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The double Pareto distribution is a heavy-tailed distribution with a power-law tail, that is gen-
erated via geometric Brownian motion with an exponentially distributed observation time. In this
study, we examine a modified model wherein the exponential distribution of the observation time
is replaced with a continuous uniform distribution. The probability density, complementary cumu-
lative distribution, and moments of this model are exactly calculated. Furthermore, the validity
of the analytical calculations is discussed in comparison with numerical simulations of stochastic
processes.

I. INTRODUCTION

Stochastic models have substantially contributed to the analysis of fluctuating or noisy systems [1, 2]. Furthermore,
simple stochastic processes have been proved to adequately describe real phenomena, and the connection between
stochastic processes and resultant probability distributions have been established theoretically. A probability distribu-
tion having a subexponential tail is referred to as a heavy-tailed distribution [3], which provides theoretical support for
statistical physics such as critical phenomena [4], anomalous diffusion [5], and long-range memories [6]. Additionally,
heavy-tailed distributions are crucial for complex systems such as social [7, 8] and biological [9] systems. Lognormal
and power-law distributions are the heavy-tailed distributions focused upon in this study.
A random variable X is said to follow the lognormal distribution if the logarithm of X is normally distributed [10].

The probability density function (PDF) of the lognormal distribution is expressed as

fLN(x;µ, σ
2) =

1√
2πσx

exp

(

− (lnx− µ)2

2σ2

)

,

where µ and σ are the mean and standard deviation of lnX , respectively. Its complementary cumulative distribution
function (CCDF) is expressed as

FLN(x;µ, σ
2) =

∫ ∞

x

fLN(y;µ, σ
2)dy =

1

2
erfc

(

lnx− µ√
2σ

)

,

where

erfc(z) :=
2√
π

∫ ∞

z

e−u2

du (1)

is the complementary error function [11]. Furthermore, the kth moment of the lognormal random variable X is
computed as

E[Xk] = exp

(

kµ+
k2

2
σ2

)

. (2)

Specifically, the mean and variance are

E[X ] = exp

(

µ+
σ2

2

)

, V [X ] = e2µ+σ2

(eσ
2 − 1),

respectively.
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The lognormal distribution occurs in the multiplicative stochastic process, which is given by

Xn =MnXn−1, (3)

where the initial value X0 is a positive constant, and M1,M2, . . . are random variables distributed independently and
identically. The distribution of Xn for sufficiently large n can be approximated via a lognormal distribution, owing
to the central limit theorem. The process (3) has been used as a simplified model for the X-ray burst [12] and the
growth of organisms [13, 14]; this model was originally analyzed by Kolmogorov [15].
As Eq. (3) has a simple form, various additional effects have been applied. By modifying Eq. (3), the lognormal

distribution can change qualitatively to other distributions. For example, power-law distributions are obtained by
introducing additive noise [16], reset event [17], random stopping [18], and temporal cumulative sum [19, 20]. The
introduction of a lower bound yields the power-law distribution [21], and a related model introducing the sample-
dependent lower bound yields a heavy-tailed but not power-law distribution [22].
Geometric Brownian motion [23] can yield a lognormal distribution, and is expressed as the stochastic differential

equation

dSt = µStdt+ σStdBt, (4)

where Bt indicates the Brownian motion, µ is a real constant, and σ is a positive constant. For simplicity, we assume
that the initial value S0 is constant. By using Itô’s lemma [23], the value of St at a given time t = T is lognormally
distributed, whose PDF is fLN(x; lnS0 + µ̃T, σ2T ), where µ̃ = µ − σ2/2. The geometric Brownian motion is applied
to the Black–Scholes equation in mathematical finance [24].
When the observation time T of the geometric Brownian motion (4) is changed to an exponential random variable,

ST does not follow the lognormal distribution. Instead, the double Pareto (DP) distribution is observed [25, 26]. The
PDF of ST can be expressed as

fDP(x) =

∫ ∞

0

λe−λtfLN(x; lnS0 + µ̃t, σ2t)dt =

∫ ∞

0

λe−λt

√
2πtσx

exp

(

− (lnx− lnS0 − µ̃t)2

2σ2t

)

dt,

where λe−λt is the PDF of the exponential distribution with mean 1/λ. This integral represents the mixture of the
time-dependent lognormal size distribution with the exponential distribution as a weight.
To calculate this integral, u =

√
t is introduced and the formula [11]

∫ ∞

0

exp

(

−a2u2 − b2

u2

)

du =

√
π

2a
e−2ab (5)

can be used. Finally, we obtain

fDP(x) =























λ

S0

√

µ̃2 + 2σ2λ

(

x

S0

)−α−1

x ≥ S0,

λ

S0

√

µ̃2 + 2σ2λ

(

x

S0

)β−1

x < S0,

(6)

where

α =
−µ̃+

√

µ̃2 + 2σ2λ

σ2
, β =

µ̃+
√

µ̃2 + 2σ2λ

σ2
.

The term “double Pareto” originates from the property that fDP(x) has two different power-law exponents depending
on whether x ≥ S0 or x < S0. The DP distribution has been observed in various phenomena, such as income [27] and
microblog posting interval [28].
A natural generalization of the DP distribution involves replacing the exponential distribution of T by other

distributions. Upon replacing λe−λt with a general PDF g(t), the PDF of ST is formally expressed as

fg(x) =

∫ ∞

0

g(t)fLN(x; lnS0 + µ̃t, σ2t)dt.

However, the calculation of this integral cannot be performed for general g(t). This study focuses on the case wherein
T follows a uniform distribution as a simple case. In this case, the PDF and CCDF of ST can be exactly calculated
although they have complicated forms. We further calculate the moments of ST and compare the CCDF to the
discrete-time process (3).
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II. PROBABILITY DENSITY

In this section, we derive the PDF of the observed value ST of geometric Brownian motion wherein the observation
time T follows the uniform distribution on the interval [0, Tmax]:

guni(t) =







1

Tmax
0 ≤ t ≤ Tmax

0 t > Tmax.

