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The eigenstate thermalization hypothesis (ETH) plays a major role in explaining thermalization
of isolated quantum many-body systems. However, there has been no proof of the ETH in re-
alistic systems due to the difficulty in the theoretical treatment of thermal energy eigenstates of
nonintegrable systems. Here, we write down analytically, for the first time, thermal eigenstates of
nonintegrable spin chains. We consider a class of theoretically tractable volume-law states, which we
call entangled antipodal pair (EAP) states. These states are thermal, in the most strict sense that
they are indistinguishable from the Gibbs state with respect to all local observables, with infinite
temperature. We then identify Hamiltonians having the EAP state as an eigenstate and rigorously
show that some of these Hamiltonians are nonintegrable. Furthermore, a thermal pure state at an
arbitrary temperature is obtained by the imaginary time evolution of an EAP state. Our results
offer a potential avenue for providing a provable example of the ETH.

Introduction.— Understanding the mechanism of ther-
malization in quantum many-body systems has been a
pivotal issue in statistical physics [1-3]. Notably, the
eigenstate thermalization hypothesis (ETH) [4-6] has
served as a cornerstone in this field. It posits that all
the energy eigenstates of quantum many-body systems
exhibit thermal properties, thereby giving a plausible ex-
planation of thermalization.

While the ETH is anticipated to hold in most non-
integrable systems, the verification of whether this hy-
pothesis holds in realistic many-body systems relies on
numerical calculations, and a theoretical verification has
remained elusive [7-10]. Thus, a significant challenge lies
in theoretically addressing the nature of energy eigen-
states, particularly in nonintegrable systems. However, it
has not been clear whether thermal eigenstates of nonin-
tegrable systems can be treated theoretically. This stems
from the difficulty of writing down quantum states whose
entanglement entropy obeys a volume law.

One approach to treat quantum many-body states the-
oretically is to use variational wave functions. Particu-
larly for states that contain a small amount of entangle-
ment, they can be represented via tensor network states
such as a matrix product state (MPS) [11, 12]. Ten-
sor network states are highly tractable, making them not
only practical but also significantly contributing to the-
oretical advancements. Indeed, by utilizing the MPS,
it has been successful to exactly describe finite-energy-
density low-entangled (thus nonthermal) eigenstates even
for nonintegrable systems [13-15], which are examples
of many-body scars [16-20]. However, there has been a
lack of variational wave functions suitable for theoretical
analysis of volume-law states, which is one of the rea-
sons why thermal eigenstates have not yet been obtained.
Hence, there is a craving for a class of volume-law states
amenable to the theoretical treatment [21-25].

In this Letter, we provide, for the first time, pairs of
a nonintegrable Hamiltonian and its thermal eigenstate

FIG. 1. Schematic diagram depicting an entangled antipo-
dal pair state [EAP). The antipodal pairs of spins linked by
dotted lines are in the Bell states |®,q). For any subsystem
with diameter smaller than or equal to half of the size of the
entire system N, the reduced density matrix coincides with
the maximally mixed state, i.e., the Gibbs state p“*" at the
inverse temperature 8 = 0.

at infinite temperature. We consider a class of volume-
law states, which we call the entangled antipodal pair
(EAP) states, that are amenable to theoretical calcula-
tions. Then we fully characterize Hamiltonians having
the EAP state as an eigenstate. It is rigorously shown
that some of these Hamiltonians are nonintegrable. In
addition, by evolving an EAP state in imaginary time,
we construct a thermal pure state at arbitrary temper-
ature, which is locally indistinguishable from the Gibbs
state.

Entangled antipodal pair state.— We consider quan-
tum spin-1/2 systems on the one-dimensional lattice
A = {1,2,--- N} with periodic boundary conditions.
We assume that the number of lattice sites N is even.
Let (}éf(,u = x,y,2) be the Pauli matrices acting on the
j-th site, and [0); and |1); be the eigenvectors of 67.

Our goal is to obtain pairs of a nonintegrable Hamilto-
nian and its thermal eigenstate. To achieve this, we adopt
the following strategy. First, we introduce a class of
volume-law states that are theoretically tractable. Next,
for each of these volume law states, we search for Hamil-



tonians that have it as a thermal eigenstate. Finally, we
prove that some of these Hamiltonians are nonintegrable.
Following this strategy, as the first step, we introduce the
entangled antipodal pair (EAP) state as [20]
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Here |®,,; >j SN2 (pj,q; = 0,1) are the Bell states be-
tween sites j and j + N/2 defined by
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where p represents the negation of p. It is straightforward
to check that
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where w? = (=1)?, wj = (-1)%, and w} = —wiw?.
Hence, the EAP state is uniquely characterized by

(wf )geA and (w?)jea- As a consequence of Eq. (3), the
actlon of 6 JJ on the EAP state is equivalent to the action
of 6# SN2 except for the factor of w;, ie.,

5" [EAP) = IEAP). (4)
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This plays a key role in the proof of our main results.

Characteristically, the reduced density matrix of the
EAP state for any subsystem X(C A) with diameter
D(X) = max;jjiex |j — j'| of N/2 or less equals the
maximally mixed state o Ix. Therefore, since the
maximally mixed state coincides with the Gibbs state
P oc e PH at the inverse temperature f = 0, it fol-
lows that the EAP state cannot be distinguished from
the thermal equilibrium state at 8 = 0 by any local
measurement. Moreover, this implies that the bipar-
tite entanglement between the subsystem consisting of
contiguous spins and its complement is maximal. That
is, the entanglement entropy of the EAP state obeys a
volume low, with a coeflicient reaching the maximum
value log 2. This should be contrasted with the rainbow
state [21-24], which is a product of the Bell states be-
tween sites j and N —j+1. For a subsystem {1,2,--- ¢},
the entanglement entropy of the rainbow state is £log 2
and follows a volume law. However, for a subsystem
{N/2—-0/24+1,N/2—¢/242,--- ,N/2+{/2}, it strictly
equals 0 and follows an area law. As can be seen from
this, the rainbow state is an athermal state that can be
distinguished from the Gibbs state with an appropriate
local observable.

