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Wigner-molecule supercrystal in transition-metal dichalcogenide moiré superlattices:

Lessons from the bottom-up approach
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The few-body problem for N = 4 fermionic charge carriers in a double-well moiré quantum dot
(MQD), representing the first step in a bottom-up strategy to investigate formation of molecular
supercrystals in transition metal dichalcogenide (TMD) moiré superlattices with integral fillings, v >
1, is solved exactly by employing large-scale exact-diagonalization via full configuration interaction
(FCI) computations. A comparative analysis with the mean-field solutions of the often used spin-
and-space unrestricted Hartree Fock (sS-UHF) demonstrates the limitations of the UHF method
(by itself) to provide a proper description of the influence of the interdot Coulomb interaction.
In particular, it is explicitly shown for v = 2 that the exact charge densities (CDs) within each
MQD retain the ring-like shape characteristic (for a wide range of relevant parameters) of a fully
isolated MQD, as was found for sliding Wigner molecules (WMs). This deeply quantum-mechanical
behavior contrasts sharply with the UHF CDs that portray solely orientationally pinned and well
localized dumbbell dimers. An improved CD, which agrees with the FCI-calculated one, derived
from the restoration of the sS-UHF broken parity symmetries is further introduced, suggesting a
beyond-mean-field methodological roadmap for correcting the sS-UHF results. It is conjectured that
the conclusions for the v = 2 moiré TMD superlattice case extend to all cases with integral fillings
that are associated with sliding WMs in isolated MQDs. The case of v = 3, associated with a pinned

WM in isolated MQDs, is an exception.

Understanding the electronic spectral and configu-
rational organization beyond that of natural atoms is
rapidly becoming a major research direction focusing on
the exploration of the nature of a few charged carriers
trapped in artificially fabricated, isolated or superlattice-
assembled, quantum dots (QDs) [1-3]. Such research is
motivated by the potential for utilizing these systems,
with high tunability and control, in future quantum in-
formation and computational platforms [4-7]. Earlier
studies have unveiled a novel fundamental-physics as-
pect in such nanosystems, namely formation of quantum
Wigner molecules (WMs), originally predicted theoreti-
cally [8-33] in two-dimensional (2D) semiconductor QDs,
as well as trapped ultracold atoms, and subsequently
observed experimentally in GaAs QDs [34-37], Si/SiGe
QDs [38], and carbon-nanotubes [39]. Remarkably, re-
cent work [40] extended the WM portfolio to the newly
arising and highly pursued field of TMD moiré materials,
owing mainly to the promise for fundamental-physics dis-
coveries and the potential for advancing quantum-device
applications.

Adopting a bottom-up methodology, and building on
the demonstrated emergence [40] of WMs in the quasi-
isolated moiré pockets [most often referred to as moiré
quantum dots (MQDs)], we address here the inevitable
incorporation of such single MQDs in a superlattice
structure. Specifically, this paper focuses on the effects
on WM formation resulting from the interaction between
neighboring MQDs. Two different methodologies will be
used in this endeavor, namely: (i) the spin-and-space un-
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restricted Hartree-Fock (sS-UHF) [8, 12, 21, 41, 42] and
(i) the full configuration interaction (FCI) [15, 16, 21,
24, 28, 29, 33, 43-47]. In particular, through a detailed
comparison with the FCI ezact resuts (serving here as
comparative benchmarks), we show that except when the
classical equilibrium configuration of the n confined carri-
ers in each single MQD is commensurate with the trilobal
symmetry of the moiré confinement (see below, leading
to a pinned WM configuration, e.g., when = 3), the
sS-UHF approximation (by itself) is unreliable for inves-
tigations of WM-exhibiting moiré double quantum dots
(MDQDs) in unstrained TMD bilayers (that is in nat-
urally occurring, bias-free, cases). This deficiency dic-
tates further corrective measures (beyond the mean-field
sS-UHF) that are provided by the theory of restoration
of broken symmetries and extensions thereof [12, 19-
21, 41, 44, 48-50]. Specifically, for v = 2 and for a set
of materials parameters suitable to moiré TMD super-
lattices, we show that, in spite of the interaction with a
neighboring MDQ), the ground-state FCI charge densities
within each MQD remain ring-like with a superimposed
trilobal distortion, as in the case of a single isolated MQD
[40] illustrated in the inset of Fig. 1(a). This contrasts
sharply with the corresponding (mean-field) sS-UHF CD
prior to symmetry restoration, which exhibits a pair of
two antipodal and well localized charge carriers.