The PDF of ST in this case is written as funi(x) and is expressed as

funi(x) =

∫ ∞

0

guni(t)fLN(x; lnS0 + µ̃t, σ2t)dt

=
1

Tmax

∫ Tmax

0

fLN(x; lnS0 + µ̃t, σ2t)dt

=
1

Tmax

∫ Tmax

0

1√
2πtσx

exp

(

− (lnx− lnS0 − µ̃t)2

2σ2t

)

dt.

After changing the integral variable to u =
√

t/Tmax and some manipulation, we obtain

funi(x) =
2√

2πTmaxσx

∫ 1

0

exp

(

− (lnx− lnS0 − Tmaxµ̃u
2)2

2Tmaxσ2u2

)

du.

By introducing the scaling transformations µ∗ = Tmaxµ, σ∗ =
√
Tmaxσ, and µ̃∗ = µ∗ − σ2

∗/2 = µ̃Tmax, the parameter
Tmax can be eliminated:

funi(x) =
2√

2πσ∗x

∫ 1

0

exp

(

− (lnx− lnS0 − µ̃∗u2)2

2σ2
∗u

2

)

du

=
2√

2πσ∗x

(

x

S0

)µ̃∗/σ
2
∗

∫ 1

0

exp

(

− µ̃2
∗

2σ2
∗
u2 − (ln(x/S0))

2

2σ2
∗u

2

)

du. (7)

Therefore, although funi originally involves three parameters µ̃, σ, and Tmax, it can be essentially reduced to two (µ̃∗
and σ∗).
To calculate the integral in Eq. (7), we employed the following formula [11]:

∫ ∞

z

exp

(

−a2u2 − b2

u2

)

du =

√
π

4a

[

e2ab erfc

(

az +
b

z

)

+ e−2ab erfc

(

az − b

z

)]

, (8)

where a, b > 0. Equation (8) can be considered as a generalization (or indefinite integral) of Eq. (5). In fact, Eq. (5)
is obtained by considering the z → 0+ limit and using the limit values erfc(+∞) = 0 and erfc(−∞) = 2. Using this
relation, we obtain

∫ 1

0

exp

(

−a2u2 − b2

u2

)

du =

(
∫ ∞

0

−
∫ ∞

1

)

exp

(

−a2u2 − b2

u2

)

du =

√
π

4a

[

e−2ab(2 − erfc(a− b))− e2ab erfc(a+ b)
]

=

√
π

4a

[

e−2ab erfc(b− a)− e2ab erfc(a+ b)
]

, (9)

where erfc(−z) = 2− erfc(z) (see Ref. [11]) is used in the final equality.

The integral in Eq. (7) for µ̃∗ 6= 0 can be calculated by inserting a = |µ̃∗|/(
√
2σ∗) and b = | ln(x/S0)|/(

√
2σ∗) in

Eq. (9). The factor e±2ab is reduced to

e±2ab = exp

(

±|µ̃∗|
σ2
∗

∣

∣

∣

∣

ln
x

S0

∣

∣

∣

∣

)

=

(

x

S0

)± sgn(x−S0)|µ̃∗|/σ2
∗

,

where sgn is the signum function defined by

sgn(x) =











+1 x > 0,

0 x = 0,

−1 x < 0.
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Therefore,

funi(x) =
1

2|µ̃∗|x

[

(

x

S0

)(1−sgn(x−S0))|µ̃∗|/σ2
∗

erfc

( | ln(x/S0)| − |µ̃∗|√
2σ∗

)

−
(

x

S0

)(1+sgn(x−S0))|µ̃∗|/σ2
∗

erfc

( | ln(x/S0)|+ |µ̃∗|√
2σ∗

)

]

.

When µ̃∗ > 0, the absolute value can be simply removed: |µ̃∗| = µ̃∗. When µ̃∗ < 0, |µ̃∗| = −µ̃∗, and it can be
confirmed in a straightforward manner that the expression of funi(x) becomes the same as in µ̃∗ > 0. Thus, we finally
obtain

funi(x) =
1

2µ̃∗x

[

(

x

S0

)(1−sgn(x−S0))µ̃∗/σ
2
∗

erfc

( | ln(x/S0)| − µ̃∗√
2σ∗

)

−
(

x

S0

)(1+sgn(x−S0))µ̃∗/σ
2
∗

erfc

( | ln(x/S0)|+ µ̃∗√
2σ∗

)

]

. (10)

The funi(x) for µ̃∗ = 0 is written as

funi(x) =
2√

2πσ∗x

∫ 1

0

exp

(

− (ln(x/S0))
2

2σ2
∗u

2

)

du =
2√

2πσ∗x

∫ 1

0

exp

(

− b2

u2

)

du,

where b = | ln(x/S0)|√
2σ∗

, as above. By introducing a new integration variable v = |b|/u and integrating by parts, we

obtain

funi(x) =
2√

2πσ∗x

[

−|b|
v
e−v2

]∞

|b|
− 2√

2πσ∗x

∫ ∞

|b|
2|b|e−v2

dv =
2e−b2

√
2πσ∗x

−
√
2|b|
σ∗x

erfc(|b|)

=
2√

2πσ∗x
exp

(

− (ln(x/S0))
2

2σ2
∗

)

− | ln(x/S0)|
σ2
∗x

erfc

( | ln(x/S0)|√
2σ∗

)

. (11)

The derived PDFs in Eqs. (10) and (11) are complicated compared to the DP distribution (6).
We derive the asymptotic form of funi(x) in the x→ ∞ and x→ 0+ limits. Using the asymptotic expansion of the

erfc function [11]

erfc(z) ∼ 1√
πz
e−z2

(z → ∞) (12)

and the relation

(

x

S0

)2µ̃∗/σ∗

exp

(

− (ln(x/S0) + µ̃∗)2

2σ2
∗

)

= exp

(

− (ln(x/S0)− µ̃∗)2

2σ2
∗

)

,

we obtain

funi(x) ∼
√

2

π

σ∗
x(ln x)2

exp

(

− (ln(x/S0)− µ̃∗)2

2σ2
∗

)

=
2σ2

∗
(lnx)2

fLN(x; lnS0 + µ̃∗, σ
2
∗) (x→ ∞, 0+).

