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Abstract
Effective macroeconomic policies play a crucial
role in promoting economic growth and social
stability. This paper models the optimal macroe-
conomic policy problem based on the Stack-
elberg Mean Field Game (SMFG), where the
government acts as the leader in policy-making,
and large-scale households dynamically respond
as followers. This modeling method captures
the asymmetric dynamic game between the gov-
ernment and large-scale households, and inter-
pretably evaluates the effects of macroeconomic
policies based on microfoundations, which is dif-
ficult for existing methods to achieve. We also
propose a solution for SMFGs, incorporating pre-
training on real data and a model-free Stackelberg
mean-field reinforcement learning (SMFRL) al-
gorithm, which operates independently of prior
environmental knowledge and transitions. Our ex-
perimental results showcase the superiority of the
SMFG method over other economic policies in
terms of performance, efficiency-equity tradeoff,
and SMFG assumption analysis. This paper sig-
nificantly contributes to the domain of AI for eco-
nomics by providing a powerful tool for modeling
and solving optimal macroeconomic policies.

1. Introduction
The formulation of macroeconomic policies is crucial for the
sustained development of an economy (Schneider & Frey,
1988; Persson & Tabellini, 1999). Governments can ad-
just economic production, wealth distribution, social stabil-
ity, and welfare through economic policies such as interest
rates, taxation, and fiscal spending. Thus, how to effec-
tively model and solve optimal macroeconomic policies,
and simulate the effect of policy implementation is a very
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important issue. Existing research methods in economic pol-
icy primarily rely on simulations based on macroeconomic
models like the Dynamic Stochastic General Equilibrium
(DSGE) model (An & Schorfheide, 2007) and the Solow
growth model (Brock & Taylor, 2010), or on empirical
analysis (Robnik-Šikonja & Kononenko, 2003) assessing
policy impacts through posterior analysis of historical data.
However, these methods have limitations: (1) Difficulty in
modeling dynamic interactions between the government and
large-scale households, including feedback from households
to policy and governmental adjustments in response to this
feedback. (2) Challenge in solving the behavioral strate-
gies of large-scale micro-agents. (3) The real economic and
social world is highly complex, making it challenging for
macroeconomic models to satisfy assumptions such as state
transition and complete information.

Addressing these challenges, this paper employs the
Stackelberg Mean Field Game (SMFG) to model optimal
macroeconomic policy problems. In this framework, the
government, acting as the leader, initially sets policies, while
a vast number of households, as followers, respond to these
policies. However, considering the large scale of the follow-
ers, it is impractical for the leader to consider each follower’s
dynamic response. Consequently, followers’ action-state
distribution, analogous to the overall market information in
economics, is introduced as a bridge between macro-level
policy and micro-level individual decisions. The optimal
decisions of the leader and followers depend on the follow-
ers’ overall distribution rather than on a specific agent. This
assumption is crucial for modeling optimal macroeconomic
policies as SMFGs and is easily comprehensible in the real
world. For example, the government lowers property taxes
to stimulate a sluggish housing market. This policy alters the
market’s overall state, including housing prices and market
demand. Households should consider both the government’s
tax policy and the overall market information when making
their purchasing decisions.

Furthermore, this paper proposes a solution method for
the optimal macroeconomic policy issues based on SMFG:
Firstly, behavior cloning of households (followers) based on
real data serves as the initialization for the policy network.
This pre-training enhances the stability and performance of
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training and prevents ineffective solutions. Subsequently, a
model-free algorithm, Stackelberg Mean-Field Reinforce-
ment Learning (SMFRL), is introduced to solve SMFGs.
This method does not rely on prior knowledge of the envi-
ronment or transition information, offering advantages in
solving complex economic issues. We conduct experiments
on TaxAI (Mi et al., 2023), an environment for studying opti-
mal tax policies, first to validate the performance of SMFRL
against other model-free algorithms such as independent
learning, MADDPG, and mean field MARL in solving SM-
FGs. Secondly, the paper compares the SMFG method with
AI Economist, the Saez tax, the 2022 U.S. Federal tax, and
free market policy, demonstrating the superiority of SMFG
solutions and exploring the efficiency-equity tradeoff of
these economic policies. Lastly, our tests on SMFG model-
ing assumptions reveal that our approach remains effective
even if some households’ optimal decisions do not depend
on market information. In summary, the contributions of
this paper are threefold:

1. This paper is the first to model optimal macroeco-
nomic policy problems using Stackelberg mean field games,
linking macro-policies (the leader) with microfoundations
(large-scale followers) through the followers’ overall distri-
bution or average actions. It overcomes limitations such as
dynamic interactions and feedback, and the dimensionality
curse of large-scale households.

2. This paper employs real data for pre-training and pro-
poses a model-free Stackelberg mean field reinforcement
learning algorithm to solve SMFGs, with experimental vali-
dation of its effectiveness.

3. The paper empirically showcases the superiority of mod-
eling and solving optimal macroeconomic policy problems
by SMFGs. We also explore the efficiency-equity tradeoff
in various economic policies and SMFG assumptions.

Our code is shown in an anonymous GitHub repository 1.

2. Related work
2.1. Economic Methods

In the field of economics, research on economic policy typi-
cally relies on theoretical model studies, empirical analysis,
and econometric methods. Classic theoretical models, such
as the IS-LM model (Hicks, 1980; Gali, 1992), are appli-
cable for analyzing short-term policy effects but overlook
long-term factors and price fluctuations. The aggregate
demand-aggregate supply (AD-AS) model (Dutt, 2006; Lee
et al., 1997) focuses on the relationship between aggregate
demand and supply, integrating short-term and long-term
factors, but simplifies macroeconomic dynamics. The Solow
growth model (Brock & Taylor, 2010) provides a framework

1https://anonymous.4open.science/r/SMFG macro 7740

for economic growth but does not consider market imperfec-
tions and externalities. New Keynesian models (Blanchard
& Galı́, 2007; Gabaix, 2020) emphasize the stickiness of
prices and wages, suitable for explaining economic fluctua-
tions and policy interventions, but are based on strong as-
sumptions. DSGE models (An & Schorfheide, 2007; Smets
& Wouters, 2007), built on micro-foundations for macroeco-
nomic forecasting, offer a consistent framework for policy
analysis but are limited in handling nonlinearities and mar-
ket imperfections. Empirical analysis (Ramesh et al., 2010;
Vedung, 2017) primarily evaluates policy effects through
historical data but faces limitations in data timeliness and ac-
curacy. Econometric methods (Johnston & DiNardo, 1963;
Davidson et al., 2004), such as regression and time series
analysis, can quantify policy effects but are constrained by
model settings and data quality.