EAP state as an energy eigenstate.— As explained
above, in the following, we search for Hamiltonians that
have the EAP state as a thermal eigenstate. To this end,

we consider the most general form of the Hamiltonian

written as
Z Z J/t ® G (5)

X(CA) fe{z,y,z}X JjEX

In the first sum, X represents a subset of A. In the sec-
ond sum, /i represents a combination of y; = x,y, z for
j € X. Here the origin of the energy is taken such that
H is traceless. Now we impose a very mild condition
on the locality of interactions: J& = 0 for any subset
X with D(X) > N/4. (For instance, a nearest neigh-
bor interacting system, where Jf( = 0 for D(X) > 3,
obviously satisfies the above condition for large N.) We
are interested in the Hamiltonian where some EAP state
|EAP) is an energy eigenstate. Such Hamiltonians can be
completely characterized by the following theorem [27].:

Theorem 1. The following three statements are equiva-
lent:

(i) An EAP state |EAP) is an eigenstate of H.

(ii) An EAP state |EAP) is an eigenstate of H with, the
eigenvalue 0.

(iii) For all X C A and ji € {z,y, 2},

Sy =% [Ty, (6)

JjeX
where Y = X + N/2 and v; = pj_n/o for je Y.

Note that Eq. (6) has many solutions. In fact, for
any given EAP state, one can construct many trivial
Hamiltonians that consist of only a few local terms, e.g.,
H=J} ®jex 65 +Jy ®JEY &7 with J% and J{ satis-
fying Eq. (6). However, in most cases, 5uch trivial Hamil-
tonians will be outside the scope of statistical mechanics.
Therefore, in the following, we focus on cases where the
Hamiltonian is translation invariant and show that only
several EAP states are allowed as solutions of Eq. (6).

Translation-invariant nonintegrable Hamiltonians.—
Let us consider translation-invariant Hamiltonians with
nearest neighbor interactions. They can include only 9
interaction terms, J*”, and 3 magnetic field terms, h*.
Solving Eq. (6) in Theorem 1, we can find all solutions of
JH, bt and (wf,wi, wf = —wiw?)jen [27]. Interestingly,
there are some nontr1v1al solutions whose (w¥,w?, wy)jea
are not invariant by single-site shift but invariant by n-
site shift for n > 1. To express such solutions efficiently,
we introduce the following notation for EAP states that
are invariant by n-site shift [28]: When N/2 is a multiple

of n,

»Pndn) (7)

denotes the EAP state characterized by (pj;,q;)jea
satisfying  pmnt; = pj and Gmp+; = ¢ for
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m = 0,1,---
For example,

yN/2n — 1 and j = 1,2,---,n.
when N/2 is even, [2;10,11) =
N/4 N/4 .
®j:1 |q)10>2j71,2j71+N/2 ®j:1 |(I)11>2j,2j+N/2' Using
this notation, we can list all nontrivial solutions as fol-

lows:

Theorem 2. By excluding noninteracting Hamiltoni-
ans [29], the solution of Eq. (6) whose Hamiltonian is
translation invariant and includes only nearest neighbor
interactions and magnetic fields is restricted to the fol-
lowing:

1. The EAP state |1;00) is an eigenstate of

N
Hy =Y (J™656Y,, +J"6Y67,,
j=1

+ V2 6Y6%,, + JeteY,  +hveY)  (8)

for arbitrary values of J*Y, JY* JY* J*Y hY.

2. When N/2 is a multiple of three, the EAP state
13;10,11,01) is an eigenstate of

N
= Y + ) )

for arbitrary values of J*Y, JYZ.

3. When N/2 is a multiple of four, the EAP state
|4;10,11,00,01) is an eigenstate of

N

Hy =3 (J™67670 +J76]65.)  (10)
j=1

for arbitrary values of J** JYZ.

and their equivalents obtained by appropriate permuta-
tions of directions of the Pauli matrices.

As shown in this theorem, there exist not so many
solutions in the case of translation-invariant Hamiltoni-
ans, and this implies that our condition Eq. (6) is strong
enough. Considering the importance of these models, we
call the models described by ﬁl, H, and H; Models 1,2
and 3, respectively. Note that, since Model 2 is included
in Model 1, the EAP state |1;00) is also an eigenstate of
H,.

Furthermore, we can obtain the following theorem re-
garding the nonintegrability of Models 2 and 3 [27]:

Theorem 3. For Model 2 with J*Y,JY* £ 0 and for
Model 3 with J**  JY* # 0, there exists no local conserved
quantity other than a linear combination of the identity
and the Hamiltonian (i.e., trivial one).

Because it is known that integrable systems have many
[O(N) number of] nontrivial local conserved quanti-
ties [30—-32], the above theorem implies that these mod-
els are indeed nonintegrable. In addition, since Model 2

(which is J¥* = J*¥ = h¥ = 0 case of Model 1) is nonin-
tegrable for any nonzero J*Y, J¥*, Model 1 will be nonin-
tegrable, at least for nonaccidental values of the param-
eters [27].

Combining Theorems 2 and 3 with the fact that EAP
states are thermal as explained above, we first obtain,
to our knowledge, an analytic expression of a thermal
energy eigenstate of a nonintegrable system. This highly
contrasts with the recent progress made by H. Tasaki [33]
in attempts to prove the ETH. He proved, only with re-
spect to special observables, that all energy eigenstates
of a certain noninteracting (integrable) system are indis-
tinguishable from the thermal state. However, problems
in nonintegrable systems remained elusive in his work.
In addition, the restriction on observables is essential in
his result because the integrable system has many local
observables by which energy eigenstates can be distin-
guished from the thermal state. By contrast, our ap-
proach is to construct, in a nonintegrable system, an en-
ergy eigenstate that is indistinguishable from a thermal
state with respect to any local observables.