Notably, both limits x→ ∞ and x→ 0+ have the same asymptotic form. Owing to the (lnx)−2 factor, funi(x) decays
slightly faster than the lognormal PDF.

A. Shape of funi(x) graph

The graph of funi(x) is shown in Fig. 1. For any µ̃∗ and σ∗, funi(x) is continuous for all x > 0 and is not differentiable
at x = S0, which corresponds to the discontinuity point of sgn(x − S0). Panel (a) shows the graph of fixed µ̃∗ = 1
and varying σ∗, and (b) shows the log-log graph of (a). Panel (c) shows the graph of fixed σ∗ = 1 and varying µ̃∗,
and (d) shows the log-log graph of (c). The decay of funi(x) as x → ∞ is slower for larger σ∗ and µ̃∗. The graph
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FIG. 1. Graphs of funi(x). (a) µ̃∗ = 1 and σ∗ = 0.5, 1, 2, and 4. (b) Log-log graph of (a). (c) σ∗ = 1 and µ̃∗ = −1, 0, 1, and 2.
(d) Log-log graph of (c). The vertical dashed line indicates x = S0 = 1.

for µ̃∗ = 1 and σ∗ = 4 in Fig. 1(a) appears to increase monotonically as x → 0+; however, this is not true. As
limx→0+ funi(x) = 0 for any µ̃∗ and σ∗, this graph attains a maximum value for a very small (but positive) x.
In Fig. 1, the graph of funi(x) has a peak at x = S0 for(µ̃∗, σ∗) = (1, 0.5), (1, 1), (0, 1), and (2, 1); the peak for the

remaining graphs are not at x = S0. We investigate the reason for this qualitative change, by deriving the condition
for (µ̃∗, σ∗) such that funi(x) has a peak at x = S0. For sufficiently small δ > 0,

funi(S0 ± δ) ≃ funi(S0)± f ′
uni(S

±
0 )δ,

where

f ′
uni(S

+
0 ) = lim

h→0+

funi(S0 + h)− funi(S0)

h
, f ′

uni(S
−
0 ) = lim

h→0+

funi(S0)− funi(S0 − h)

h

are the right and left derivatives of funi(x) at x = S0, respectively. We have to consider one-sided derivatives because
the function funi(x) is not differentiable at x = S0. The condition such that funi(x) has a peak at x = S0 is

f ′
uni(S

+
0 ) < 0, f ′

uni(S
−
0 ) > 0.

The differentiation of Eqs. (10) and (11) yields

f ′
uni(S

+
0 ) =















1

µ̃∗S2
0

[(

1− µ̃∗
σ2
∗

)

erfc

(

µ̃∗√
2σ∗

)

− 1

]

µ̃∗ 6= 0,

− 2√
2πσ∗S2

0

µ̃∗ = 0,

and

f ′
uni(S

−
0 ) =















1

µ̃∗S2
0

[

2µ̃∗
σ2
∗

− 1 +

(

1− µ̃∗
σ2
∗

)

erfc

(

µ̃∗√
2σ∗

)]

µ̃∗ 6= 0,

1

σ2
∗S

2
0

− 2√
2πσ∗S2

0

µ̃∗ = 0.

(13)

First, we prove that f ′
uni(S

+
0 ) < 0 always holds. This is trivial for µ̃∗ = 0; thus, we examine the µ̃∗ 6= 0 case:

f ′
uni(S

+
0 ) = − 1

S2
0σ

2
∗
erfc

(

µ̃∗√
2σ∗

)

− 1

µ̃∗S2
0

[

1− erfc

(

µ̃∗√
2σ∗

)]

.
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f ′uni(S
−
0 ) = 0
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FIG. 2. Diagram of f ′

uni(S
−

0
) on the (µ̃∗, σ∗) plane. The dashed curve represents the contour of f ′

uni(S
−

0
) = 0. The graph of

funi(x) yields a peak at x = S0 if the point (µ̃∗, σ∗) lies on the right side of this curve.

f ′uni(S
−
0 ) = 0

−2 −1 0 1 2
µ̃∗

0

0.5

1

1.5

2

σ
∗

0

0.2

0.4

0.6

0.8

1

Peak is at
x

S0
= 1

FIG. 3. Numerical result for the peak position depicted in the (µ̃∗, σ∗) plane. The color bar represents the peak position
x divided by S0. The dashed curve shows the contour of f ′

uni(S
−

0
) = 0, which is shown in Fig. 2. To the right of this curve,

funi(x) shows a peak at x = S0.

The first term on the right-hand side is always negative because the erfc function always takes a positive value. The
factor 1− erfc(µ̃∗/(

√
2σ∗)) in the second term becomes positive for positive µ̃∗ and becomes negative for negative µ̃∗.

Thus, 1− erfc(µ̃∗/(
√
2σ∗)) always has the same sign as µ̃∗, and the second term is always negative.

