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In our study, we investigated bright solitons, dark solitons, and quantum droplets in quasi-one-

dimensional dipolar Bose gases, and further validated the crossover and coexistence of quantum 

droplets and solitons using the Lieb-Liniger energy within the framework of local density 

approximation. Increasing the particle number transforms the bright dipolar soliton state into a 

stable self-bound quantum droplet state, with further increases in leading to a broader quantum 

droplet that enables the presence of dark solitons within it. This article is incomplete. 

 

Ⅰ. Introduction 

Quantum droplets, as an important component of 

research in ultracold atomic physics, have been 

originally observed in ultracold dipolar gas [1–4] 

and afterwards in Bose-Bose mixtures [5–7]. The 

collape-preventing mechanism is due to the 

quantum fluctuations, not accounted for in the 

original Gross-Pitaevskii equation (GPE), but 

corrected by a seminal Lee-Huang-Yang (LHY) 

term via introducing an additional repulsion into the 

ground state energy [8].The dimension-dependent 

nature of the LHY term results in significantly 

different equations for describing quantum droplets 

in different dimensions [9–12]. in addition to 

quantum droplets in 1D, 2D, and 3D, previous 

studies have investigated quantum droplets in cross 

dimensions [13–16] and in a ring geometry [17]. he 

extended GPE (EPGP) solely with the LHY 

correction does not yield a quantitative agreement 

with the quantum Monte Carlo predictions for 

strong interactions [8, 18]. By referencing the 

energy functional discussed by Lieb [19] and 

employing the local density approximation, 

reference [20] has bridged the gap in strong 

interactions within quantum droplets by introducing 

the Lieb-Liniger GPE (LLGPE), which has been 

demonstrated to effectively describe Bose-Einstein 

condensates (BEC) [14, 21– 28] 

On the one hand, bright solitons and quantum 

droplets exist in very different regimes, however, 

previous studies have shown that there is a 

transition between these two self-bound states [7, 

16, 29–31]. On the other hand, the possibility of 

quantum droplet-dark soliton coexistence has been 

proven by recent research [15, 16].  

In this work, we wish to explore the transition 

and coexistence of quantum droplets and solitons in 

the field of ultracold atoms. By increasing the 

particle number N, the bright dipolar soliton state 

gradually evolves into a stable self-bound quantum 

droplet state. At this point, further increasing the 

particle number N does not change the density of 

the quantum droplet but results in an extremely 

broad quantum droplet, providing conditions for the 

existence of dark solitons within the quantum 

droplet. When the width of the quantum droplet is 

much larger than the width of the dark soliton, the 

density of the quantum droplet can be considered as 

the background density for the existence of dark 

solitons, thus forming a coexisting state of quantum 

droplets and dark solitons.  
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Ⅱ. Framework 

We consider a dipolar Bose gas in quasi-1D 

configuration, with spatial confinement along the 

longitudinal direction 𝑥 being finite with a length of 

𝐿, and we investigate 𝑁 dipolar bosons constrained 

in the transverse directions 𝑦  and 𝑧  within a 

strongly confining harmonic trap of frequency 𝜔⊥. 

These bosons are all polarized along the 𝑥-direction. 

And we can introduce an aspect ratio 𝜎 = 𝑙⊥/𝐿 to 

further characterize the system, where 𝑙⊥ =

√ℏ/𝑚𝜔⊥. 

 

Fig. 1.  Quasi-1D geometric model. 

 

A dipolar BEC is subject to two interparticle 

interactions, the short-range repulsive contact 

interaction and the long-range attractive dipole 

interaction. The quasi one-dimensional effective 

potential is given by [14, 32] 

 

𝑉eff(𝑥) = 𝑉sr(𝑥) + 𝑉dd(𝑥), (1) 

 

the quasi-1D dipole potential is 
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where 𝜇0  and 𝜇𝐷  denote the permeability of 

vacuum and the atom magnetic moment, 

respectively. The short-range contact potential can 

be written as 

 

𝑉sr =
ℏ2𝑎

𝑚𝑙⊥
2 𝛿(𝑥) ≔ 𝑔𝛿(𝑥), (4) 

 

where the scattering length 𝑎 > 0  can be tuned 

using Feshbach resonances. We set the units of 

length, momentum, and energy as 𝐿 , ℏ/𝐿 and 

ℏ2/𝑚𝐿2 respectively. To further simplify the form 

of 𝑉dd(𝑥) , we define 𝜎 = 𝑙⊥/𝐿  and 𝑣dd
𝜎 (𝑥) ≔

(1/𝜎)𝑣dd(𝑥/𝜎), allowing us to rewrite the effective 

potential. 