Finite-temperature state.— So far, we have only con-
sidered states at 8 = 0. Can we describe thermal states
at B # 0 using the EAP state? Here, we provide a
method for constructing finite-temperature states using
the EAP state. It should be noted that Hamiltonians
considered here are not restricted to those having the
EAP state as an eigenstate, which we have considered
thus far.

Consider a system with translationally invariant short-
range interactions. Suppose that H is a real ma-
trix with respect to the products of eigenstates of 77,
{|00---0),[10---0),]01---0),---}. This class includes
many well studied models in statistical mechanics, such
as the Ising model and the Heisenberg model.

Here, we utilize the EAP state characterized by p; =
g; =0, i.e., |1;00) in the notation introduced in Eq. (7).
Then, as will be discussed below, the imaginary time
evolution of the EAP state

18) oc e~ 17 |15 00) (11)

Acan

is locally indistinguishable from the Gibbs state p
the inverse temperature S with an exponentially small
error, although it is not an eigenstate of H [34].

Let O be a local observable of interest. Since both
|B) and p®" are translation invariant, without loss of
generality, we can assume that O has support around
j = N/4. We then introduce an approximation |B> for

|B) as
|B) o e~ #AH—Hinl 1. 00) . (12)

Here ﬁint represents the interaction between the left
half {1,2,--- , N/2} and the right half {N/2+1,N/2 +
2,--+, N} of the whole system, defined as a sum of inter-
action terms when H is decomposed into a linear com-



bination of the Pauli strings as in Eq. (5). The imagi-
nary time evolution is expected to be stable against local
perturbations. Indeed, the Gibbs state, which is propor-
tional to the imaginary time evolution operator, is not
affected by perturbations on infinitely distant points be-
cause systems under consideration are one dimensional
and do not exhibit the first-order phase transition [27].
Therefore, since I;Tmt is a sum of local observables de-
fined around j = 1 or N/2 at a distance of O(N) from
the support of O, it is expected that |ﬂ) approximate |3)
around j = N/4 in the limit of N — oo, i.e.,

lim (3(0]3) = lim (|0]5). (13)

N—o00
Under this assumption, we have the following [27]:

Theorem 4. Suppose that H is short ranged and trans-
lation invariant and is a real matrixz in the basis formed
by products of |0); and [1),. Let O be an arbitrary local
observable. Then, if Eq. (13) is satisfied, it holds that

Jim (8l0|B) = Jim Tr[pe* Q). (14)
N—oo

In other words, |5) is a thermal pure state at finite
temperature while it is not an energy eigenstate. This is
true for various systems where the Hamiltonian is a real
matrix in the spin basis.

We finally confirm the validity of Eq. (14) by numeri-
cally testing our prediction on the transverse field Ising
chain, defined by the Hamiltonian

N
Z 6505 =205 (15)

We plot in Fig. 2 the N dependence of the difference
in the expectation value of the transverse magnetization
=% Z —1 05 between the Gibbs state in the ther-
modynamlc hmlt and the imaginary time evolved EAP
state |8). We can confirm that the expectation value
in |8) converges to the correct value. Furthermore, the
convergence is exponentially fast. Thus, by utilizing the
EAP state evolved in imaginary time, one can calculate
the thermal equilibrium values of local observables.
Here we discuss the relation with the ¢cTPQ state [35],
which is also a type of thermal pure states. The ¢TPQ
state is the imaginary time evolution of a Haar random
state. The Haar random state is (almost) maximally en-
tangled and is locally indistinguishable from the maxi-
mally mixed state, as is the EAP state. However, while
constructing the TPQ state requires an imaginary time
evolution for /2, constructing |3) requires only half of
that, /4. In addition, unlike the ¢cTPQ state, |3) does
not entail statistical uncertainties. This means that gen-
erating a single |3) suffices, without incurring any sam-
pling costs.
Discussion.— We have studied a class of volume-law
states, which we call entangled antipodal pair (EAP)

107! :

canﬁlz]

P
—
o
&
T
.
.

N—o0

1073 | 1

‘(3\7?@“3) — lim Ty|

104 I I I I I I
0 5 10 15 20 25 30

N

FIG. 2. N dependence of the difference in the expectation
value of the transverse magnetization between the Gibbs state
in the thermodynamic limit and the imaginary time evolved
EAP state for the transverse field Ising model. We set the
transverse field to 1 and the inverse temperature to 8 = 1.

states, and thoroughly characterized these states by pro-
viding the necessary and sufficient conditions that Hamil-
tonians must satisfy in order to have an EAP state as
an eigenstate. Moreover, we have rigorously shown that
some of such Hamiltonians are nonintegrable. Our EAP
states are indistinguishable from the Gibbs state at infi-
nite temperature. In other words, we have written down,
for the first time, analytic expressions for thermal en-
ergy eigenstates of nonintegrable many-body systems.
We have also devised a method for constructing finite-
temperature thermal states using an EAP state.

Some readers may be concerned that the energy
eigenspace containing the EAP state is excessively large
because, with an exponentially large number of states,
it can be not so difficult to obtain a highly entangled
state as their linear combination, even when each is
hardly entangled. However, numerical results show that
in Model 1, the degeneracy of the EAP state is only two
in the momentum sector [36] In addition, we can also
confirm that all states in the degenerate eigenspace obey
a volume law with the maximal coefficient log 2. Hence,
the nontriviality of our findings is not diminished by the
degeneracy.

Our result suggests that theoretical analysis may be
feasible even for thermal eigenstates of nonintegrable sys-
tems and may pave the way for giving a provable exam-
ple of the ETH. Since EAP states themselves are at infi-
nite temperature, constructing finite temperature ther-
mal eigenstates remains challenging. However, as we
have shown, one can obtain thermal states at arbitrary
temperature by applying an imaginary time evolution, a
low-complexity operation that can be well approximated
via a matrix product operator with small bond dimen-
sion [37], to the EAP state. This implies that the expres-
sivity of states derived from EAP states is quite high.