In contrast, whether f ′
uni(S

−
0 ) > 0 depends on µ̃∗ and σ∗. Figure 2 shows the f ′

uni(S
−
0 ) values with S0 = 1 for

−1 ≤ µ̃∗ ≤ 3 and 0 < σ∗ ≤ 2. To ensure clear visualization, we restrict the color bar within the interval [−6, 6],
although certain (µ̃∗, σ∗) yield values outside this range [e.g., f ′

uni(S
−
0 ) ≈ 49 for (µ̃∗, σ∗) = (1, 0.2)]. The dashed curve

in the figure represents the contour of f ′
uni(S

−
0 ) = 0. Thus, funi(x) exhibits a peak at x = S0 when (µ̃∗, σ∗) is on the

right side of this curve. By using the limit value erfc(+∞) = 0, it can be proven using Eq. (13) that the curve for
f ′
uni(S

−
0 ) = 0 asymptotically draws the parabola µ̃∗ = σ2

∗/2 for σ∗ ≫ 1. When µ̃∗ = 0, f ′
uni(S

−
0 ) > 0 can be exactly

solved to attain σ∗ <
√

π/2 ≈ 1.25. However, the solution for the µ̃∗ 6= 0 case will not be obtained exactly, owing to
the erfc function.
Further analysis shows that funi(x) is unimodal for any µ̃∗ and σ∗ (further detailes have been presented in Ap-

pendix A). Depending on the (µ̃∗, σ∗) values, the peak position of funi(x) is either at x = S0 (corresponding to
f ′
uni(S

−
0 ) ≥ 0) or x < S0 (f ′

uni(S
−
0 ) < 0). The peak position x for the latter case is characterized by the solution

of the equation f ′
uni(x) = 0. The explicit form of this equation is presented in Eq. (A2) in Appendix A, which is a

transcendental equation involving the erfc function. Rather than providing the exact solution of the peak position,
we present a numerical result for the peak position in Fig. 3. The peak tends to be located at small x with decreasing
µ̃∗ and increasing σ∗.

III. COMPLEMENTARY CUMULATIVE DISTRIBUTION

In principle, the CCDF Funi(x) =
∫∞
x funi(y)dy is derived by integrating the PDF funi(x) in Eqs. (10) and (11).

However, as the absolute value in the erfc function cannot be handled in a straightforward manner, we first remove
the absolute value symbols.
When x < S0 and µ̃∗ 6= 0,

funi(x) =
1

2µ̃∗x

[

erfc

(

ln(x/S0)− µ̃∗√
2σ∗

)

−
(

x

S0

)2µ̃∗/σ
2
∗

erfc

(

ln(x/S0) + µ̃∗√
2σ∗

)

+ 2

(

(

x

S0

)2µ̃∗/σ
2
∗

− 1

)]

,
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where the relation erfc(−z) = 2− erfc(z) is used. The difference from the case x > S0 is the last term. Therefore, for
any x > 0,

funi(x) =
1

2µ̃∗x

[

erfc

(

ln(x/S0)− µ̃∗√
2σ∗

)

−
(

x

S0

)2µ̃∗/σ
2
∗

erfc

(

ln(x/S0) + µ̃∗√
2σ∗

)

+ (1− sgn(x− S0))

(

(

x

S0

)2µ̃∗/σ
2
∗

− 1

)]

is valid.
For the derivation of Funi(x), we calculate the following two integrals as a preliminary step:

I1 =

∫ ∞

x

erfc

(

ln(y/S0)− µ̃∗√
2σ∗

)

dy

y
, I2 =

∫ ∞

x

(

y

S0

)2µ̃∗/σ
2
∗

erfc

(

ln(y/S0) + µ̃∗√
2σ∗

)

dy

y
.

By setting z = (ln(y/S0)− µ̃∗)/(
√
2σ∗) and z− = (ln(x/S0)− µ̃∗)/(

√
2σ∗),

I1 =
√
2σ∗

∫ ∞

z−

erfc(z)dz =
[√

2σ∗z erfc(z)
]∞

z−
+ 2

√

2

π
σ∗

∫ ∞

z−

ze−z2

dz

= −
(

ln
x

S0
− µ̃∗

)

erfc

(

ln(x/S0)− µ̃∗√
2σ∗

)

+

√

2

π
σ∗ exp

(

− (ln(x/S0)− µ̃∗)2

2σ2
∗

)

.

We use integration by parts in the second equality. Similarly, by setting z = (ln(y/S0) + µ̃∗)/(
√
2σ∗) and z+ =

(ln(x/S0) + µ̃∗)/(
√
2σ∗),

I2 =
√
2σ∗e

−2µ̃2
∗
/σ2

∗

∫ ∞

z+

exp

(

2
√
2µ̃∗
σ∗

z

)

erfc(z)dz

=

[

σ2
∗

2µ̃∗
exp

(

−2µ̃2
∗

σ2
∗

+
2
√
2µ̃∗
σ∗

z

)

erfc(z)

]∞

z+

+
σ2
∗

µ̃∗
√
π
e−2µ̃2

∗
/σ2

∗

∫ ∞

z+

exp

(

−z2 + 2
√
2µ̃∗
σ∗

z

)

dz

= − σ2
∗

2µ̃∗

(

x

S0

)2µ̃∗/σ
2
∗

erfc

(

ln(x/S0) + µ̃∗√
2σ∗

)

+
σ2
∗√
πµ̃∗

∫ ∞

z+−
√
2µ̃∗/σ∗

e−z2

dz

= − σ2
∗

2µ̃∗

(

x

S0

)2µ̃∗/σ
2
∗

erfc

(

ln(x/S0) + µ̃∗√
2σ∗

)

+
σ2
∗

2µ̃∗
erfc

(

ln(x/S0)− µ̃∗√
2σ∗

)

.