2.2. AI for Economics

Artificial intelligence (AI), such as reinforcement learning,
may offer new perspectives for solving complex economic
problems (Tilbury, 2022). In terms of macroeconomics,
AI Economist (Zheng et al.) employs curriculum learning
on tax policy design, Trott et al. studies the collaboration
between central and local governments under COVID-19,
as well as monetary policy (Hinterlang & Tänzer; Chen
et al., 2023), international trade (Sch, 2021), market pric-
ing (Danassis et al., 2023). However, these studies consider
the government as a single agent, neglecting the dynamic
response of the households to policies. Koster et al. studies
democratic AI by human voting models, Yaman et al. ex-
amines the impact of social sanction rules on labor division.
However, these works are based on simplified settings and
remain a gap in real-world economic policy. In terms of
microeconomics, Shi (2021); Rui & Shi (2022); Atashbar &
Aruhan Shi (2023) study the optimal saving and consump-
tion problems of micro-agents, and other researchers ex-
plore rational expectation equilibrium (Kuriksha, 2021; Hill
et al.), multiple equilibria under real-business-cycle (Curry
et al., 2022), the emergence of barter behavior (Johanson
et al., 2022), optimal asset allocation and savings strate-
gies (Ozhamaratli & Barucca, 2022). In summary, research
on macroeconomic problems still lacks a bridge framework
of macro policy and microfoundations, which has drawn our
attention to the Stackelberg mean field game.

2.3. Stackelberg Mean Field Game

The Stackelberg Mean Field Game models one leader and
a large number of homogeneous followers, and current re-
search can be divided into model-based methods and model-
free methods. Model-based approaches typically involve
complex theoretical analysis and precise mathematical mod-
eling. For instance, Guo et al. (2022) reconceptualizes SM-
FGs as minimax optimization problems, while Dayanikli
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& Lauriere (2023); Bergault et al. (2023); Bensoussan et al.
(2015); Fu & Horst (2020) initially resolve the followers’
mean field equilibrium using forward-backward stochastic
functional differential equations, subsequently deriving the
leader’s optimal control. Huang & Yang (2020); Bensous-
san et al. (2015) explore linear-quadratic Stackelberg games.
These methods provide a theoretically robust foundation but
may require simplified assumptions for practical applica-
tions, particularly in complex real-world scenarios. Notably,
Aurell et al. (2022) extends the mean field game model to
capture epidemic dynamics, demonstrating potential appli-
cations in public health management. In contrast, model-
free methods offer a way to handle complex situations that
traditional numerical methods struggle with, especially in
data-rich environments. Campbell et al. (2021) employs
a modified deep backward stochastic differential equation
(BSDE) method for solving the followers’ equilibrium, yet
the leader’s choices are limited. In conclusion, we plan
to use SMFGs to model macroeconomic policy issues and
propose a model-free algorithm to solve this complex task.

3. Macroeconomic Policy Formulation
3.1. Economic Modeling

In reality, an economy comprises at least one government
and large-scale households. The diverse economic activities
of households, such as production, trade, and consumption,
aggregate to form the market. The government can maintain
economic growth and social stability (Figure 1 left) via
economic policies. The following is a mathematical model
for optimizing tax policy:

Households At timestep t, a household holds assets at.
Its income it consists of labor income Wtetht, and capital
income rtat. Here, Wt and rt are the wage and interest rates
determined by the labor and capital markets, respectively,
while et indicates the private education level. Households
are obligated to pay taxes as per the government’s tax policy
Tt(it, at). Each household decides on its consumption ct ∈
R+, working hours ht ∈ R+, and next savings at+1 ∈ R+

to maximize long-term utility until Tmax, subject to the
budget constraint:

max
at+1,ht

E0

Tmax∑
t=0

u(ct, ht)

s.t. ct + at+1 =Wtetht + (1 + rt)at − Tt(it, at).

Government The government aims to foster economic
growth, maintain social equity, and enhance societal welfare
through three fiscal tools: debt Bt ∈ R+, taxation policy
Tt(it, at) : R

+ ×R+ → R+, and spending Gt ∈ R+.

max
Bt,Tt,Gt

E0

Tmax∑
t=0

[
α1Yt + α2S(It,Wt) + α3

N∑
i

ui
t

]
,

where α1, α2, α3 are weight parameters reflecting the gov-
ernment’s preference for different objectives. Economic
output (e.g., GDP) can be modeled using the Cobb–Douglas
production function Yt = F (Kt,Lt), with production cap-
ital Kt and labor Lt. S(It,Wt) denotes the social equity
function, where It,Wt are the income and wealth distribu-
tions among households. The sum of households’ utilities∑N

i ui
t represents the overall societal welfare.

3.2. Stackelberg Mean Field Game Modeling

In the aforementioned issue, the government (as the leader)
formulates policies to guide the decisions of households (as
followers), thereby collectively achieving macroeconomic
objectives, such as economic growth. Households provide
feedback to government policies, creating an asymmetric
game with leader-follower dynamics. However, the dynamic
interactions among large-scale households extend beyond
the standard Stackelberg games. Therefore, this study pro-
poses modeling the problem as a Stackelberg Mean Field
Game (Figure 1), based on the following assumptions:

1. Stackelberg assumption: the government (leader) sets
policies first, and households (followers) adjust their
behavior based on these policies. Both the leader and
followers dynamically optimize their strategies, gradu-
ally reaching equilibrium.

2. Mean field assumption: households (followers) are as-
sumed to be homogeneous agents. The optimal policies
of the leader and followers depend on the overall distri-
bution or average behavior of the followers, rather than
a specific one. For example, both governments and
households should consider overall market information
when making decisions in reality.