On the other hand, the symmetry-restored UHF (SR-
UHF) charge densities, are in agreement with the exact
(FCI) ones. These results suggest a much desired gate-
way for systematic large-scale computational studies of
WM-MQD assemblies in TMD materials using a beyond-
mean-field-corrected SR-sS-UHF methodology, capable
of modeling systems comprised of a much larger number
of carriers (electrons or holes) that may be treated with
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FIG. 1. (a) Schematic moiré¢ pattern produced by two twisted
monolayers. The area demarcated by the dashed red line cor-
responds to the isolated moiré double quantum dot investi-
gated in this paper. (b) The spin-singlet ground-state FCI
charge density associated with N = 2 holes in a single iso-
lated moiré quantum dot, exhibiting a ring-like shape with
a trilobal distortion. This ring-like CD is characteristic of a
sliding (contrasted to a pinned) Wigner molecule. Parameters
used: effective mass m* = 0.9m., dielectric constant k = 5,
strength of moiré modulation vg = 10.3 meV, moiré lattice
constant apr = 9.8 nm, trilobal distortion ¢ = 20°; see Eq.
(1). These parameters are also used in all CD calculations
(either FCI or UHF) for the MDQD case below. (c) Broader
view of the moiré periodic potential structure given by Eq. (1)
for an angle of ¢ = 10°. (d) Potential of a single moiré¢ QD
for ¢ = 30°. In (c) and (d), vo = 15 meV and ap = 14 nm.
Length units are in nm in (b) and in aas in (¢) and (d). CD in
(a) in units of 1/nm?. All CDs in this paper are normalized
to N =4.

the exact-diagonalization, FCI, method. Furthermore,
in light of rapid advances in STM imaging techniques
[51, 52], we expect that the FCI predictions shown here
will gain verification in the near future (see added note
at the end).

Confinement potentials and many-body Hamiltonian.
The potential confining the extra charge carriers at the
pockets of the 2D moiré superlattice can be approximated
by the expression [53-55]

3
V(r) = —2u Z cos(G; -t + @), (1)
i=1

where G; = [(47/v/3ar)(sin(2mi/3), cos(27i/3))] are the
moiré reciprocal lattice vectors. The materials specific
parameters of V(r) are vy (which can also be experimen-
tally controlled through voltage biasing), the moiré lat-
tice constant a,s, and the angle ¢. ap; is typically of
the order of 10 nm, which is much larger than the lattice
constant of the monolayer TMD material (typically a few
A). For the overall periodic-array structure of V (r), see

Fig. 1(c).
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FIG. 2. The confining potential for the MDQD. (a) The

TCO potential according to Eq. (3), which does not include
the trilobal deformation. (b) The potential [Eq. (5)] for the
MDQD, which does include the trilobal deformation within
each QD. Parameters used: hwo = 36.71 meV (which cor-
responds to vo = 10.3 meV, ay = 9.8 nm, and ¢ = 20°),
—z1 = 29 = 4.9 nm, €® = 0.44, and f = 0.15. The interdot
barrier is 84.07 meV in (a) and 71.46 meV in (b).

The parameter ¢ controls the strength of the trilobal
Cj5 crystal-field-type anisotropy in each MQD potential
pocket; see Fig. 1(d). This anisotropy can be seen by
expanding V(r) in Eq. (1) in powers of 7, and defining
an approximate confining potential, Vaiqp (r), for a single
MQD as follows:

Vargp (r) = V(r) + 6vg cos(¢) = m*wir? /2 4 Csin(30)r>.
(2)
2

with m*w? = 167%vgcos(¢)/a3;, and C =
16m3vp sin(¢)/(3v/3a3,); m* is the effective mass
and the expansion of V(r) can be restricted to the terms
up to r3. (r,0) are the polar coordinates of the position
vector r.