 

𝑉eff(𝑥) = 𝑔𝛿(𝑥) − 𝑔dd𝑣dd
𝜎 (𝑥). (5) 

 

Setting the ratio of the coupling coefficients of 

the two interactions as 𝑓dd = 𝑔dd/𝑔sr，allows for 

the analysis of the competition between the two 

interactions on the system state by considering 

different values of 𝑓dd , especially when 𝑓dd  varies 

around 1. 

The Lieb-Liniger (LL) model was proposed to 

solve one-dimensional Bose gases [10], that 

considered a one-dimensional Bose gas interacting 

through a repulsive 𝛿 function potential, providing 

the general solution form of the system and the 

relationship between the ground state energy 𝐸0 and 

the nontrivial parameter 𝛾. 

 

𝐸0 = 𝑁𝜌2𝑒(𝛾), (6) 

 

where, 𝑁 represents the number of particles, 𝑒 is a 

monotonically increasing function of 𝛾, where 𝛾 =

𝑐/𝜌  with 𝜌  being the density and 2𝑐  representing 

the strength of the delta function. When 𝛾 = ∞, due 

to the impenetrability of particles, the Girardeau 

result can be derived. When 𝛾 = 0 , the non-

interacting Bose gas can be derived, while for small 

𝛾, Bogoliubov's perturbation theory has been shown 

to be very effective. 

We can defines the pressure [33] 
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𝑃LL (
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the energy required to add a particle to the system is 

denoted as the chemical potential 

 

𝜇 =
𝜕𝐸0

𝜕𝑁
= 𝜌2 (3𝑒LL − 𝛾

d𝑒LL

d𝛾
) , (8) 

 

and the potential energy of each particle is 

 

𝜈 =
𝑐

𝑁

𝜕

𝜕𝑐
𝐸0 = 𝜌2𝛾

d𝑒LL

d𝛾
, (9) 

 

the kinetic energy of each particle is represented as 

 

𝜏 =
1

𝑁
𝐸0 − 𝜈 = 𝜌2 (𝑒LL − 𝛾

d𝑒LL

d𝛾
) . (10) 

 

For different (large and small) values of 𝛾 , the 

asymptotic forms of the function 𝑒LL, the chemical 

potential 𝜇LL , the potential per particle 𝜈, and the 

kinetic energy 𝜏 also differ slightly. For a large 𝛾, 

there is 
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1

3
𝜋2 (

𝛾

𝛾 + 2 
)

2

, 𝜇LL =
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The monotonically increasing function 𝑒LL is 

approximated [14] as 

 

𝑒LL =
𝑔𝑁(𝑁 − 1)

2
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|𝜓|2 +
3𝑔

𝑁𝜋2

, (12) 

 

thus, the approximate energy is obtained: 
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2
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𝑔𝑁(𝑁 − 1)

2

|𝜓|6
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3𝑔

𝑁𝜋2
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−
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         ∫|𝜓(𝑥)|2𝑣dd
𝜎 (𝑥 − �̅�)|𝜓(�̅�)|2 d𝑥d�̅�, (13) 

 

where ∫ d𝑥 |𝜓(𝑥)|2 = 1. Then, we arrive at a new 

equation by using variational: 

𝜇𝜓(𝑥) = −
𝑁

2

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝑓LL[𝜓(𝑥)] 

−𝑔dd𝑁(𝑁 − 1) 

              ∫ d�̅� 𝑣dd
𝜎 (𝑥 − �̅�)|𝜓(�̅�)|2𝜓(𝑥) , (14) 

 

where 𝑓LL[𝜓(𝑥)] = 𝛿𝑒LL/𝛿𝜓∗, and 𝜇 is a Lagrange 

multiplayer. It is worth noting that when 𝑔 → 0, the 

above equation can revert to the standard GPE; and 

when 𝑔 → ∞  (Tonks-Girardeau limit), the above 

equation can be derived to the equation in Ref. [10,  

34]. 

Ⅲ. The transition of dark soliton and 

quantum droplet 

When the appropriate 𝑓dd  is selected and kept 

constant, transitioning from bright solitons to 

quantum droplets can occur by only adjusting the 

atom number 𝑁. Fig. 2 shows the evolution from 

bright soliton states to quantum droplet states as the 

atom number increases for 𝑓dd = 20. Bright soliton 

states have a maximum density, which is equal to 

the density of stable quantum droplets. Once the 

maximum density is reached, further increasing the 

number of atoms will only increase the width of the 

quantum droplets, without changing the density. 