Following this, the optimal macroeconomic policy issues
can be rewritten as the following game proceeding: For any
given time t ∈ {0, . . . , Tmax}, the leader selects an action
alt ∈ Al based on the leader policy πl

t(·|slt), given the state
slt. Subsequently, the representative follower, located in
state sft ∈ Sf , chooses an action aft ∈ Af according to the
policy πf

t (·|s
f
t , a

l
t). The sequences {πl

t}T−1
t=0 and {πf

t }T−1
t=0

are denoted as πl and πf , respectively.

Followers’ Mean Field Game Given the leader’s pol-
icy πl, the SMFG is simplified into a mean field game for
the followers. At time t, given the leader’s action alt, the
representative follower’s state sft and action aft determine
the followers’ state-action distribution as Lf

t (s
f
t , a

f
t ) =

P(sft , a
f
t ). The representative follower then receives a re-

ward rf (sft , a
f
t , a

l
t, L

f
t ) and transitions to the next state

sft+1 ∼ P (·|sft , a
f
t , a

l
t, L

f
t ). Each follower aims to find

the optimal policy πf that maximizes his cumulative reward
over the time horizon:
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Figure 1: The mapping from optimal macroeconomic policy problems (left) to the Stackelberg Mean Field Games (right).
The left represents the reality where the macro-level government implements fiscal or monetary policies to optimize GDP,
welfare, or equity, and the micro-level consists of large-scale households engaging in economic activities and forming the
market. In SMFGs, the government corresponds to the leader, households to the followers, and market information to the
followers’ state-action distribution.

Jf (πl, πf , Lf ) = Ef

[
T∑

t=1

rf (sft , a
f
t , a

l
t, L

f
t )

]

= Ef

[
T∑

t=1

u(ct, ht)

]
,

where ct = Wtetht + rtat − Tt(it, at)− at+1,

where Ef denotes the expectation with respect to initial state
sf0 ∼ µf

0 , sft+1 ∼ P (· | sft , a
f
t , a

l
t, L

f
t ) and aft ∼ πf (· |

sft , a
l
t) for each t. For households in economic problems, the

follower’s state sft incorporates asset at and education level
et, and the follower’s actions aft include next savings at+1

and working hours ht. The leader’s action alt denotes tax
function Tt(it, at), and followers’ distribution Lf

t includes
wage rate Wt and interest rate rt. Given the leader’s policy
πl, the best response operator of followers is defined as

πf ∗ ∈ BRf (πl, Lf ) = argmax
π′

Jf (πl, π′, Lf ).

Stackelberg Leader’s Game At time t, given the leader’s
state slt, action alt, and the followers’ state-action distribu-
tion Lf

t , the leader will receive a reward rl(slt, a
l
t, L

f
t ), and

transition to a new state slt+1 according to the transition
probabilities P (·|slt, alt, L

f
t ). The leader aims to find the

best policy πl to maximize the total expected rewards:

J l(πl, πf , Lf ) = El[

T∑
t=1

rl(slt, a
l
t, L

f
t )],

rl(slt, a
l
t, L

f
t ) = α1Yt + α2S(It,Wt) + α3

N∑
i

ui
t

= α1F (Kt,Lt) + α2S(It,Wt) + α3U(Tt,Wt, rt)

where El denotes the expectation under this probabil-
ity distribution for the leader when sl0 ∼ µl

0, s
l
t+1 ∼

P (·|slt, alt, L
f
t ) and alt ∼ πl

t(· | slt) for t ∈ {0, ..., T − 1}.
For the government in economic problems, the leader’s state
slt is characterized by production capital Kt, and the leader’s
actions alt encompass government spending Gt and a taxa-
tion policy Tt(·). The followers’ state-action distribution Lf

t

includes aggregate labor Lt, income distribution It, wealth
distribution Wt, wage rate Wt, and interest rate rt, these
all belong to market information. U(·) represents a measur-
able function for Tt,Wt, rt. Therefore, we can define the
leader’s best response operator given πf , Lf :

πl∗ ∈ BRl(πf , Lf ) := argmax
πl

J l(πl, πf , Lf ).

We then define the transition operator F as Lf =
F(πl, πf , Lf

0 , µ0) if the evolution of population distribu-
tion L satisfies the Mckean-Vlasov equation (1).

Lf
t+1(s

f
t+1, a

f
t+1) =

∑
slt,a

l
t,s

f
t ,a

f
t

Lf
t (s

f
t , a

f
t )π

l
t(a

l
t|slt)µl

t(s
l
t)

P (sft+1|s
f
t , a

f
t , a

l
t)π

f
t+1(a

f
t+1|s

f
t+1).

µl
t+1(s

l
t+1) =

∑
slt,a

l
t

µl
t(s

l
t)π

l
t(a

l
t|slt)P (slt+1|slt, alt).

(1)

Definition 3.1. The Stackelberg mean field equilibrium is a
tuple (πl∗, πf ∗, Lf ∗), which satisfies the following condi-
tions:

πl∗ ∈ BRl(πf ∗, Lf ∗), πf ∗ ∈ BRf (πl∗, Lf ∗),

Lf ∗ = F(πl∗, πf ∗, Lf
0 , µ0).
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4. Methods
Solving the optimal macroeconomic policy is very complex
in the real world. Reliance solely on mathematical models
for simulation and problem-solving inevitably creates a gap
with actual scenarios, thus incorporating real historical data
is essential. Nonetheless, a singular focus on historical data
for the empirical analysis of economic policies inadequately
captures the complex and asymmetric dynamics of interac-
tions between the government and households. Therefore,
our solution method is divided into two steps: firstly, we pre-
train the follower’s policy based on real data using behavior
cloning (BC). Secondly, this paper proposes a model-free
Stackelberg Mean Field Reinforcement Learning (SMFRL)
algorithm to solve the Stackelberg Mean Field Games (SM-
FGs) between the government and large-scale households.

