moved base on the value of IF,4
1 (0) [26] as such the critical

theory will change [3].

III. CRITICAL EXPONENTS

Let us recall Eq. (16). Now we write

G = Gfix + δG

R = Rfix + δR (21)

From which we see that:

∂

∂ε

(

δR
δG

)

∼=
(

2 + 2(4−d)
3

1
2

V (S3)
(2π)4

I
F,4
1 (0)

0 − (4− d)

)

(

δR
δG

)

(22)
Because the eigenvalues of the matrix in Eq. (22) do
not depend on F we recover the Wilson Fisher critical
exponents to order 4−d, however because of the changes
to Gfix, Rfix there will be changes to order (4− d)2 [1].
However the irrelevant eigenvector changes to:
(

2 + 2(4−d)
3

1
2

V (S3)
(2π)4

I
F,4
1 (0)

0 − (4− d)

)

(

a
b

)

= − (4− d)

(

a
b

)

(23)
whereby:

a

b
= −

1
2

V (S3)
(2π)4

I
F,4
1 (0)

2 + 5
3 (4− d)

(24)

so there is an explicit change to the irrelevant vector de-

pending on the values of
1
2

V (S3)
(2π)4

IF,4
1 (0)

2+ 5
3 (4−d)

. As such the criti-

cal flow changes due to various types of cutoffs already at
leading order and not just the position of the fixed point.

IV. EMERGENT SYMMETRIES

We would like to show that emergent symmetries can
also be affected by the softness of the cutoff not just the
value of the fixed point. We consider the two species φ4

theory given by:

S =− 1

2

∫

ddxφ1 (x)
[

−∇2 + r1
]

φ1 (x)

− 1

2

∫

ddxφ2 (x)
[

−∇2 + r2
]

φ2 (x)

− 1

4!

∫

ddx
∑

ab

gabφ
2
a (x)φ

2
b (x) (25)
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where a, b = 1, 2 with g12 = g21. Now we regularize the
theory in a different way for each of the fields:

a = 1 :

∫

ddx →
∫

ddk

(2π)
d
F

1/2
1

(

k

∆

)

a = 2 :

∫

ddx →
∫

ddk

(2π)d
F

1/2
2

(

k

∆

)

(26)

Now we write a dimensionless variable action:

S =− 1

2

∫

ddxφ1 (x)
[

−∇2 +∆2R1

]

φ1 (x)

− 1

2

∫

ddxφ2 (x)
[

−∇2 +∆2R2

]

φ2 (x)

− 1

4!

∫

ddx∆4−dGabφ
2
a (x)φ

2
b (x) (27)

Now we perform a step of RG as in Eq. (7). We now find
the RG equations of motion to one loop order: keeping
only terms of order 4− d (similarly to Eq. (16):

∂

∂ε
R1 = 2R1 +

1

2

V
(

S3
)

(2π)
4

[

G11I
F1,4
1 (0) +

1

3
G12I

F2,4
1 (0)

]

∂

∂ε
R2 = 2R2 +

1

2

V
(

S3
)

(2π)
4

[

G22I
F2,4
1 (0) +

1

3
G12I

F1,4
1 (0)

]

∂

∂ε
G11 = (4− d)G11 −

V
(

S3
)

(2π)
4

[

3

2
G2

11 +
1

6
G2

12

]

∂

∂ε
G22 = (4− d)G22 −

V
(

S3
)

(2π)
4

[

3

2
G2

22 +
1

6
G2

12

]

∂

∂ε
G12 = (4− d)G12

− V
(

S3
)

(2π)
4

[

3

4
G22G12 +

3

4
G11G12 +

1

6
G2

12

]

(28)

Now we see that the fixed point corresponds to

G
fix
11 = G

fix
12 = G

fix
22 =

3 (4− d)

5V (S3)

(2π)4

R
fix
1 = −3 (4− d)

20

[

I
F1,4
1 (0) +

1

3
I
F2,d
1 (0)

]

R
fix
2 = −3 (4− d)

20

[

I
F2,4
1 (0) +

1

3
I
F1,d
1 (0)

]

(29)

We see that the O (2) symmetric point is no longer a fixed
point of the low energy theory. Furthermore, we see that
we can start with a O (2) symmetric action and under
RG flow to an non-symmetric fixed point.