We construct a potential confinement for an isolated
pair of two neighboring MQDs [see the area marked by
the thick dashed red border in Fig. 1(a)] in two steps:

First, we consider the potential of a two-center-
oscillator (TCO) with a smooth neck [8, 21, 32, 33, 46,
56]. Namely,

1 * 1 *
VTCO(Iay) = §m w§y2 + §m wgkx;cz + Vneck(m)v (3)
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FIG. 3. Ground-state FCI charge densities for the case of the
moiré double QD with N = 4 holes. (a) CD for the confine-
ment in Fig. 2(a) (no trilobal deformation). (b) CD for the
confinement in Fig. 2(b) (trilobal deformation included). Re-
maining parameters: effective mass m* = 0.90m., dielectric
constant k = 5. See text for a detailed description. CDs in
units of 1/nm?.

where 2} =z — x;, with k =1 for 2 < 0 (left) and k = 2
for z > 0 (right). y denotes the coordinate perpendicular
to the interdot axis (x). In this paper, we take w,; =
Wga = Wy = W, With wy coinciding with that of a single
MQD [see Eq. (2)].

For the smooth neck, we use

Vacek() = gm*d |G + Diaff]O(lal — ), (4)
where O(u) = 0 for v > 0 and O(u) = 1 for u < 0.
The four constants C and Dy can be expressed via two
parameters, as follows: Cy = (2 — 4¢€®)/zy and Dy = (1 —
3€®) /2, where the barrier-control parameter € = V;,/V;
is related to the height of the targeted interdot barrier V,
and V) = m*w%x% /2. The Vrco potential is illustrated
in Fig. 2(a).

Second, we intoduce the trilobal deformation in each
MQD through the expression

Vapao (7, y) = Vreco(#,y) (1 + fsin[36), + (_l)kﬂ-/2])a
(5)

where ¢ is the counterclockwise angle around the point
(x},,0), with x} defined as in Eq. (3). The factor f is
taken such that the modified interdot barrier V,(1 — f)
equals the minimum barrier between the two MQDs, as
determined by the original moiré potential in Eq. (1).
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FIG. 4. (a) and (b) Charge densities for N = 4 holes associ-
ated with the two lowest-energy UHF isomers (with S, = 0)
for the MDQD confinement displayed in Fig. 2(b) (which in-
cludes the trilobal deformation within each MQD). In both
cases, the UHF CDs consist of dumbbell-like pairs of well lo-
calized charge carriers. In (a), both the left and right pairs
have axes oriented perpendicular to the z-axis. In (b), the
axis of the left dumbbell is parallel to the x axis, whilst the
right dumbbell remains perpendicular to the z-axis. (c) CD
of the z-parity restored wave function associated with the
UHF isomer in panel (b). Note that, unlike the pure UHF
CDs in (a) and (b), the z-parity-restored CD in (c) exhibits a
ring-like shape in good agreement with the FCI (exact) CD in
Fig. 3(b). See text for a detailed description. Effective mass
m* = 0.90m. and dielectric constant x = 5. CDs in units of
1/nm?.

The Vmpqp (2, y) employed in all our calculations in this
paper is displayed in Fig. 2(b).

The effective many-body Hamiltonian [40, 53-55] as-



sociated with the isolated MDQD is given by

N 2 N 2
Pi €
Hyp = E {2m* + VMDQD(ri)} + E P (6)
=1 i<j

where m* is the effective mass of the holes and « is the di-
electric constant. A brief outline of the FCI and sS-UHF
methodologies, used to solve the corresponding many-
body Schrédinger equation, is presented in Appendices
A, B, and C.

FCI results for N = 4 holes in the double-dot confine-
ments of Fig. 2. The ground-state FCI charge densities
for the four holes confined in the double-MQD of Fig.
2(a) and Fig. 2(b) (that is, corresponding to v = 2 filling
of the moiré superlattice), are displayed in Fig. 3(a) and
Fig. 3(b), respectively; the corresponding FCI total spin
is found to be S = 0 with spin projection S, = 0.

Unlike the CDs in Fig. 3(a), which are rather
ellipsoidal-like, the CDs in each MQD in Fig. 3(b) do
exhibit a trilobal deformation, reflecting the trilobal de-
formation of the confining potential [Fig. 2(b)]. More
importantly, in spite of the Coulombic interaction be-
tween the left and right MQD, which is fully taken into
account via our FCI calculation, the N = 2 CDs in each
MQD of Fig. 3, in both panels (a) and (b), retain the
ring-like shape [albeit pear-like distorted in (b)] found
for an N = 2-hole single MQD in our earlier study [40];
see also the inset in Fig. 1(b) shown above.