Thus, EAP states would be one of the most promising
starting points for constructing thermal eigenstates at
finite temperature. Furthermore, it will provide theoret-
ical methodologies not only for thermalization, but also
for various areas of quantum statistical mechanics that
use thermal pure states, such as the formulation of sta-
tistical mechanics and finite temperature simulations.
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Supplemental Material for
“Exact Thermal Eigenstates of Nonintegrable Spin Chains at Infinite Temperature”

PROOF OF THEOREM 1

For the proof of Theorem 1, the following lemma is crucial:

Lemma 1. Let X and Y be subsets of A satisfying D(X) < N/4 and D(Y) < N/4. For any EAP state |EAP), we
have

when Y = X and v, = py for allk €Y

EAP|®AH7®6_'Z}<|EAP>: Hw;j when Y = X + N/2 and vy, = pj_ny2 for allk‘eY. (S1)
jex  key JeX
0 otherwise

Proof. We divide the lattice A into four equally sized parts, A, := {aN/4+1,aN/4+2,...,(a+1)N/4} (a =0,1,2,3).
Since D(X) < N/4, without loss of generality, we can take X C Ag. Since D(Y) < N/4, Y cannot have any
intersection with both Ag and As, or with both A; and As.

Suppose that Y N A; # 0 and let * € Y N A;. Because no Pauli operator acts on its antipodal site k* + N/2 € A3
in the left hand side of Eq. (S1), we have

(EAP| ) 647 Q) 61 |EAP) = (EAP| | (X) 5% Q) ok | 6 [EAP) = 0. (S2)

jex key jex ke \{k*}

If Y N As # 0, we can obtain the same result in almost the same manner. Therefore, in the following, we only need
to consider the two cases Y C Ag and Y C As.

Next we consider the case of Y C Ag. In the left hand side of Eq. (S1), at most two Pauli operators act on each
site j € Ag, and no Pauli operator acts on its antipodal site j + N/2 € Ay. Therefore, unless Y = X and vy, = py, for
all k € Y, the left hand side of Eq. (S1) becomes zero. On the other hand, if Y = X and vy, = py for all k € Y, we
obviously have

(EAP| ) 64" Q) 61 |[EAP) = (EAP[EAP) = 1. (S3)

JEX key

Finally we consider the case of Y C As. In the left hand side of Eq. (S1), at most one Pauli operator acts on each
site j € Ag, and at most one Pauli operator acts on its antipodal site j + N/2 € Ay. Using Eq. (4) of the main text,
we have

(EAP| Q) 647 Q) 6" |EAP) = (EAP| Q) 677 Q) 67~ o[ EAP) T wi. (S4)

jeX key jeEX key key

Applying the arguments of the previous paragraph, we can obtain the following: Unless Y —N/2 = X and v}, = pp_ny/2
for all k € Y, the left hand side of Eq. (S1) becomes zero. On the other hand, if Y — N/2 = X and vy = py_ny, for
all k € Y, we have

(EAP| (X) 647 (X) 6, [EAP) = (EAP|EAP) [ wi = [« (S5)
jex key key jeX

O

Proof of Theorem 1. In order to show that three statements are equivalent, we need to show that (i) = (ii), (ii) =
(iif), and (iii) = (i). )
(i) = (i): We assume that an EAP state |[EAP) is an eigenstate of H with eigenvalue A, i.e.,

H|EAP) = \|EAP). (S6)



Then, taking the inner product with |[EAP) and substituting Eq. (5), we have
A= (EAP[H|EAP) = > Y JE(BAP|(X) 6% |EAP) =0, (S7)
X(CA) ge{z,y,z}* jex

where the last equality follows from Lemma 1. A
(ii) = (iii): We assume that an EAP state |[EAP) is an eigenstate of H with eigenvalue 0, i.e.,

H|EAP) =0. (S8)
Then, substituting Eq. (5), we have

Z > Q) 6yk [EAP) = 0. (S9)

Y(CA) ve{z,y,z}Y key
Taking the inner product with (EAP] ® 47, we get
jEX
Je+J7 [[ b =0, (S10)
jex

where Y = X + N/2 and v = py_ny2 for k € Y. Since wj = =+1, this implies Eq. (6).
(i1i) = (i): We assume that Eq. (6) holds. Using Egs. (4) and ( ), we have

HEAP)= > > J{ Q)57 |[EAP) (S11)

X(CA) pe{z,y,z}¥ jeX

Yoo > IR Q. [EAP). (S12)

X(CA) fe{z,y,z}X JjeEX JjeX
Then, substituting Eq. (6), we obtain
HEAP)=— > > Ji,y, Q)6 [EAP) = —H [EAP), (S13)
X(CA) fe{zy,z}¥ jex
which is equivalent to statement (ii). It obviously implies statement (i). O

Remark: The above proof also shows that, if we only need to show (iii) = (ii), we can relax the condition on the

locality of interactions in the main text, “Jf} = 0 for any subset X with D(X) > N/4” to “Jf( = 0 for any subset X
with D(X) > N/2.7

LIST OF TRANSLATION-INVARIANT AND NEAREST-NEIGHBOR-INTERACTING HAMILTONIANS

We provide a list of translation-invariant (for single-site translations) and nearest-neighbor-interacting Hamiltonians
having an EAP state as an eigenstate. First, we exclude the case of free spins, as it is trivial. Next, for some cases
where only one of J* is non-zero, we find that 2V/2 EAP states are degenerate, so we also exclude such cases. Then
pairs of the EAP state and the Hamiltonian are limited to the following five types (and their equivalents obtained by

appropriate permutations of directions of the Pauli matrices). It can be readily confirmed through direct calculations
that the pairs of the EAP state and the Hamiltonian listed below satisfy Eq. (6).

Case where the EAP state is invariant under 1-site translation
The EAP state |1;00) is an eigenstate of the Hamiltonian defined by
ﬁzz (J™656 S JYeYeT IV 6T + TVeT6Y + kYo ) (S14)
j=1

for arbitrary values of J*¥ J¥* J¥# J*¥ RhY. This model is Model 1 in Theorem 2.