The CCDF for x ≥ S0 becomes

Funi(x) =
1

2µ̃∗

∫ ∞

x

[

erfc

(

ln(y/S0)− µ̃∗√
2σ∗

)

−
(

y

S0

)2µ̃∗/σ
2
∗

erfc

(

ln(y/S0) + µ̃∗√
2σ∗

)

]

dy

y

=
I1 − I2
2µ̃∗

=
1

2µ̃∗

[

√

2

π
σ∗ exp

(

− (ln(x/S0)− µ̃∗)2

2σ2
∗

)

+
σ2
∗

2µ̃∗

(

x

S0

)2µ̃∗/σ
2
∗

erfc

(

ln(x/S0) + µ̃∗√
2σ∗

)

−
(

ln
x

S0
− µ̃∗ +

σ2
∗

2µ̃∗

)

erfc

(

ln(x/S0)− µ̃∗√
2σ∗

)]

,

and for x < S0,

Funi(x) =
I1 − I2
2µ̃∗

+
1

µ̃∗

∫ S0

x

(

(

y

S0

)2µ̃∗/σ
2
∗

− 1

)

dy

y
.

The remaining integral can be calculated as

1

µ̃∗

∫ S0

x

(

(

y

S0

)2µ̃∗/σ
2
∗

− 1

)

dy

y
=

1

µ̃∗

(

σ2
∗

2µ̃∗
− σ2

∗
2µ̃∗

(

x

S0

)2µ̃∗/σ
2
∗

+ ln
x

S0

)

.
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FIG. 4. Log-log graphs of Funi(x) for µ̃∗ = 1 and σ∗ = 0.5, 1, 2, and 4 (a), and for σ∗ = 1 and µ̃∗ = −1, 0, 1, and 2 (b). The
vertical dashed line indicates x = S0 = 1.

Consequently, we obtain

Funi(x) =
1

2µ̃∗

[

√

2

π
σ∗ exp

(

− (ln(x/S0)− µ̃∗)2

2σ2
∗

)

+
σ2
∗

2µ̃∗

(

x

S0

)2µ̃∗/σ
2
∗

erfc

(

ln(x/S0) + µ̃∗√
2σ∗

)

−
(

ln
x

S0
− µ̃∗ +

σ2
∗

2µ̃∗

)

erfc

(

ln(x/S0)− µ̃∗√
2σ∗

)]

+
1− sgn(x− S0)

2µ̃∗

(

σ2
∗

2µ̃∗
− σ2

∗
2µ̃∗

(

x

S0

)2µ̃∗/σ
2
∗

+ ln
x

S0

)

, (14)

which is valid for all x > 0. This result is extremely complex, but it is exact.
By integrating Eq. (11) or taking the µ̃∗ → 0 limit in Eq. (14), Funi(x) for µ̃∗ = 0 is obtained as

Funi(x) =
1

2
erfc

(

ln(x/S0)√
2σ∗

)

− 1

2
√
2πσ∗

exp

(

− (ln(x/S0))
2

2σ2
∗

)

+
1

2σ2
∗

(

ln
x

S0

)2

erfc

(

ln(x/S0)√
2σ∗

)

.

Figure 4 shows the graph of Funi(x) on a log-log scale. The graph decays slower for larger σ∗ [in (a)] and larger µ̃∗
[in (b)]. The graphs do not exhibit significant variety in shape as funi(x) in Fig. 2, and the overall shapes are similar
for different µ̃∗ and σ∗,

IV. CALCULATION OF MOMENTS

The kth moment of ST can be calculated as

E[Sk
T ] =

∫ ∞

0

xkfuni(x)dx

=

∫ ∞

0

xk
1

Tmax

∫ Tmax

0

fLN(x; lnS0 + µ̃t, σ2t)dtdx

=
1

Tmax

∫ Tmax

0

∫ ∞

0

xkfLN(x; lnS0 + µ̃t, σ2t)dxdt

=
Sk
0

Tmax

∫ Tmax

0

exp

(

kµ̃t+
k2

2
σ2t

)

dt

=
2

k2σ2
∗ + 2kµ̃∗

[

exp

(

k2σ2
∗

2
+ kµ̃∗

)

− 1

]

Sk
0 .

The moment of the lognormal distribution [Eq. (2)] is used in the fourth equality. In contrast to the DP distribution,
E[Sk

T ] is not divergent for any k.
Specifically, the mean and variance of ST for µ∗ 6= 0 and µ∗ 6= −σ2

∗ becomes

E[ST ] =
eµ∗ − 1

µ∗
S0, V [ST ] =

eσ
2
∗
+µ∗ − 1

σ2
∗ + µ∗

S2
0 − (eµ∗ − 1)2

µ2
∗

S2
0 .
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FIG. 5. The kth moment of ST (S0 = 1) up to k = 5 for µ̃∗ = 1 and σ∗ = 0.5, 1, 2, and 4 (a), and for σ∗ = 1 and µ̃∗ = −1, 0, 1,
and 2 (b).

We obtain E[ST ] = S0 when µ∗ = 0 and

V [ST ] = S2
0 − (eµ∗ − 1)2

µ2
∗

S2
0

when µ∗ = −σ2
∗.

Figure 5 shows the semi-log graphs of E[Sk
T ] for S0 = 1 with different µ̃∗ and σ∗. E[Sk

T ] becomes large for large µ̃∗
and σ∗. The graph for µ̃∗ = −1 and σ∗ = 1 in Fig. 5(b) is not monotonically increasing; E[S1

T ] ≈ 0.787 < 1 = E[S0
T ].

We can easily prove that

2

k2σ2
∗ + 2kµ̃∗

[

exp

(

k2σ2
∗

2
+ kµ̃∗

)

− 1

]

< 1

when

k2σ2
∗

2
+ kµ̃∗ < 0.

Therefore, this phenomenon can occur for the µ̃∗ < 0 case.