Naively, these ring-shaped CDs are incompatible with
the dumbbell shape of the bonding charge distribution
of a ’generic’ natural molecule (e.g., Ha). However, the
case here pertains to a genuinely quantum-mechanical ef-
fect: namely, the 2-hole antipodal arrangement is hidden
(unseen) in the CDs, but its presence is revealed via the
conditional probability distributions (CPDs) (which are
second-order, density-density correlation functions [57]).
Indeed the CPD analysis [40] of such WMs in MQDs (for
2 < N < 6) applied to results obtained via FCI (exact)
calculations, is supplemented and complemented in this
paper through the comparative investigation of exact and
mean-field sS-UHF results, with the latter corresponding
to approximate solutions of the confined quantum few-
body problem. Such UHF vs FCI comparative analysis
is part of a constructive hierarchical approach to the com-

J

plex few-body problem (see Fig. 1 in Ref. [21]).

UHF charge densities for N = 4 holes in the double-
dot confinement of Fig. 2(b). Charge densities for the
two lowest-energy sS-UHF isomers with S, = 0 [58]
(for N = 4, considered with the same model parame-
ters as in the FCI calculations) in the double MQD con-
fining potential of Fig. 2(b) that includes the sin(36;,)
trilobal contributions referenced to the center of each
QD, are displayed in Fig. 4(a) and Fig. 4(b). Unlike
the electron charge distribution obtained via the exact-
diagonalization (FCI) calculation, the sS-UHF CDs in
Fig. 4(a) and Fig. 4(b) exhibit prominently a dimer of
two well localized particles within each QD. The differ-
ence between these two sS-UHF CDs pertains to the dif-
ferent relative orientations between the axes of the two
dimers in the right and left MQDs. Namely in Fig. 4(a)
the left and right dimers are perpendicular to the z-axis,
while in Fig. 4(b) the left dimer is oriented parallel to
the z-axis, with the right dimer retaining an orientation
perpendicular to the x-axis.

It is clear that the sS-UHF CDs do not agree with the
FCICD in Fig. 3(b). This disagreement indicates that, in
order to obtain a reliable and satisfactory approximate
solution, it is imperative that further corrective steps,
beyond the mean-field level, need to be taken. Indeed, a
complete theory of such correctional steps is known un-
der the umbrella term of restoration of broken symme-
tries [21, 49, 50]. The full set of corrections [21, 49, 50],
which can produce better beyond-UHF approximate so-
lutions and results for both the CDs and the total en-
ergies is beyond the scope of this paper. Nevertheless,
an immediately recognizable and available correction is
the restoration of the z-parity symmetry of the sS-UHF
wave function about the y-axis, which is visibly broken
in the CD of Fig. 4(b). Such an z-parity restoration can
be implemented as described in the following paragraph.

Denoting the UHF Slater determinant as ¥(x,y), its
mirror image about the y axis is given by ¥(—z,y),
and the z-parity restored wave function is < U(x,y) +
p¥(—x,y), with p = +1. Then, because the Slater deter-
minant ¥(—z,y) is in general not orthogonal to ¥(z,y),
the expectation value of an operator O is given by (here
we exhibit the lower-energy case, which was found for the
restored wave function with p = +1):

(W (2, )|V (z,y)) + (Y (2, )|V (=2, y)) + (¥(=z,y)|¥(z,y)) + (¥(=z,y) ¥ (-2, 9))

The operator associated with the charge density is a one-
body operator, va d(r — r;), and the charge density is
calculated using Eq. (7) and the Lowdin rules [59, 60]
for calculating matrix elements between Slater determi-
nants with non-orthogonal orbitals. The energy of the

(

symmetry-restored wave function [calculated from Eq.
(7) with O = Hyp] is lower than the mean-field UHF
result, reflecting a gain in correlation energy when going
beyond the single-determinant wave function of the UHF
method; Hyp is the many-body Hamiltonian.
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FIG. 5. Charge densities for N = 6 fully polarized holes as-
sociated with the corresponding lowest-energy state. (a) FCI
result (with total spin S = 3 and spin projection S, = 3).
(b) sS-UHF result (with broken total-spin symmetry and to-
tal spin projection S, = 3). The employed MDQD double-
well confinement is displayed in Fig. 2(b) (which includes the
trilobal deformation within each MQD). In both cases, the
CDs consist of strongly-pinned (0,3) WMs within each poten-
tial well. Effective mass m* = 0.90m. and dielectric constant
k = 5. CDs in units of 1/nm?.