Case where the EAP state is invariant under 2-site translation

Suppose that N/2 is a multiple of two.
The EAP state |2;10,01) is an eigenstate of the Hamiltonian defined by

N
H=Y " (J"6767,, +J76767,1) (S15)

j=1

for arbitrary values of J**, J#*. This model can be mapped onto free fermions via the Jordan-Wigner transformation.
In addition, the EAP state |2;10,11) is an eigenstate of the Hamiltonian defined by

N
2 TE AT AT Yy AY ~Y TY A
H—E (J 070541 +J O'jO'j+1+J
j=1

07+ JV616T 0+ h6T), (S16)

for arbitrary values of J** JYY J*¥ JY* h*. This model can also be mapped onto free fermions via the Jordan-Wigner
transformation.

Case where the EAP state is invariant under 3-site translation

Suppose that N/2 is a multiple of three.
The EAP state |3;10,11,01) is an eigenstate of the Hamiltonian defined by

=3 (TV676% 0 + Y5 (s17)

N
j=1

for arbitrary values of J*¥ J¥?. This model is Model 2 in Theorem 2. As shown in Theorem 3, this model is
nonintegrable.

Case where the EAP state is invariant under 4-site translation

Suppose that N/2 is a multiple of four.
The EAP state |4;10,11,00,01) is an eigenstate of the Hamiltonian defined by

N
H= Z (J*6565 0+ JV6Y67,1) (S18)

Jj=1

for arbitrary values of J** JY?. This model is Model 3 in Theorem 2. As shown in Theorem 3, this model is
nonintegrable.

PROOF OF THEOREM 3

First we define a k-local conserved quantity (which is the same as one given in Ref. [41]) by the operator @) that
commutes with the Hamiltonian

[Q,H] =0 (S19)

and can be written as

k
Q=" quz Al g1 (S20)

=1 At



Here A’ represents a sequence of symbols, A, A%, ..., A® satisfying

Al A e [X,Y, Z} (S21)
A% AT e (XY, 2,1} (S22)

and Aﬁ represents the product of the corresponding Pauli operators on the sites {j,j +1,...,5 +¢ —1}:

AL _ A1 At
A = A}A?+1...Aj+€_1. (S23)
In Eq. (S20), qi@ € R are the expansion coefficients. [We add the superscript (¢) in order to emphasize its value.]
J
The crucial point of Eq. (S20) is that @ does not include A% with £ > k.

Now we give the precise expression of Theorem 3 of the main text, which is represented by the following two
theorems:

Theorem 3.A. In Model 2 with J*Y, JY* £ 0, and for k < N/2, there is no k-local conserved quantity that is linearly
independent of the Hamiltonian and the identity.

Theorem 3.B. In Model 3 with J**, JY* £ 0, and for k < N/2, there is no k-local conserved quantity that is linearly
independent of the Hamiltonian and the identity.

In the remaining of this section, we prove these theorems by adapting the theoretical approach to prove the absence

of local conserved quantities, which was introduced by N. Shiraishi [42]. There are only a few examples of such
proofs [41-43]. This approach starts from solving Eq. (S19) with respect to the coefficients with largest locality, qff,z,

j
(k) _

and showing that ¢,; = 0. When solving Eq. (S19), we need to calculate many commutators such as
i

3) v 7 X B
[qg(leXj i1 X2, > VY Zjia]
I

= qg?;InyZ[Xjfj+1Xj+2, Y12+ Y3 Zja + Vi Zivo + YVieaZy ] (524)
= 2iq%) 1 T (<Y1 Vil Koo + 23251 XKz = XpVinVive + X1 2540 7500). (S25)

For simplicity of notation, we write qg?J) 1x in place of qg?J) L1 Xia" In order to express such calculations efficiently, we

use the following diagrammatic notation:

XIX X 1IX X I X X IX
Y Z Y Z Y Z Y Z. (526)
- Y, Y IX Z ZX -X,YY X;I1ZZ

These four diagrams correspond to the four terms in Eq. (S25). In each diagram, the first row represents the term
from Q, the second row the term from H, and the third row the result of the commutator. For simplicity of notation,
we add the site index only for the leftmost operators in the third row. In addition, we call the first row of the
diagram “/-local input”, and the third row of the diagram “¢-local output”, when they consist of X, Y, Z, and I on
¢ consecutive sites.

Proof of Theorem 3.A

This subsection proves Theorem 3.A. Throughout this subsection, we consider Model 2 and assume J*Y, JY% = 0
and k < N/2. (The reason for the assumption k£ < N/2 is the same as one discussed in Sec. VI A of Ref. [41].)

Proof. The proof of Theorem 3.A is divided into three parts. The first part investigates the coefficients with largest

(k) (k)

locality, ¢,,. For the coefficients of the form qZk_A2 k-1 We have
j 34T

7 A2 .. ARl X
Y Z. (S27)
Z; A2 . A1 7z




Because a (k + 1)-local output can be obtained only when the Hamiltonian term is applied to the edges of k-local
inputs, there are at most two k-local inputs that contribute to one (k4 1)-local output. However, since the left end
of the output of Eq. (S27) is Z, the other contribution does not exist. Furthermore, from Eq. (S19), the sum of all
contribution to the output Z;A%...A¥=1ZZ must vanish, and therefore we have

Jyzq(Z]j)A?.,Ak*lX =0. (828)

In a similar manner, we can obtain the following lemma:

Lemma 2. For 2 < k < N/2, the solution of Eq. (S19) satisfies

Ty e, e ar =0 (529)

k
qI(AJl)A?..Ak*lX =0 (S30)

for all j € A. Here the symbols A, A2 ..., Ak=1 Ak that are not specified can be any symbols satisfying Eqs. (S21)
and (522).