4.1. Pretain by Behavior Cloning

Based on real historical data, we fetch a large number of
followers’ state-action pairs {sf , af} from a real-data buffer
Dreal for behavior cloning. For different settings of network
structures, we have chosen two types of loss: when the
neural network outputs a probability distribution of actions,
we use the negative log-likelihood loss (NLL loss); when
the neural network outputs action values, we employ the
mean square error loss (MSE loss). Our goal is to find
the optimal parameters θ as the follower’s policy network
πθ initialization, thereby minimizing the loss to its lowest
convergence.

min
θ
LNLL = −Esf ,af∼D log πθ(a

f | sf ),

min
θ
LMSE = Esf ,af∼D

(
af − a

)2 |a=πθ(sf ).

4.2. Stackelberg Mean Field Reinforcement Learning

To solve SMFGs in sequential decision-making, we design
a Stackelberg mean field reinforcement learning algorithm
based on centralized training with decentralized execution.
Consider a game with a leader and N homogeneous follower
agents. The leader makes decisions first, and all followers
make simultaneous decisions after observing the leader’s
actions. The leader aims to find a policy πl : Sl → Al to
optimize his long-term objective, which is often challenging
and requires the cooperation of all followers. Each follower
agent seeks to find a policy πf : Sf ×Al → Af to optimize
long-term utility after observing the current leader’s action
alt = πl(slt). The joint action of the leader and follower
agents at = {alt, a

f1
t , ..., afNt }, a

fi
t = πf (sfit ) impacts the

environment and results in a reward rt = {rlt, r
f1
t , ..., rfNt }

and the next observation st+1 = {slt+1, s
f1
t+1, ..., s

fN
t+1}.

Here the experience replay buffer D contains the tuples
(st, st+1,at, rt, L

f
t ), recording experiences of all agents.

Qi(st,at) is a standard centralized action-value function

that takes as input the joint state st and joint action at and
outputs the Q-value for agent i. However, due to numer-
ous follower agents, the dimensions of both the joint state
and joint action increase significantly with N , making the
Q-function infeasible to learn. We equate the centralized
action-value function Qi(st,at) to Q̃t(s

l
t, a

l
t, L

f
t ) based on

mean field theory. The specific theoretical description is
shown in the Appendix D.

4.3. Implementation

Furthermore, we consider deterministic policies for both a
leader and its followers in a multi-agent system. Specifically,
we define the leader’s policy as πθl parameterized by θl

(abbreviated as πl), and a shared policy for the followers
denoted as πθf with parameters θf (abbreviated as πf ).

For the leader agent The policy network πθl of the leader
agent, i.e. the actor, is trained by the sampled policy gradi-
ent (Silver et al., 2014):

∇θlJ ≈ Est∼D

[
∇θlπθl(slt)∇al

−
Q̃ϕl(slt, a

l
−, L

f
t )|al

−=π
θl
(slt)

]
In the subsequent step, we employ a neural network with
parameters ϕl to approximate the leader agent’s action-value
function, denoted as Q̃ϕl(slt, a

l
t, L

f
t ) or Q̃l for brevity. It is

updated by minimizing a loss function:

L(ϕl) = Eslt,a
l
t,L

f
t ,s

l
t+1∼D

[(
ylt − Q̃ϕl(slt, a

l
t, L

f
t )
)2

]
,

ylt = rlt + γQ̃ϕl
−
(slt+1, a

l
t+1, L

f
t+1)|al

t+1=π
θl−

(slt+1)
, (2)

where ylt represents the target Q value, computed using
the parameters ϕl

−, the next population distribution Lf
t+1 is

based on the Mckean-Vlasov equation (1), and γ is discount
factor. Differentiating the loss function L(ϕl) yields the
gradient utilized for training:

∇ϕlL(ϕl) =

Eslt,a
l
t,L

f
t ,s

l
t+1∼D

[(
ylt − Q̃ϕl(slt, a

l
t, L

f
t )
)
∇ϕlQ̃ϕl(slt, a

l
t, L

f
t )
]

For the representative follower agent The policy net-
work πθf is trained by the policy gradient:

∇θfJ ≈ Est,al
t,L

f
t ∼D

[
∇θfπθf (sft , a

l
t)∇af

−
Q̃ϕf (sft , a

f
−, a

l
t, L

f )|af
−=π

θf
(sft ,a

l
t)

]
,

Similar to Mean Field Approximation (Yang et al., 2018),
the standard centralized action-value function Q(st,at) is
approximated as Q̃ϕf (sft , a

f
t , a

l
t, L

f
t ) with parameters ϕf ,

which is updated by minimizing the MSE loss function:

L(ϕf ) =Esft ,a
f
t ,a

l
t,L

f
t ,s

f
t+1∼D

(
yft − Q̃ϕf (sft , a

f
t , a

l
t, L

f
t )
)2

yft =rft + γQ̃ϕf
−
(sft+1, a

f
t+1, a

l
t+1, L

f
t+1),

5
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where the next leader’s action alt+1 = µϕl
−
(slt+1), the next

population distribution Lf
t+1 = L(sft+1,a

f
t+1), the next

joint followers’ action aft+1 = {af1t+1, ..., a
fN
t+1}, a

fi
t+1 =

µ(sfit+1, a
l
t+1). Differentiating the loss function L(ϕf )

yields the gradient utilized for training:

∇ϕfL(ϕf ) = ED

[ (
yft − Q̃ϕf (sft , a

f
t , a

l
t, L

f
t )
)

∇ϕf Q̃ϕf (sft , a
f
t , a

l
t, L

f
t )
]

The full algorithm (1) is described in the Appendix.

5. Experiment
In this section, we conduct two important experiments in
the TaxAI environment: (1) We compare the performance of
the SMFRL algorithm with 5 baselines in solving SMFGs;
(2) We compare the effects of the SMFG method with 5
economic policies, and discuss the efficiency-equity tradeoff
and SMFG assumptions.

5.1. Environment

TaxAI (Mi et al., 2023) is a reinforcement learning simulator
used for studying optimal tax policy. The environmental set-
tings include the government promoting economic growth
(i.e., GDP) through adjusting tax policy and government
spending, and households optimizing labor supply and sav-
ings ratio for long-term personal utility. It is one of the few
simulators for researching optimal macroeconomic policies,
hence we conduct experiments on it.