When a larger atom number 𝑁  is chosen as a 

constant value while adjusting the parameter 𝑓dd , 

the system can still exhibit bright soliton states and 

quantum droplet states. However, unlike the case 

where the atom number is adjusted for a selected 
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𝑓dd value, in this case, there is no density crossover 

between the bright soliton states and quantum 

droplet states. When 𝑓dd > 1, the system exhibits a 

net attraction, with the ground state having negative 

energy, leading to the formation of self-bound states 

akin to bright soliton states as described in [14]. On 

the other hand, when 𝑓dd < 1, the system shows a 

net repulsion, yet atoms can still form self-bound 

states. In the extreme case of 𝑓dd = 0  ( 𝑔dd > 0,

𝑔sr → ∞ ), self-bound states can still be formed 

through modifications [15]. Similar to self-bound 

droplet states and self-bound bright soliton states in 

dipolar systems and Bose-Bose mixtures [35, 36], 

Ref. [14] identifies the values of 𝑓dd  for quantum 

droplets and bright solitons in quasi-1D dipolar 

Bose gases as 𝑓dd
{𝑄𝐷}

= 0.9 and 𝑓dd
{𝐵𝑆}

= 20. 

 

 

Fig. 2.  Bright soliton to quantum droplet state. With an 

increase in the number of particles, the density of self-

bound bright soliton states gradually increases. As the 

number of particles stabilizing the self-bound droplet state 

increases, the droplet density remains constant and the 

particle distribution becomes more uniform. 

 

Ⅳ. The coexistence of dark soliton and 

quantum droplet 

The dimensionless LLGPE under the strong 

contact limit 𝛾 → ∞  and zero-range dipole 

interaction limit is given by [34] 

 

𝑖ℏ�̇� =
ℏ2

2𝑚
𝜓′′ + 𝜋2|𝜓|4𝜓 − 𝑔dd|𝜓|2𝜓, (15) 

 

where 𝜓 = 𝜓(𝑥, 𝑡)  denotes the wave function. 

Upon immediate observation, the segment of this 

equation governing short-range interactions mirrors 

that of the Kolomeisky equation [33]. Conversely, 

the dipolar component adopts the nonlinear form 

characteristic of the GPE. This approximation is 

effective when the interaction range σ is smaller 

than the typical length scale for density variations 

but significantly larger than the average 

interparticle distance. As stated in Ref. [37], the 

solitonic solution in the repulsive dipolar gas under 

this condition converges to that in a gas with only 

contact interactions.  

By plug the function 𝜓ds(𝑥, 𝑡) ≔

√𝜌(𝜉)𝑒𝑖𝜙(𝜉) 𝑒−𝑖𝜇𝑡/ℏ , where 𝜉 = 𝑥 − 𝑣𝑡 , 𝑣  is the 

soliton velocity. Then, a complex equation can be 

obtained [15] 

 

𝜇√𝜌 − 𝑖ℏ𝑣(√𝜌)
′

+ ℏ𝑣𝜓′√𝜌 

= −
ℏ2

2𝑚
(√𝜌)

′′
− 𝑖

ℏ2

𝑚
𝜓′(√𝜌)

′
 

−𝑖
ℏ2

2𝑚
𝜓′′√𝜌 +

ℏ2

2𝑚
(𝜓′)2√𝜌 

+
ℏ2𝜋2

2𝑚
√𝜌

5
− 𝑔dd√𝜌

3
, (16) 

 

which can be split into the real and imaginary parts. 

After separating, dark soliton solutions can be 

obtained: 

 

𝜌(𝜉) = 𝜌∞ −
(𝜌∞ − 𝜌min)(1 + 𝐷)

1 + 𝐷 cosh(𝑊𝜉)
, (18) 

𝜓(𝜉) =
2𝑚𝑣(𝐷 + 1) (

𝜌min

𝜌∞
− 1)

ℏ𝐷𝑊√1 − 𝑎2
 

arctan (
(𝑎 − 1) tanh (

𝑊𝜉
2 )

√1 − 𝑎2
) , (19) 
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where 𝑎 ≔
𝜌min

𝜌∞
+

𝜌min

𝐷𝜌∞
− 1, 𝐷 ≔

𝜌min−𝜌1

2𝜌∞−𝜌1−𝜌min
,

𝑊 ≔ 2√
𝜋2

3
(𝜌∞ − 𝜌min)(𝜌∞ − 𝜌1). 

 

          𝐿 

 

Fig. 3.  Dark soliton density profiles for. 

Ⅳ. Conclusion 

  In summary, the results presented in this work 

confirm the presence of dark solitons in dipolar 

Bose gases with strong contact interactions. The 

study focuses on the regime of strong contact 

interactions where quantum droplets coexist with 

dark solitons in quasi-1D. By considering the 

nonlocal LLGPE model, a competition between 

quintic and cubic nonlinearities is observed. In the 

case of infinite contact interaction strength and 

zero-range dipolar interactions, an analytical 

solution for dark solitons is derived. The width of 

motionless solitons diverges at a certain threshold, 

leading to ultrawide solitons that are experimentally 

observable in large quasi-1D systems. The research 

on solitons and quantum droplets still holds great 

potential, and future studies will continue to expand 

this theory. 
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