(k)

X, A2, AR-1y They have the following contributions

Next we examine the coefficients of the form ¢

X A2 A3 . Akly
XvY. (S31)
—X; A2 A3 AR 7y

When A2 = I,Y, this (k + 1)-local output does not have the other contribution. When A? = X, it has the other
contribution,

Z A% . AR Z Y
Xy . : (S32)
—X; X A3 AT Z Y

which however vanishes from Lemma 2. In a similar manner, we can obtain the following lemma:
Lemma 3. For 3 <k < N/2, the solution of Eq. (S19) satisfies

(k)

Ax, a2, ar-14x = 0 for A*=1Y X (S33)
B e aege =0 for A2=1,7 (S34)
qff;l_)A;__Ak_lZ =0 for AF1=1Y,Z (S35)
0o ey =0 Jor AN =1 X (S36)

for all j € A. Here the symbols A, A2 ... Ak=1 Ak that are not specified can be any symbols satisfying Eqs. (S21)
and (522).

Furthermore, we can obtain relation between two of the remaining k-local inputs as in
X Z A3 .. Aty X A% LAY Z Y

Xy XY . : (S37)
—X; Z A AT 2 Y X, 2 A3 AL Z Y

which results in

k k
_Jzng(j)ZAl"...Ak*lY + Jqugcj)HAa...Akflzy =0. (S38)
If A3 is not Z, we have qg?»)HAB ak—1z7y = 0 from Lemma 3, and hence qgf)ZAg ar—1y = 0. By using such a relation,
; S Z A3

we can shift the symbols A3, ..., A¥=1 to the left and we can determine these symbols. As a result, we can obtain the
following proposition:



Proposition 1. For any j € A and for any A*, the solution of Eq. (S19) satisfies

qff,l =0, (S39)
except for
qg?j)(z)kdy, qgflj)(X)k*QZ’ qg,]:)(x)ny(z)k,n,sy withn =0,1,....k — 3. (S40)
In addition, these remaining coefficients are independent of the site j and satisfy
qgfljixwwzw*ww qg?(X)Hz qg?j(Z)HY qg?l)(zw—w
(Jev)E-n=2( eyt =— (Jvr)i =— (Jeu)Et =— (JouyEt forn=0,1,....k — 3. (S41)
Here we used a shorthand notation of a sequence of symbols
A)m :2&;._4 forA=XY,Z I. (S42)

m times

Therefore we only need to show that one of these remaining coeflicients is zero.
As the second part of the proof, we examine the coefficient qg?j)( 7) k,2y(: qgfl)( 7) k,2y). We consider the contribution

from qgfj)( Z)k-2y to a k-local output which can also include the contribution from (k — 1)-local inputs. For instance,

X (24 z zY X ()2 X 1Y
Y Z X Y (543)
- X, 2Ot X 1Y X, Z ()P X 1Y
are the only contribution to the k-local output X;(Z)¥~4X1Y, and hence we have
zy  (k—1) _ qyz (k)
J X1 (2)k=5XIY = J? I, (z)r-2y" (544)

For coefficients of (k — 1)-local inputs,

we obtain the following:
X;(2)k=n=5X1(Z)" Y (for n =0,...,k — 6) are given by

All contributions to k-local output

X (25 X T (2" Y X (Z2)kn=6 X T (2" Y
XYy XY
- X; DX T (2 ZY X, Z (2 X T (2 Y

X (Z)k—n—5 VA (Z>n+1 Y

X (25 X X X (2" Y

which result in

Y Z XY : (S45)
- X, (X T (2)T'Y X, (2P X T Z (2 Y

vy (, (k=) (k—1) _ guz (k) _

T (g8 e naxr iy — G yn-sx1zyy) = T0 gy foralln =0,k —6. (S46)

For the coefficient qgﬁfl)

relation

T (=ay )

in a similar manner. We can also obtain the following relation for the coefficient ¢

meq(zi;(lg)wly

(k—=1) _ qyz, (k)
j+1l(Z2)k=1Y o qX]‘XI(Z)k*sY) =JY le(Z)k*2Y7

= 2797}

X1(Z)k-5y which appears in n = k — 6 case of the above equation, we can obtain another
J

(S47)

(k—1)
Z,1(Z)k—1Y"

qXI(Z)k—Zya (848)



by considering the contributions to Z;I(Z)*=3Y,

Z I (2)F4Y Z X X (2 Y Y Y (2)F2Y X Z (Z)F3Y
XY XY XYy Y Z : (549)
—Z, I (24 zyY z;1 Z (2)F4Y — 2z, 1 (2)F3Y 2z, 1 (2)*3Y

Because the sum of the left-hand sides of Eqgs. (S44), (S46)—(S48) (by choosing the site j appropriately) become zero,
we have

k—6
_ qay, (k=1) xy (, (k=1) (k—1)
0= T3 y-sxry + 2TV Ax, oz n-oxizymiry — Qxops(zy-n-sx1(2yy)
n=0
. (k—1) (k—1) vy (k—1)
+J y(_qzk,gf(z)kﬂly - qu,4XI(Z)’°*5Y) +J quk,g,I(Z)’f*‘lY (S50)
= (k=17 oy (S51)

Thus we obtain the following proposition:

Proposition 2. For 3 < k < N/2, the solution of Eq. (S19) satisfies

(k) _
Ix,(zys-2y = 0- (S52)
By combining Propositions 1 and 2, we have
qff,_z =0 forall j and AF. (S53)

This means that Q is a (k — 1)-local conserved quantity. Applying the same argument to k — 1, k — 2,..., and 3-local
conserved quantity, we can show that any k-local conserved quantity with £ < N have to be a 2-local conserved
quantity.

As the third part of the proof, we analyze the coeflicients q(é) with £ < k in the case of £ < 2. From Lemma 2, we

A
(1) (2)

only need to consider the coefficients of the form qgjw qgi) 25 qgj )Y, q(Y?j )Z and ¢ Alj . Furthermore, the coefficient ax,z

vanishes because

X
(S54)

<IN

Y
Y

ke

is the only contribution to the 3-local output X;YY. The coeflicient qg )Y vanishes by a similar reason. In addition,

because 2-local output comes only from 1-local input, we can easily show that qg(lj) = qg,lj ) = q(le) = 0. For the remaining

coefficients qgjy and qgj )Z, we can easily show that they are independent of the site j and are related to each other

by
TGS, — ISy =0, (S55)
which results in the following proposition:
Proposition 3. Any 2-local conserved quantity Q can be written as
Q = aH +bl, (S56)
with arbitrary constants a,b € R.