5.2. Algorithmic Analysis for SMFGs

Baselines We compare popular reinforcement learning
algorithms including DDPG (Lillicrap et al., 2015) (only
for leader), IDDPG (de Witt et al., 2020), MADDPG (Lowe
et al., 2017), Mean Field MARL (Yang et al., 2018), and
rule-based policy with our algorithm SMFRL. For more
details see Appendix B.1 and Table 2.

Results We compared SMFRL with 5 baselines in three
different experimental setups: without behavior cloning as
pre-training and with 100 followers (marked as N=100 with-
out BC); with BC-based pre-training for follower agents at
N=100 and N=1000 (N=100-BC; N=1000-BC). Figure 2
illustrates the training curves of 4 key macroeconomic indi-
cators under these three settings. Each row corresponds to
one setting, and each column to a macroeconomic indicator,
including per capita GDP, social welfare, income Gini, and
wealth Gini. A rise in per capita GDP indicates economic
growth, an increase in social welfare implies happier house-
holds and a lower Gini index indicates a fairer society. Each
subplot’s Y-axis represents the indicators’ values, and the
X-axis represents the training steps. Table 1 displays the

test results of the 6 algorithms across 5 indicators, with each
column corresponding to an experimental setting.

Figure 2 and Table 1 present two experimental findings:
(1) Using BC as a pre-training method for the follower’s
policy enhances the algorithms’ stability and performance.
Comparing settings with and without BC (the first two
rows), our method, SMFRL, shows similar convergence
outcomes; however, the performance of other algorithms
significantly improves across all four indicators with BC-
based pre-training. Furthermore, the training curves of each
algorithm are more stable. (2) The SMFRL algorithm sub-
stantially outperforms other algorithms in solving SMFGs,
both in large-scale followers and without pre-training sce-
narios. In the setting of N=100-BC, SMFRL achieved a
significantly higher per capita GDP compared to other algo-
rithms, while its social welfare and Gini index are similar
to others, essentially reaching the upper limit. Besides, in
N=100 without BC and N=1000-BC, SMFRL consistently
obtains the most optimal solutions across all indicators.

5.3. Comparison of Macroeconomic Policies

Baselines We compare free market policy, Saez tax (Saez,
2001), U.S. Federal tax 2, AI Economist (Zheng et al.), and
AI Economist-BC. Saez tax will provide suggestions for
real-world tax reform. For more details see Appendix B.1.

Policies Results We compare the performance of 6 poli-
cies across four economic indicators under two settings:
with N=100 and N=1000 households. Figure 3 displays the
training curves and Table 3 shows the test results in Ap-
pendix. Both Figure 3 and Table 3 indicate that the SMFG
method significantly surpasses other policies in the task
of optimizing GDP, and achieves the highest social wel-
fare. When N=100, the Saez tax achieves the lowest income
and wealth Gini coefficients, suggesting greater fairness.
However, at N=1000, SMFG performs optimally across all
economic indicators, while the effectiveness of other poli-
cies noticeably diminishes as the number of households
increases. The Saez tax also reduces the Gini index, but not
as effectively or stably as the SMFG.

Efficiency-Equity Tradeoff In economics, the Efficiency-
Equity Tradeoff is a highly debated issue. We find that our
SMFG method is optimal in balancing efficiency-equity,
except in cases of extreme concern for social fairness. In
our study, we depict the economic efficiency (Per capita
GDP) on the Y-axis and equity (wealth Gini) on the X-axis
of Figure 3(a) for various policies. Different policies are
represented by circles of different colors, with their sizes
proportional to social welfare. Different circles of the same
color correspond to different seeds. Figure 3 (a) shows that
the wealth Gini indices for SMFG and AI Economist-BC

2https://data.oecd.org/

6

https://data.oecd.org/


Learning Macroeconomic Policies based on Microfoundations: A Stackelberg Mean Field Game Approach

0 1 2 3
1e5

0.0

0.5

1.0

N=
10

0 
wi

th
ou

t B
C 1e13 Per Capita GDP

0 1 2 3
1e5

0.4

0.6

0.8

1.0

1e2 Social Welfare

0 1 2 3
1e5

0.6

0.8

1.0
Income Gini

0 1 2 3
1e5

0.6

0.8

1.0
Wealth Gini

Rule-based
DDPG
MADDPG
IDDPG
MF-MARL
SMFRL

0 1 2 3
1e5

0.0

0.5

1.0

N=
10

0-
BC

1e13

0 1 2 3
1e5

0.2

0.4

0.6

0.8

1.0

1e2

0 1 2 3
1e5

0.4

0.6

0.8

1.0

0 1 2 3
1e5

0.4

0.6

0.8

1.0

0 1 2 3
Steps 1e5

0.0

0.5

1.0

N=
10

00
-B

C

1e13

0 1 2 3
Steps 1e5

0.25

0.50

0.75

1.00
1e3

0 1 2 3
Steps 1e5

6

8

1e 1

0 1 2 3
Steps 1e5

0.6

0.8

1.0

Figure 2: The training curves for 6 algorithms on 4 macroeconomic indicators, comparing settings without behavior cloning
as pre-train (N=100 without BC) and with behavior cloning (N=100-BC & N=1000-BC).

Table 1: Test results for 6 algorithms on 5 indicators under 3 settings (N=100 without BC / N=100-BC / N=1000-BC).

Algorithms Per Capita GDP Social Welfare Income Gini Wealth Gini Years

Rule-based 1.41e+05 / 3.66e+11 / 1.41e+05 69.27 / 79.23 / 334.79 0.89 / 0.52 / 0.90 0.92 / 0.53 / 0.93 1.00 / 217.45 / 1.00
DDPG 1.41e+05 / 2.03e+12 / 4.92e+11 70.91 / 94.50 / 527.09 0.88 / 0.46 / 0.75 0.92 / 0.48 / 0.79 1.00 / 299.85 / 100.68

MADDPG 4.93e+04 / 6.38e+12 / 6.82e+12 55.74 / 93.89 / 954.88 0.91 / 0.57 / 0.56 0.92 / 0.58 / 0.62 1.00 / 268.53 / 278.50
IDDPG 1.21e+05 / 7.41e+12 / 2.79e+12 83.09 / 98.16 / 512.19 0.88 / 0.53 / 0.77 0.92 / 0.55 / 0.81 1.00 / 300.00 / 100.68