V. COMMENT ON PRG

The situation with pRG is worse then with the Wil-
son Fisher fixed point with respect to cutoff dependence.
We recall that in pRG one introduces various couplings

between different patches [27] and computes to a certain
loop level the changes of these couplings when integrating
out high energy degrees of freedom. The one loop equa-
tions of motion for the various couplings gi are given by
[27]:

∂gi

∂∆
=
∑

jk

Ai
jk (∆) gjgk (30)

Here Ajk (∆) are parameters that depend on the density
of states associated with the various polarization bubbles
[27] and ∆ is an overall flow parameter which controls
how these density of states for the relevant patches is
integrated out. Now we look for blow up solutions [27]

gi =
ci

∆−∆0
+ ... (31)

Now we note then that [27] we have that:

ci =
∑

jk

Ai
jk (∆0) cjck (32)

Now we may perform pRG with both smooth and sharp
cutoffs and obtain very different ∆0 and Ai

jk (∆0) much

like in the main part of the paper [1]. As such the vari-
ous ci which control how the various couplings blow up
are modified due to different cutoff dependent Ai

jk (∆0).
Therefore the various instabilities which depend on the
signs and magnitudes of the ci (see Eq. (31) now depend
on the shape of the cutoff . As such pRG has reliability
problems as different cutoffs can predict different insta-
bilities [1].

VI. CONCLUSIONS

In this work we have re-examined the Wilson Fisher
fixed point [7] in the context of more general cutoffs then
the hard cutoff considered in the original Wilson Fisher
work [7]. We find that both the position of the fixed point
the direction of irrelevant perturbations depends explic-
itly on the form of the cutoff already at order (4− d)
or one loop level and explicit checks will show that the
critical exponents depend on the form of the cutoff at
the two loop order (4− d)

2
level 11 [1]. We have shown

that emergent symmetries where the theory flows to ac-
tions with high level of symmetry such as O (2) depend
on the form of the cutoff and if different flavors of fields
have different cutoffs the high symmetry fixed point can
be destroyed so a O (2) symmetric theory may flow to a
non-symmetric fixed point already at order 4− d. Since
the nature of the order parameter and other properties
of the system depend on the symmetries of the low en-
ergy effective action [2–4, 15] this calculation shows that
the form of the cutoff can influence the form of the order
parameter for the effective theory. We have shown that
the situation with pRG is even more difficult to control
then with the Wilson Fisher fixed point. Indeed for pRG
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divergences show up at finite times in the flow parame-
ter [27] where depending on the nature of the cutoff and
how it flows the density of states Ai

jk (∆0) can signifi-
cantly change whereby which couplings diverge how fast
(see Eqs. (31) and (32)) can change which leads to differ-
ent instabilities being dominant [27]. In the eyes of the
author this makes pRG highly unreliable as a method to
predict which instabilities dominate depending on which
density of states and which initial couplings are present.
In future works it would be of great interest to see what
can be salvaged from momentum space RG type ideas in
a highly controlled reliable way and to study the Wilson
Fisher fixed point for arbitrary cutoffs to order (4− d)

2
.
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SOME EXPLICIT EXAMPLES

We will now explicitly show there are no relations for

the function I
F,4
1 (0). Now consider the functions cutoffs:

F1 (K) = Θ (K − 1)

F2 (K) = exp (−K)

F3 (K) = exp
(

−K2
)

F4 (K) = exp
(

−K4
)

(33)

Here Θ is the heavy-side function. Then we have that:

I
F1,4
1 (0) = 1

I
F2,4
1 (0) = 2

I
F3,4
1 (0) = 1

I
F4,4
1 (0) =

√
π

2
(34)

As such IF,4 (0) > 0 is an arbitrary non-universal con-
stant effecting the fixed point and flow of RG.
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