The resulting CD of this z-parity restoration is dis-
played in Fig. 4(c), and it exhibits an overall shape qual-
itatively similar to the FCI CD in Fig. 3(b) [61] This
result provides a vivid illustration of the limitation of
the sS-UHF method to yield a proper description of the
Wigner molecules formed in assembled neighboring quan-
tum dots, and the imperative need for improvements,
such as the one shown here, gained through the applica-
tion of the beyond-mean-field symmetry-restoration cor-
rective step to the sS-UHF solutions.

FCI and sS-UHF results for N = 6 holes in the double-
dot confinement of Fig. 2(b). As uncovered in our earlier
study [40] on single MQDs, in the case of i = 3 holes, the
coincidence of the 3-fold symmetries associated with the
Cs intrinsic geometry of the trimer WM and with the
trilobal crystal-field MQD potential [see Fig. 1(b)], re-
sults in a pinned, empty center, three-hump (0, 3) charge
density (see Fig. 2(b) in Ref. [40]). For the double-dot
confinement, the calculated exact FCI [see Fig. 5(a)] and
approximate sS-UHF [see Fig. 5(b)| charge densities, ob-
tained for N = 6 holes (7 = 3 holes per well, corre-

sponding to v = 3 filling of the moiré superlattice) are
qualitatively very similar. Indeed they maintain close re-
semblance to the above-noted pinned 3-fold symmetric
configuration in a single MQD. This behavior contrasts
with that for N = 4 holes in the same MDQD confine-
ment, where the FCI CDs in each well exhibit a slid-
ing WM [see Fig. 3(b)] which differ drastically from the
pinned-WM CDs of the sS-UHF approach [see Figs. 4(a)
and 4(b)]

Conclusions. The bottom-up research strategy fol-
lowed in this paper enables a reliable determination of the
influence of interdot Coulomb effects on the formation of
quantum WDMs in MQDs associated with integer-filling,
v > 1, supercrystals in moiré TMD superlattices. Specifi-
cally, for the v = 2 case, we demonstrated explicitly that,
in spite of the interdot Coulombic interaction, the eaxct
FCI CDs within each MQD retain the ring-like shape
characteristic (for a wide range of relevant parameters
[40]) of a fully isolated MQD. This persisting behavior,
which is deeply counterintuitive and quantum mechani-
cal, is associated with the formation of a sliding WM (re-
ferred to also as rotating when the confinement exhibits
perfect circular symmetry [21]). We also demonstrated
that using the mean-field UHF in order to account for the
interdot Coulomb interaction is an unreliable approach,
with the corresponding CDs portraying orientationally
pinned and well localized dumbbell dimers, in contrast
to the exact result. Notably, we illustrated that the gap
between exact and UHF results can be bridged by going
beyond the mean-field step within a hierarchical strategy
that employs the theory of restoration of broken sym-
metries and its generalizations [21, 49]. In contrast to
the mean-field results, our corrected sS-UHF methodol-
ogy, with the parity of the ground state wave function
being restored, yielded (for WMs formed in the coupled
MQ@Ds studied here at v = 2) charge densities that agree
with those obtained via exact (FCI) calculations for that
system.

We conjecture (to be confirmed both computationally
and experimentally) that our conclusions for the v = 2
superlattice case would extend to other cases, e.g., to all
cases with 4 < v < 6, where our previous study [40] de-
termined that a fully quantum mechanical sliding WM
(exhibiting a ring-like CD) is formed in an isolated MQD
instead of an azimuthally pinned WM. Finally, we showed
that the case of ¥ = 3 is an exception to the above be-
havior due to the commensurability between the classical
equilibrium configuration of the confined charges and the
trilobal C5 crystal-field-type anisotropy in each MQD po-
tential pocket.

NOTE ADDED: A recent preprint [62] presents
measured STM images for v = 2 — 4 integral fillings of
hole doped moiré TMD superlattices that are in remark-
able agreement with our predictions here (as well as in
our Ref. [40]). Ref. [62] presents also sS-UHF calcula-
tions for the WM superlattice and comments on their
limitations.