V. COMPARISON TO DISCRETE-TIME MULTIPLICATIVE PROCESS

We investigate whether the above results are valid for the discrete-time multiplicative stochastic process (3).
If X0 is a constant value, lnXn = lnM1 + · · · + lnMn + lnX0 approximately follows the normal distribution

with mean µn and variance σ2n, where µ = E[lnMi] and σ
2 = V [lnMi]. Therefore, Xn approximately follows the

lognormal distribution with fLN(x; lnX0 + µn, σ2n). This lognormality is similar to ST for the geometric Brownian
motion having fLN(x; lnS0 + µ̃T, σ2T ).
If the observation time n is drawn from the discrete uniform distribution on {1, 2, . . . , N}, the PDF and CCDF of

Xn are expected to become approximately similar to funi(x) and Funi(x) derived in Sections II and III, respectively.
We compare the numerically generated CCDF and Funi(x) using two examples for the distribution of Mi.
The first example is the case wherein Mi is uniformly distributed over the interval [a, b] (a > 0). The mean µ and

variance σ2 of lnMi become

µ =

∫ b

a

1

b− a
ln ydy =

b ln b− a lna

b− a
− 1, σ2 =

∫ b

a

1

b− a
(ln y − µ)2dy = 1− ab

(

ln b− ln a

b− a

)2

.

In the numerical calculation, we set a = 1/2 and b = 3/2 so that µ ≈ −0.0452 and σ2 ≈ 0.0948. The CCDFs for
N = 2, 5, 10, and 20 are shown in Fig. 6(a) with points, calculated from 104 independent samples each. The solid
curves represent Funi(x) in Eq. (14) by using µ̃∗ = µN and σ2

∗ = σ2N .
The second example is where Mi follows the power-law distribution. The mean µ and variance σ2 of lnMi can be

computed to be

µ =

∫ ∞

m0

ν − 1

m0

(

y

m0

)−ν

ln ydy =
1

ν − 1
+ lnm0, σ2 =

∫ ∞

m0

ν − 1

m0

(

y

m0

)−ν

(ln y − µ)2dy =
1

(ν − 1)2
,
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FIG. 6. Comparison between numerically calculated CCDF of Xn for N = 2, 5, 10, and 20 (points) and the corresponding
Funi(x) (curves). The random variable Mi is drawn from the uniform distribution on the interval[1/2, 3/2] in (a) and the
power-law distribution with exponent ν = 3 and lower bound m0 = 1 in (b).

respectively, where the power-law PDF with exponent ν(> 1) and lower bound m0(> 0) is expressed as

ν − 1

m0

(

y

m0

)−ν

.

In the numerical calculation, we used ν = 3 and m0 = 1, so that µ = 1/2 and σ2 = 1/4. Figure 6(b) shows the
numerical result for N = 2, 5, 10, and 20 with points and Funi(x) with curves.
A common property in these two examples is that the CCDF of Xn gradually approaches Funi(x) with increase

in N . The deviation from Funi(x) in small N is attributed to the fact that the lognormal approximation based on
the central limit theorem fails. In other words, the distribution of Xn for small N is dependent on the individuality
of the distribution of Mi. For example, the numerical CCDF of Xn for the uniform Mi decays faster than Funi(x),
whereas that for the power-law Mi decays slower than Funi(x). This observation is consistent with the property that
the lognormal distribution has a tail heavier than the uniform distribution and the power-law distribution has an even
further heavier tail.

VI. DISCUSSION

This study examined the geometric Brownian motion ST under uniformly distributed observation time T . This
model is a deformation of the DP distribution in which the observation time follows an exponential distribution. The
PDF funi(x) and CCDF Funi(x) are exactly calculated, although they have nontrivial complicated forms compared
to those of the DP distribution. Consequently, the power-law form of the DP distribution is realized owing to the
balance of the geometric Brownian motion and the exponential distribution of T .
By changing the observation time distribution, the DP distribution can be generalized. However, it remains unclear

whether the exact expressions of the PDF and CCDF can be obtained in such a generalized case. In particular,
the difficulty will arise in the computation of the (indefinite) integral, which involves exp(−a2u2 − b2/u2) factor.
Therefore, observation time distributions that provide exact PDF and CCDF of ST will be highly limited.
In this study, we assume that the initial value of the geometric Brownian motion, S0, is a constant, which is

common to the DP distribution [26]. A possible extension of this study involves changing S0 to a random variable.
When S0 is distributed lognormally and the observation time T is exponentially distributed, the distribution of ST is
exactly calculated and is referred to as the double Pareto-lognormal distribution [25, 29]. In the context of the double
Pareto-lognormal distribution, an interesting challenge associated with this study is the derivation of the distribution
of ST with uniform T when the constant S0 in this study is replaced with a lognormal random variable.
In Section V, the applicability of Funi(x) to discrete-time stochastic process (3) is examined. Funi(x) is expected

to provide a reasonable estimate when the maximum number N of steps is large, whereas the distribution of Xn is
strongly dependent on the property of the random variable Mi for small N . A further systematic and quantitative
study is required to establish the connection between continuous- and discrete-time processes.
From a practical viewpoint, the exploration of empirical datasets that exhibit the proposed distribution is an

important future research direction. Because the double Pareto distribution has been observed in various fields
related to human activities and social phenomena [27, 28], we believe that the proposed distribution, which can be
regarded as a modification of the DP distribution, is useful in the analysis of empirical data. In future studies, the
practical importance of this study will be tested by its application to data analysis.
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VII. CONCLUSION

The double Pareto (DP) distribution, a double-sided power-law distribution, can be obtained by geometric Brow-
nian motion with a constant initial value and exponentially distributed observation time. This study investigates a
deformation of the DP distribution by replacing the exponential distribution for the observation time with a continuous
uniform distribution.
The exact forms of the probability density function (PDF) and complementary cumulative distribution function

(CCDF) are derived using the error function [see Eqs. (10) and (14)]. Furthermore, the detailed shape of the PDF, e.g.,
the asymptotic form, unimodality, and peak position, is analyzed. The main finding of this study is the establishment
of a parametric distribution that is an extension of the lognormal and power-law distributions.