MF-MARL 8.66e+07 / 5.44e+12 / 1.13e+05 82.02 / 98.21/ 440.00 0.82 / 0.50 / 0.90 0.83 / 0.52 / 0.93 75.75 / 300.00 / 1.00
SMFRL 9.59e+12 / 1.01e+13 / 9.68e+12 96.87 / 96.90 / 975.15 0.52 / 0.51 / 0.52 0.51 / 0.53 / 0.51 300.00 / 299.89 / 300.00

are similar, but SMFG has a higher GDP, suggesting its
superiority over AI Economist-BC. SMFG significantly out-
performs the free market policy and AI Economist due to its
higher GDPs and lower wealth Ginis. However, comparing
SMFG with the Saez tax and the U.S. Federal tax policy in
terms of both economic efficiency (GDP) and social equity
(Gini) is challenging. Therefore, we introduce Figure 3 (b)
to demonstrate the performance of different policies under
various weights in a multi-objective assessment.

In Figure 3 (b), the Y-axis shows the weighted values of
the multi-objective function Y = log(per capita GDP) +
α(wealth Gini), and the X-axis represents the weight of the
wealth Gini index. For each weight α, we compute the
multi-objective weighted values for those policies, repre-
sented as circles of different colors. Due to the logarithmic
treatment of GDP in (b), when α = 10, the overall objective
focuses solely on social fairness; when α = 0, the overall
objective is concerned only with efficiency. Our findings in

(b) reveal that only when α ≥ 8, which indicates a substan-
tial emphasis on social equity, does the Saez tax outperform
SMFG. However, SMFG consistently proves to be the most
effective policy under a wide range of preference settings.

SMFG Assumption Analysis The above experiments
have already demonstrated the superiority of the SMFG
method. However, the modeling and solving of SMFG
rely on an important assumption: the optimal decisions of
governments and households depend on the overall state
information. In reality, it is natural for the government to
focus on market information in decision-making, but it can-
not be guaranteed that all households will consider market
information in their decisions. To discuss the applicability
of the SMFG method, we introduce two types of house-
holds within the same economy: those based on real data
(Real-data Households) and those that focus on market in-
formation (SMFG households). We simulate the economic
operations at various proportions of SMFG households: 0%,
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Figure 3: The training curves for 6 tax policies on 5 macroeconomic indicators (N=100 & N=1000 with BC)
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der multi-objective assessment (Efficiency-Equity).
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Figure 5: Comparison of micro and macroeconomic indi-
cators at varying proportions of SMFG households, demon-
strating the positive impact on the individual and overall
economy of SMFG households.

25%, 50%, 75%, and 100%. Figure 5 displays the microe-
conomic indicators and macroeconomic GDP, with each
subplot illustrating the average values of different economic
indicators for different households (bars in left Y-axis) and
their aggregate values (dots in right Y-axis). GDP, being
a macroeconomic indicator, did not have corresponding
values plotted for households.

The results indicate that, across all proportions, the microe-
conomic indicators of SMFG households, such as utility,
wealth, and income, are consistently higher than Real-data
households. As the proportion of SMFG households in-
creases, there is an upward trend in economic indicators.
This suggests that the presence of SMFG households pos-
itively impacts both individual and overall economic de-
velopment, and our SMFG method also works when some
households do not meet the assumption of focusing on mar-
ket information. Therefore, governments should encourage
households to pay more attention to market information in
decision-making.

6. Conclusion
This paper innovatively models the optimal macroeconomic
policy problem based on the Stackelberg mean field game,
and proposes a solution method involving pre-training based
on real data and a model-free Stackelberg mean field rein-
forcement learning algorithm. Our method addresses the
limitations of existing approaches, including dynamic inter-
actions and feedback between governments and households,
interactions among large populations of households, and
solving complex tasks without relying on environmental
transitions. Experimental results have showcased the per-
formance of the SMFG method. In conclusion, this paper
contributes an effective approach to modeling and solving
optimal macroeconomic policies in the field of AI for eco-
nomics and AI for social good.

8



Learning Macroeconomic Policies based on Microfoundations: A Stackelberg Mean Field Game Approach

Impact Statements
This paper presents work whose goal is to advance the fields
of AI for social good and AI for economics. Our work aims
to offer suggestions and references for governments and the
people, yet it must not be rashly applied to the real world.
There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.
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Robnik-Šikonja, M. and Kononenko, I. Theoretical and em-
pirical analysis of relieff and rrelieff. Machine learning,
53:23–69, 2003.

Rui and Shi. Learning from zero: How to make
consumption-saving decisions in a stochastic environ-
ment with an AI algorithm, February 2022.

Saez, E. Using elasticities to derive optimal income tax
rates. The review of economic studies, 68(1):205–229,
2001.

Sch, A. A. O. Intelligence in the economy: Emergent be-
haviour in international trade modelling with reinforce-
ment learning. 2021.

Schneider, F. and Frey, B. S. Politico-economic models
of macroeconomic policy: A review of the empirical
evidence. Political business cycles, pp. 239–275, 1988.

Shi, R. A. Can an AI agent hit a moving target. arXiv
preprint arXiv, 2110, 2021.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International conference on machine learning, pp. 387–
395. Pmlr, 2014.

Smets, F. and Wouters, R. Shocks and frictions in us busi-
ness cycles: A bayesian dsge approach. American eco-
nomic review, 97(3):586–606, 2007.

Tilbury, C. Reinforcement learning in macroeconomic
policy design: A new frontier? arXiv preprint
arXiv:2206.08781, 2022.

Trott, A., Srinivasa, S., Haneuse, S., and Zheng, S. Building
a Foundation for Data-Driven, Interpretable, and Robust
Policy Design using the AI Economist. URL http:
//arxiv.org/abs/2108.02904.

Vedung, E. Public policy and program evaluation. Rout-
ledge, 2017.

Yaman, A., Leibo, J. Z., Iacca, G., and Lee, S. W. The emer-
gence of division of labor through decentralized social
sanctioning. URL http://arxiv.org/abs/2208.
05568.

Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., and Wang,
J. Mean field multi-agent reinforcement learning. In
International conference on machine learning, pp. 5571–
5580. PMLR, 2018.