This work has been supported by a grant from the



Air Force Office of Scientific Research (AFOSR) under
Grant No. FA9550-21-1-0198. Calculations were carried
out at the GATECH Center for Computational Materials
Science.

Appendix A: THE CONFIGURATION
INTERACTION METHOD

The full configuration interaction (FCI) methodology
has a long history, starting in quantum chemistry; see
Refs. [43, 47]. The method was adapted to two dimen-
sional problems and found extensive applications in the
fields of semiconductor quantum dots [15, 16, 21, 23,
33, 45, 46, 56| and of the fractional quantum Hall effect
17, 29].

Our 2D FCI is described in our earlier publications.
The reader will find a comprehensive exposition in Ap-
pendix B of Ref. [33], where the method was applied
to GaAs double-quantum-dot quantum computer qubits.
We specify that, in the application to moiré DQDs, we
keep similar space orbitals, p;(z,y), j =1,2,..., K, that
are employed in the building of the single-particle basis
of spin-orbitals used to construct the Slater determinants
U, which span the many-body Hilbert space [see Eq.
(B4) in Ref. [33]; the index I counts the Slater deter-
minants|. Accordingly, for a moiré DQD, the orbitals
@;(x,y) are determined as solutions (in Cartesian coor-
dinates) of the auxiliary Hamiltonian

p I oo 1 9
%—i—ﬁm ] +§m WiLTE (A1)

Haux =
where the index k =1 for < 0 (left well) and k = 2 for
x > 0 (right well).

Following Ref. [33], we use a sparse-matrix eigensolver
based on Implicitly Restarted Arnoldi methods to diago-
nalize the many-body Hamiltonian in Eq. (6) of the main
text.

The smooth-neck (one-body) and Coulomb (two-body)
matrix elements required for the sparse-matrix diagonal-
ization are calculated numerically as described in Ref.
[33]. Similarly, the matrix elements between the orbitals
@i(x,y) and ¢;(z,y) of the trilobal (one-body) term in
the moiré DQD confinement [second term in Eq. (5) of
the main text] are also calculated numerically.

Appendix B: THE SPIN-AND-SPACE
UNRESTRICTED HARTREE-FOCK AND
SYMMETRY RESTORATION

Early on in the context of 2D materials, the spin-and-
space unrestricted Hartree-Fock (sS-UHF) was employed
in Ref. [8] to describe formation of Wigner molecules

at the mean-field level. This methodology employs the
Pople-Nesbet equations [21, 47]. The sS-UHF WMs are
self-consistent solutions of the Pople-Nesbet equations
that are obtained by relaxing both the total-spin and
space symmetry requirements. For a detailed description
of the Pople-Nesbet equations in the context of three-
dimensional natural atoms and molecules, see Ch. 3.8
in Ref. [47]. For a detailed description of the Pople-
Nesbet equations in the context of two-dimensional ar-
tificial atoms and semiconductor quantum dots, see Sec.
2.1 of Ref. [21]. Convergence of the self-consistent itera-
tions was achieved in all cases by mixing the input and
output charge densities at each iteration step. The con-
vergence criterion was set to a difference of 10712 meV
between the input and output total UHF energies at the
same iteration step.

We note that the book of Szabo and Ostlund [47] does
not describe the post-Hatree-Fock theory of symmetry
restoration. For a detailed description of the theory of
symmetry restoration, see Sec. 2.2 in Ref. [21].

Appendix C: CHARGE DENSITIES FROM FCI
AND UHF WAVE FUNCTIONS

The FCI single-particle density (charge density) is the
expectation value of a one-body operator

N
p(r) = (@Y 6(r —r;)[ @7, (C1)
i=1
where  ®FC!  denotes the many-body  (multi-
determinantal) FCI wave function, namely,
(C2)

FCU(r, . ry) = ZCI\I/I(rl, .., TN),
1

with U;(r) denoting the Slater determinants that span
the many-body Hilbert space.

For the sS-UHF case, one substitutes ®¥°! in Eq. (C1)
with the single-determinant, WYHF(r), solution of the
Pople-Nesbet equations. WUHF(r) is built out from the
UHF spin-orbitals whose space part has the form:

K
uf => Chigu, i=1,... K, (C3)
pn=1
and
K
W= i1k (O
p=1

where the expansion coefficients C}; and C 51 are solutions
of the Pople-Nesbet equations.
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