Appendix A: Unimodality of funi(x)

Here we show that the PDF funi(x) given in Eqs. (10) and (11) is unimodal. That is, funi(x) has exactly one peak,
at x = S0 or 0 < x < S0.
Before the main proof of the unimodality, we prove that the function

Q(w) = ln[ew
2

erfc(w)]

is strictly convex. The second derivative of Q(w) becomes

Q′′(w) =
2e−w2

erfc(w)2

[

ew
2

erfc(w)2 +
2√
π
w erfc(w) − 2

π
e−w2

]

=:
2e−w2

erfc(w)2
q(w).

Notably, the key to a simple proof is to separate e−w2

in the numerator. We analyze the function q(w). The derivative
of q(w) becomes

q′(w) = 2ew
2

erfc(w)

[

w erfc(w)− e−w2

√
π

]

= −2ew
2

erfc(w)

∫ ∞

w

erfc(u)du,

where

∫ ∞

w

erfc(u)du = −w erfc(w) +
e−w2

√
π

can be derived by integration by parts. The erfc function always takes a positive value, and its integral always becomes
positive. Therefore, q′(w) < 0, i.e., q(w) is a decreasing function. Using the asymptotic expansion (12) of the erfc
function, we obtain

lim
w→∞

q(w) = 0.

Consequently, q(w) takes a positive value for any w. Thus, Q′′(w) > 0, i.e., the strict convexity of Q(w), is proven.
For reference, Fig. 7 shows graphs of Q(w), Q′(w), and Q′′(w).
If funi(x) has a peak at x 6= S0, this peak position is characterized by the equation f ′

uni(x) = 0. First, we prove the
unimodality for the µ̃∗ = 0 case. By differentiating Eq. (11), the equation f ′

uni(x) = 0 becomes

(

1− ln
x

S0

)

erfc

(

± ln(x/S0)√
2σ∗

)

= ∓
√

2

π
σ∗ exp

(

− (ln(x/S0))
2

2σ2
∗

)

,

where the upper and lower signs refer to the cases of x > S0 and x < S0, respectively. Taking the logarithm of this
equation for x < S0 and introducing w = − ln(x/S0)/(

√
2σ∗), we obtain

Q′(w) = −
√
2

σ∗
, (A1)

where

Q′(w) = − 2e−w2

√
π erfc(w)

+ 2w.
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FIG. 7. Graphs of Q(w), Q′(w), and Q′′(w) in −5 ≤ w ≤ 5. (a) The function Q(w) is strictly convex. (b) The derivative
Q′(w) is increasing and negative-valued. (c) The second derivative Q′′(w) is positive-valued.

Owing to the strict convexity of Q(w), the derivative Q′(w) is an increasing function. Moreover, Q′(w) satisfies

lim
w→−∞

Q′(w) = −∞, lim
w→∞

Q′(w) = 0,

where the asymptotic expansion (12) is required to compute Q′(∞). Therefore, Eq. (A1) has a unique solution w

for any σ∗ > 0. If this solution is w > 0, the peak position of funi(x) is x = S0 exp(−
√
2σ∗w) < S0, and otherwise,

funi(x) is monotonically increasing in 0 < x < S0 and the peak is at x = S0. The solution w is positive if and only if

−
√
2

σ∗
< Q′(0) = − 2√

π
,

which is equivalent to

σ∗ >

√

π

2
.

This threshold value
√

π/2 can be obtained as the solution of f ′
uni(S

−
0 ) = 0 stated in Section IIA.

The equation for x > S0 becomes

Q′(w) =

√
2

σ∗
,

with w = ln(x/S0)/(
√
2σ∗). This equation does not have solutions because Q′(w) is always negative, as stated above;

funi(x) does not have a peak in x > S0. Thus, the unimodality of funi(x) for µ̃∗ = 0 is proven.
Next, we show the unimodality of funi(x) for µ̃∗ 6= 0. The equation f ′

uni(x) = 0 becomes

erfc

(

± ln(x/S0)− µ̃∗√
2σ∗

)

=

(

1− 2µ̃∗
σ2
∗

)(

x

S0

)2µ̃∗/σ
2
∗

erfc

(

± ln(x/S0) + µ̃∗√
2σ∗

)

, (A2)

where ± indicates “+” for x > S0 and “−” for x < S0, as in the µ̃∗ = 0 case above. Since the erfc function is
positive-valued, the existence of a solution x requires 1 − 2µ̃∗/σ2

∗ > 0. Otherwise, if 1 − 2µ̃∗/σ2
∗ ≤ 0, Eq. (A2) does

not have solutions, which means that the peak of funi(x) is x = S0. Taking the logarithm of Eq. (A2) and introducing

w = ± ln(x/S0)/(
√
2σ∗), we obtain

Q

(

w +
µ̃∗√
2σ∗

)

−Q

(

w − µ̃∗√
2σ∗

)

=















− ln

(

1− 2µ̃∗
σ2
∗

)

x > S0,

ln

(

1− 2µ̃∗
σ2
∗

)

x < S0.