Zheng, S., Trott, A., Srinivasa, S., Parkes, D. C.,
and Socher, R. The AI Economist: Taxation pol-
icy design via two-level deep multiagent reinforce-
ment learning. 8(18):eabk2607. doi: 10.1126/sciadv.
abk2607. URL https://www.science.org/
doi/10.1126/sciadv.abk2607.

10

http://arxiv.org/abs/2108.02904
http://arxiv.org/abs/2108.02904
http://arxiv.org/abs/2208.05568
http://arxiv.org/abs/2208.05568
https://www.science.org/doi/10.1126/sciadv.abk2607
https://www.science.org/doi/10.1126/sciadv.abk2607


Learning Macroeconomic Policies based on Microfoundations: A Stackelberg Mean Field Game Approach

Table 2: The details of the algorithms used by the leader and follower agents in the baselines for solving SMFG.

Baselines Follower’s Algorithm Leader’s Algorithm

Rule-based Random/Behavior cloning Rule-based/Free market
DDPG Random/Behavior cloning DDPG
MADDPG MADDPG MADDPG
IDDPG IDDPG IDDPG
MF-MARL Mean Field MARL DDPG
SMFRL SMFRL SMFRL

A. Economic Model Details
Economic activities among households aggregate into labor markets, capital markets, goods markets, etc. In the labor
market, households are the providers of labor, with the aggregate supply S(Wt) =

∑N
i eith

i
t, and firms are the demanders of

labor, with the aggregate demand D(Wt) = Lt. When supply equals demand in the labor market, there exists an equilibrium
price W ∗

t that satisfies:

S(W ∗
t ) = D(W ∗

t ),Lt =

N∑
i

eith
i
t.

In the capital market, financial intermediaries play a crucial role, lending the total deposits of households At+1 =
∑N

i at+1

to firms as production capital Kt+1, and purchasing government bonds Bt+1 at the interest rate rt. The capital market clears
when supply equals demand:

Kt+1 +Bt+1 −At+1 = (rt + 1) (Kt +Bt −At)

In the goods market, firms produce and supply goods, while all households, the government, and physical capital investments
Xt demand them. The goods market clears when:

Yt = Ct +Gt +Xt

where Ct =
∑N

i cit represents the total consumption of consumers, and Gt is government spending. The supply, demand,
and price represent the states of the market.

B. Additional Results
B.1. Baselines

Baselines for solving SMFGs Current research on model-based methods for SMFG is limited by strong assumptions and
simplifications, rendering them ineffective for complex problem-solving. However, there is a lack of model-free algorithms
for solving SMFG in continuous decision spaces. Therefore, this study opts to compare with popular reinforcement learning
algorithms, including DDPG, MADDPG, IDDPG, and mean field MARL. Table 2 provides detailed information on the
algorithms used by the leader and follower agent in these baselines.

Baselines for economic policies We compare 5 economic policies with our method SMFG:

(1) Free Market: A market without policy intervention.

(2) Saez Tax (Saez, 2001): The Saex tax policy is often considered a suggestion for specific tax reforms in the real world.
Details are shown in Appendix C.

(3) U.S. Federal Tax: Real data from OECD 3 in 2022 for this policy.

(4) AI Economist (Zheng et al.): This is a two-level MARL method based on Proximal Policy Optimization (PPO). In
the first phase, households’ policies are trained from scratch in a free-market (no-tax) environment. In the second phase,
households continue to learn under an RL social planner.

3https://data.oecd.org/
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Table 3: Test results for 6 tax policies on 5 macroeconomic indicators (N = 100 & N = 1000).

Algorithms N = 100 N = 1000
Per Capita Social Income Wealth Years Per Capita Social Income Wealth Years

GDP Welfare Gini Gini GDP Welfare Gini Gini

Free Market 1.37e+05 32.97 0.89 0.92 1.10 1.41e+05 334.79 0.90 0.93 1.00
Saez Tax 2.34e+12 73.82 0.21 0.38 300.00 6.35e+11 498.88 0.68 0.73 100.578

US Federal Tax 4.88e+11 94.19 0.40 0.40 289.55 1.41e+05 351.17 0.89 0.93 1.00
AI Economist-BC 4.24e+12 97.24 0.54 0.52 299.55 N/A N/A N/A N/A N/A

AI Economist 1.26e+05 72.81 0.88 0.91 1.00 N/A N/A N/A N/A N/A
SMFG 1.01e+13 96.90 0.51 0.53 299.89 9.68e+12 975.15 0.52 0.51 300.00

(5) AI Economist-BC: For fairness in comparison, we evaluated the AI Economist method with behavior cloning as
pre-training to determine its effectiveness.

B.2. Efficiency-Equity Tradeoff

In Figure 6, we also present the efficiency (per capita GDP) and equity (wealth Gini) corresponding to various algorithms
for solving SMFGs. These methods result in similar Gini indices, with SMFRL achieving the highest per capita GDP.
Apart from a strong emphasis on societal fairness, SMFRL emerges as the algorithm that can best strike a balance between
efficiency and equity.
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Figure 6: Comparison of macroeconomic indicators under different algorithms for solving SMFGs.

B.3. Behavior Cloning Experiments

This experiment conducts behavior cloning on networks for four different household policies: Multilayer Perceptron (MLP),
AI economist’s network (MLP+LSTM+MLP), MF-MARL, and MADDPG network. The first two, as their network outputs
are probability distributions, use negative log-likelihood loss (Figure 7 left); the latter two’s networks employ deterministic
policies, hence they use mean square error loss against real data (Figure 7 right). The loss convergence curve of behavior
cloning is shown in Figure 7. It can be observed that the AI economist’s network, due to its complexity, struggles to converge
to near -1 like MLP. The losses corresponding to MFRL and MADDPG can converge to below 0.1.

C. Saez tax
The Saex tax policy is often considered a suggestion for specific tax reforms in the real world. The specific calculation
method is as follows (Saez, 2001). The Saez tax utilizes income distribution f(z) and cumulative distribution F (z) to get
the tax rates. The marginal tax rates denoted as τ(z), are expressed as a function of pretax income z, incorporating elements
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Figure 7: The behavior cloning loss for 4 networks in two loss types.

such as the income-dependent social welfare weight G(z) and the local Pareto parameter α(z).