From Eq. (S53) and Proposition 3, we obtain Theorem 3.A. O



Proof of Theorem 3.B

This subsection proves Theorem 3.B. Throughout this subsection, we consider Model 3 and assume J** JY* #£ (
and k& < N/2. (The reason for the assumption k£ < N/2 is the same as one discussed in Sec. VI A of Ref. [41].)

Proof. The proof of Theorem 3.A is divided into three parts. The first part investigates the coefficients with largest
(k)

A%+ In a manner similar to the proof of Lemma 2, we can show the following lemma:
j

locality, ¢
Lemma 4. For 2 < k < N/2, the solution of Eq. (S19) satisfies

=0 (S57)

(k)
97,42, Ak—1 4k

0l 1o sy =0 (558)

for all j € A. Here the symbols A', A%, ..., A*=1 A* that are not specified can be any symbols satisfying FEqs. (S21)
and (522).

Furthermore, we can show the following lemma in a manner similar to the proof of Lemma 3:

Lemma 5. For 3 < k < N/2, the solution of Eq. (S19) satisfies

qgfy?AQWAk_lAk =0 for A2=1Y,X (S59)
q;’jlpmAk,lAk =0 forA2=1,7 (S60)
qf@)AQ.“Ak_lX =0 for A"V =1X,7 (S61)

(k) =0 forAFl=1Y (S62)

Gptaz. av-1z7
J

for all j € A. Here the symbols A', A%, ..., A*=1 A* that are not specified can be any symbols satisfying Eqs. (S21)
and (522).

By shifting the symbols A3, ..., A¥~1 to the left as we did to obtain Proposition 1, many coefficients can be shown
to be zero. To explain the result, we introduce a version of “doubling product.” It was originally introduced by
N. Shiraishi [42]. Our version is modified for analyzing Model 3 as follows: We call a sequence of the Pauli operators

doubling product, if it can by written as A;A?..An, where

A= X; X541 when Ai =X .
! YiZjn when A' =Y
T gt o | A A X Xy X when A™H = X, AT 2 X (S64)
J CA}AZ"‘ATL X YjinZjtn+1 when A"t =Y
Here c is chosen from {#i} to make its coefficient 1. In addition, we introduce J—= by
J* when A' = X

£ | S65
Al {Jyz when A =Y (S65)

Jar e X I when A" =Y, A"l =X
S ma = S x IV when A" = X, A"l =Y . (S66)

—Jg—w X JY* when A" =Y, Amtt =Y

Then we can obtain the following proposition:

Proposition 4. For any j € A and for any A* other than doubling product, the solution of Eq. (S19) satisfies

k) — . (S67)
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For the case where A¥ is given by a doubling product Egs. (S63) and (S64), these remaining coefficients are independent
of the site j and are related to each other by

* k) w
qAJl...Ak—l  Uyyxr2z Oy (xe2z .
Tararer SV TR g (= )k

for any j € A.
Therefore we only need to show that one of these remaining coefficients is zero.
As the second part of the proof, we examine the coefficient qgj )( X)h-27° We consider the contribution from the

k-local input Y;(X)*~2Z to a k-local output which can also include the contribution from (k — 1)-local inputs. For
instance,

Y X (X)F3 2 X Z(X)*3Z ZYY (X)*Z Z I (X)h4 z
X X Y Z Y Z Y Z (S69)
—Z, 1 (X)3 2z z;1 (X)32 2z, 1 X (X)F*z -z I (X)*X 2z

are the only contribution to the k-local output Z;I(X )k=3Z. Note that the contribution from the third diagram
vanishes because of Lemma 4, and the contribution from the second diagram satisfies

(k) I (k)

Ox;2(x)-22 = gz a(x)s-2z (870)

because X Z(X)*3Z can be written as a doubling product X (Y)*~2 and Eq. (S68) in Proposition 4 is applicable.
Hence we have

z, (k—1) _ zz (k)
JY qu[(X)kszZ =-2J qYl(X)kfzz- (871)
In a similar manner, we can obtain
2 k=) v (k1) _ U w
J? quYI(X)HZ*J Uz, 0122 =~ gyz_ In(x)-—2z (S72)
vz (k=1) 2 (k1) _ I
—JY quYYI(X)HZ_Jy Uy 1(X)=52 = 7 Jyz nx)—2z (S73)
2 (k1) 2 (k=1) I w _
—JY qu(x)nJrlyyl(X)k”*”Z—’_Jy Gy (MY YIOR—0-nz =~ i (x)e-22 forn=0,.., k-7 (S74)
vz (k=1) _ I
JU qu(X)k*GYYIZ__ Juz qyl(X)k—QZ (875)
from the diagrams
Z 1 (X)k74 Z X Y I (X)kf‘r’ VA X Z X (X)k74 VA X YYY (X)kf‘:’ A
X X Y 7 X X Y Z ,
X, Y I (X)PZ - X, Y I (XS X Z X, Y1 (X)FYZ - X, Y1 X (X)) Z
(S76)
XYy I (X)) Z Y Y Y I (X)k6Z YYZXXM Z YVYYYY (X)F6Z
Y 7 Y 7 X X Y Z
Y, YYI X Z —YvYYIX)FXZ YV, YY1 X)°Z Y, YvyI X (X)) 2
(S77)

Y (X)"YY I (X" 2z v X))y YT (X)) 2z
Y Z v 7
Y, X (X)"YY I (XS zZ v XYy X)X Z

J
Y (X)""'Y Z X (X)F6 "z Y (X)) Y Y Y Y (X7 7
X X Y Z : (S78)
Y, (X)""' Yy Y I (X)) z Y, (XY Y I X (X)FT Z

)
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Y XS YYIZ Y (X)*5Y Z X Z Y (X)FCY Y XY
Y Z X X X X, (S79)
Y, X (XYY I2Z Y,XYYI Z -Y, XYY Z

respectively. Because the sum of the left-hand sides of Eq. (S71) xJ**/J¥# and of Eqs. (S72)—(S75) (by choosing the
site j appropriately) become zero, we have

k—7
_ qyz, (k=1) z (k—1) (k—1)
0= J"qy, xye-oyyriz T Z JY (7an+1(X)k*"*5YYI(X)”Z + an+2(X)’<*”*7YYI(X)"+1Z)
n=0