(A3)

The condition 1− 2µ̃∗/σ2
∗ > 0 ensures that the term ln(1− 2µ̃∗/σ2

∗) takes a real value.
Let us focus on the µ̃∗ > 0 case. According to the theory of convex functions [30], for any strictly convex function

ψ and constant a > 0, the function ψ(w + a) − ψ(w − a) is an increasing function of w. Hence, the left-hand side of
Eq. (A3) is an increasing function of w, and satisfies

lim
w→−∞

[

Q

(

w +
µ̃∗√
2σ∗

)

−Q

(

w − µ̃∗√
2σ∗

)]

= −∞, lim
w→∞

[

Q

(

w +
µ̃∗√
2σ∗

)

−Q

(

w − µ̃∗√
2σ∗

)]

= 0.
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That is, the left-hand side of Eq. (A3) is always negative and can take any negative value by tuning w. Noting that
ln(1 − 2µ̃∗/σ2

∗) < 0 for µ̃∗ > 0, we conclude that Eq. (A3) for x > S0 does not have solution and for x < S0 has a
unique solution. As stated in the µ̃∗ = 0 case, the solution w < 0 corresponds to x > S0, and the peak of funi(x) is
at x = S0.
For the µ̃∗ < 0 case, the left-hand side of Eq. (A3) becomes positive-valued decreasing function and ln(1−2µ̃∗/σ2

∗) >
0. Therefore, Eq. (A3) for x > S0 does not have solution and for x < S0 has a unique solution, which indicates that
the funi(x) is unimodal.

ACKNOWLEDGMENTS

The authors are grateful to referees for providing details regarding the double Pareto-lognormal distribution. One
of the authors (K.Y.) was supported by a Grant-in-Aid for Scientific Research (C) 19K03656 and 23K03264 from
Japan Society for the Promotion of Science.

[1] van Kampen N G 1992 Stochastic Processes in Physics and Chemistry (Elsevier)
[2] Redner S 2001 A Guide to First-Passage Processes (Cambridge University Press)
[3] Nair J, Wierman A and Zwart B 2022 The Fundamentals of Heavy Tails (Cambridge University Press)
[4] Nishimori H and Ortiz G 2011 Elements of Phase Transitions and Critical Phenomena (Oxford University Press)
[5] ben-Avraham D and Havlin S 2000 Diffusion and Reaction in Fractals and Disordered Systems (Cambridge University

Press)
[6] Zwanzig R 2001 Nonequilibrium Statistical Mechanics (Oxford University Press)
[7] Newman M E J 2005 Power laws, Pareto distributions and Zipf’s law Contemp. Phys. 46 323–351
[8] Kobayashi N, Kuninaka H, Wakita J and Matsushita M 2011 Statistical features of complex systems—toward establishing

sociological physics— J. Phys. Soc. Jpn. 80 072001
[9] Limpert E, Stahel W A and Abbt M 2001 Log-normal distributions across the sciences: keys and clues BioScience 51

341–352
[10] Crow E L and Shimizu K (ed.) 1988 Lognormal distributions (Dekker)
[11] Olver F W, Lozier D W, Boisvert R F and Clark C W 2010 NIST Handbook of Mathematical Functions (Cambridge

University Press)
[12] Uttley P, McHardy I M and Vaughan S 2005 Non-linear X-ray variability in X-ray binaries and active galaxies Mon. Not.

R. Aston. Soc. 359 345–362
[13] Yamamoto K and Wakita J 2016 Analysis of a stochastic model for bacterial growth and the lognornality of the cell-size

distribution J. Phys. Soc. Jpn. 85 074004
[14] Koyama K, Yamamoto K and Ushio M 2017 A lognormal distribution of the lengths of terminal twigs on self-similar

branches of elm trees Proc. R. Soc. B 284 20162395
[15] Kolmogorov A N 1941 On the log-normal distribution of particles sizes during breakup process Dokl. Akad. Nauk SSSR

31 99–101
[16] Takayasu H, Sato A and Takayasu M 1997 Stable infinite variance fluctuations in randomly amplified Langevin systems

Phys. Rev. Lett. 79 966–969
[17] Manrubia S C and Zanette D H 1999 Stochastic multiplicative processes with reset events Phys. Rev. E 59 4945–4948
[18] Yamamoto K and Yamazaki Y 2012 Power-law behavior in a cascade process with stopping events Phys. Rev. E 85 011145
[19] Yamamoto K 2014 Stochastic model of Zipf’s law and the universality of the power-law exponent Phys. Rev. E 89 042115
[20] Yamamoto K 2015 A simple view of the heavy-tailed sales distributions and application to the box-office grosses of U.S.

movies Europhys. Lett. 108 68004
[21] Levy M and Solomon S 1996 Power laws are logarithmic Boltzmann laws Int. J. Mod. Phys. C 7 595–601
[22] Yamamoto K and Yamazaki Y 2022 Analysis and application of multiplicative stochastic process with a sample-dependent

lower bound J. Phys. Soc. Jpn. 91 064803
[23] Øksendal B 2013 Stochastic Differential Equations (Springer)
[24] Paul W and Baschnagel J 2013 Stochastic Processes: From Physics to Finance (Springer)
[25] Reed W J and Jorgensen M 2004 The double Pareto-lognormal distribution—a new parametric model for size distributions

Commn. Statist. 33 1733–1753
[26] Mitzenmacher M 2004 Dynamic models for file sizes and double Pareto distributions Internet Math. 1 305–333
[27] Reed W J 2001 The Pareto, Zipf and other power laws Econ. Lett. 74 15
[28] Wang C, Guan X, Qin T and Yang T 2016 Modeling heterogeneous and correlated human dynamics of online activities

with double Pareto distribution Information Sciences 330 186–198
[29] Grbac N and Grbac T G 2023 Letter to the editor: on the paper “The double Pareto-lognormal distribution—a new

parametric model for size distributions” and its correction Commn. Statistics (DOI: 10.1080/03610926.2023.2174788)
[30] Roberts A W and Varberg D E 1973 Convex Functions (Academic Press)


	Deformation of power law in the double Pareto distribution using uniformly distributed observation time
	Abstract
	Introduction
	Probability density
	Shape of funi(x) graph

	Complementary cumulative distribution
	Calculation of moments
	Comparison to discrete-time multiplicative process
	Discussion
	Conclusion
	Unimodality of funi(x)
	Acknowledgments
	References