τ(z) =
1−G(z)

1−G(z) + α(z)e(z)

To further elaborate, the marginal average income at a given income level z, normalized by the fraction of incomes above z,
is denoted as α(z).

α(z) =
zf(z)

1− F (z)

The reverse cumulative Pareto weight over incomes above z is represented by G(z).

G(z) =
1

1− F (z)

∫ ∞

z′=z

p (z′) g (z′) dz′

From the above calculation formula, we can calculate G(z) and α(z) by income distribution. We obtain the data of income
and marginal tax rate through the interaction between the agent and environment and store them in the buffer. It is worth
noting that the amount of buffer is fixed.

To simplify the environment, we discretize the continuous income distribution, by dividing income into several brackets
and calculating a marginal tax rate τ(z) for each income range. Within each tax bracket, we determine the tax rate for that
bracket by averaging the income ranges in that bracket. In other words, income levels falling within the income range are
calculated as the average of that range. In particular, when calculating the top bracket rate, it is not convenient to calculate
the average because its upper limit is infinite. So here G(z) represents the total social welfare weight of incomes in the top
bracket, when calculating α(z), we take the average income of the top income bracket as the average of the interval.

Elasticity e(z) shows the sensitivity of the agent’s income z to changes in tax rates. Estimating elasticity is very difficult
in the process of calculating tax rates, here we estimate the elasticity e(z) using a regression method through income and
marginal tax rates under varying fixed flat-tax systems, which produces an estimate equal to approximately 1.

e(z) =
1− τ(z)

z

dz

d(1− τ(z))

log(Z) = ê · log(1− τ) + log
(
Ẑ0

)
where Z =

∑
i zi when tax rates is τ .

D. Theoretical Proof
Proposition D.1. The action value functions Qi and Q̃t are equivalent, i.e. Qi(st,at) = Q̃t(s

l
t, a

l
t, L

f
t ), ∀st ∈ Sl×{Sf}N ,

∀at ∈ Al × {Af}N , ∀Lf
t ∈ P(Sf ×Af ).

Proof. We commence by defining a partial order relation ≺ on Sf × Af . For any given vector v, we construct a
sorted counterpart ṽ, which maintains the same elements as v but orders them in ascending sequence based on ≺.
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For example, if v = {(s1, a1), (s2, a2), (s3, a3)}, then ṽ is arranged as {(s(1), a(1)), (s(2), a(2)), (s(3), a(3))}, where
(s(1), a(1)) ≺ (s(2), a(2)) ≺ (s(3), a(3))). Exploiting the homogeneity of the follower agents, we can equate Q(st,at)

with Q(slt, a
l
t, ṽ), where v encapsulates the joint state-action pairs of the followers, and ṽ represents its sorted form.

We further define v as the collection of all such sorted vectors, and L as the ensemble of mean-field distributions.
The empirical distribution of the followers’ state-action pairs, denoted as L : V → ∆(V), is expressed as Lf

t (s, a) =
1
N

∑N
i=1 I{(s̃i,ãi)=(s̃,ã)}. The bijectiveness of the mapping L, ensured by the sorting process, leads to the conclusion that

Qt(st,at) = Qt(s
l
t, a

l
t,v) = Qt(s

l
t, a

l
t, ṽ) = Q̃t(s

l
t, a

l
t, L

f
t ).
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Algorithm 1 Stackelberg Mean Field Reinforcement Learning (SMFRL)

Initialize Q̃ϕl , Q̃ϕl
−
, Q̃ϕf , Q̃ϕf

−
, πθl , πθl

−
, πθf , πθf

−
.

for epoch = 1 to M do
Recieve initial observation st = {slt, s

f1
t , ..., sfNt }.

for t = 1 to max-epoch-length do
For leader agent, select action alt = πθl(slt) +Nt; for each follower agent i, select action afi = πθf (sfit , alt) +Nt

w.r.t. the current policy and exploration.
Execute actions at = {alt, a

f1
t , ..., afNt } and observe reward rt = {rlt, r

f1
t , ..., rfNt } and next observation st+1.

Store (st, st+1,at, rt, L
f
t ) in the replay buffer D.

st ← st+1.
for j =1 to update-cycles do

Sample a random minibatch of Nb samples from D.
For the leader agent, set

ylt = rlt + γQ̃ϕl
−
(slt+1, a

l
t+1, L

f
t+1)|al

t+1=π
θl−

(slt+1)
.

Update leader’s critic net by minimizing the loss:

∇ϕlL(ϕl) = Eslt,a
l
t,L

f
t ,s

l
t+1∼D

[(
ylt − Q̃ϕl(slt, a

l
t, L

f
t )
)
∇ϕlQ̃ϕl(slt, a

l
t, L

f
t )
]

Update leader’s actor by sampled policy gradient:

∇θlJ ≈ Est∼D

[
∇θlπθl(slt)∇al

−
Q̃ϕl(slt, a

l
−, L

f
t )|al

−=π
θl
(slt)

]
.

For the representative follower agent, set

yft = rft + γQ̃ϕf
−
(sft+1, a

f
t+1, a

l
t+1, L

f
t+1).

Update follower’s critic by minimizing the loss:

∇ϕfL(ϕf ) = ED

[ (
yft − Q̃ϕf (sft , a

f
t , a

l
t, L

f
t )
)
∇ϕf Q̃ϕf (sft , a

f
t , a

l
t, L

f
t )
]
.

Update follower’s actor by policy gradient:

∇θfJ ≈ Est,al
t,L

f
t ∼D

[
∇θfπθf (sft , a

l
t)∇af

−
Q̃ϕf (sft , a

f
−, a

l
t, L

f )|af
−=π

θf
(sft ,a

l
t)

]
.

end for
Update target network parameters for each agent with learning rates τϕ and τθ:

ϕl
− ← τϕϕ

l + (1− τϕ)ϕ
l
−

θl− ← τθθ
l + (1− τθ) θ

l
−

ϕf
− ← τϕϕ

f + (1− τϕ)ϕ
f
−

θf− ← τθθ
f + (1− τθ) θ

f
−

end for
end for
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