+J (_q%i;;w(x)k—% - qg?,;t)w(x)k—sz) + (Jyzqgéc,;t)YI(X)k—5Z - qu(ziii)l(x)k—%)
+ T ez (S80)
= —(k-1) (‘?;Z)2q$j>(x)k,2z. (S81)
Thus we obtain the following proposition:
Proposition 5. For 3 < k < N/2, the solution of Eq. (S19) satisfies
B, xys-2z =0 (552)
By combining Propositions 1 and 2, we have
qffj,_z =0 forall j and AF. (S83)

This means that Q is a (k — 1)-local conserved quantity. Applying the same argument to k — 1, k — 2,..., and 3-local
conserved quantity, we can show that any k-local conserved quantity with £ < N have to be a 2-local conserved
quantity.
As the third part of the proof, it is straightforward to show the following proposition:
Proposition 6. Any 2-local conserved quantity Q can be written as
Q = aH +bl, (S84)

with arbitrary constants a,b € R.

From Eq. (S83) and Proposition 6, we obtain Theorem 3.B. O

LEVEL SPACING STATISTICS OF MODEL 1

In the paragraph below Theorem 3 of the main text, we explained that Model 1 is expected to be nonintegrable.
To confirm this expectation, we numerically investigate the level spacing statistics [44, 45] of Model 1 by exact
diagonalization. Figure S1 plots the distribution of the ratio of consecutive level spacings [45]

n

q q q q
En+1 - En En+2 - EnJrl

Eg+2 - ngl Eq+1 - E }, (S85)

r= min{

constructed from eigenenergy E? in the eigenspace of translation with momentum g = 27 /N [46] (sorted in descending
order). We set the parameters as J™ = e, JV* = 1, JY* = 7, J*¥ = 0,hY = In7 [47]. The plot is well described by
the Gaussian unitary ensemble distribution [45] (dashed line) and well separated from the Poisson distribution [45]
(dotted line). This shows that Model 1 (with above mentioned parameters) has no nontrivial local conserved quantity,
implying nonintegrability of the model.



11

2.0 : , . .
15 - |
o —g -8
88 o ~o_
e L ST
/’/ ’\\,
P(r) 1.0 - //3/ i
/8/
,// Poisson ---------
/ GUE ———-
0.5 + ¥ N = 18 N
. N =19
1 N =20
//i N =21 o
-~ N=22
0 o L 1 1 T
0 0.2 0.4 0.6 0.8 1
T

FIG. S1. Distribution of the ratio of consecutive level spacings of Model 1 in Theorem 2 in the main text. We use eigenenergies
in the subspace of momentum 27/N.

PROOF OF THEOREM 4

Proof. Let & = (01,02, -+ ,0n) be a bit string of length N. Then, using &, we define the the computational basis as
G) = |o1) @ |o2) @ -+ @ |on) . (S86)

As a preparation, we clarify the properties of the Hamiltonian satisfying the assumptions of the theorem. Since
Pauli strings form an orthogonal basis of operators on the whole Hilbert space, the Hamiltonian H can be uniquely
expressed as a linear combination of them:

=YY A (557
X(CA) pe{z,y,z}¥ jeX
With this notation, ]:Iint in the main text is written as

Hiy = > Yoo KR (S88)

XNL#®and X NR#0jie{zy,z}X jeX

where L ={1,2,--- ,N/2} and R={N/2+1,N/2+2,--- ,N}. Since, H is translation invariant by assumption, we
have

H — iy = HN/2,OBC @Ip+1I® PIN/2,OBC- (S89)

Here, H N/2,08C is the Hamiltonian for the same system of length N/2, but with open boundary conditions rather
than periodic boundary conditions:

Hypose= Y, >, JxQ)el. (S90)
XCL pefa,y,2}*  jeX
Under the complex conjugation with respect to the computational basis, the Pauli string behaves as

Qo — (-1 Qe (S01)

JEX JjEX
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where P)Fé = |{u;|5 € X, pu; = y}| is the number of Pauli matrices along the y-direction, &7, within the Pauli string.
Thus, the complex conjugation transforms the Hamiltonian as

H=3 > KQu+ Y Y KQ

X(CA) jiefz,y,2}* jex X(CA) fe{z,y,2}* jex
s.t. P}’? is even s.t. P)’? is odd
e i I i H
—  H= ) Kl - > > Ik (S92)
X(CA) ge{zy,z}* jex X(CA) pe{zy,z}* jex
s.t. PY is even s.t. Py is odd

Since the expansion in terms of Pauli strings is unique, for H to be a real matrix in the computational basis (i.e.,
H = H*), J% must be zero when PY% is odd. Hence, we obtain

IA{N/Q_’OBC = Z Z Jg( ® (5'57 (893)
XCL ﬂe{x,y,z}x JjeX

A oy
s.t. Py is even

Therefore, Hy /2,0BC 18 also a real matrix in the computational basis.
We now proceed to prove Eq. (14). The EAP state |1;00) can be expanded in the computational basis for subsystems
L and R as

[1;00) o< > 15), @ |F) g - (594)

Thus, using Eq. (S89), we have

|B> o Ze—%,BHN/z,OBC |5-’> ® e—iﬂﬁzv/zOBC |5-’>

o

= Ze_%ﬁﬁN/z,OBc |5> ® <Z ‘5’) <5»/ ) e—%ﬁﬁN/z,OBc |5>

o

=D e iPone |3) @ (e3P one|3)|7) (395)

—

o,0
Since H N/2,0BC is a real matrix with respect to the computational basis, it holds that
<5r|€—i/3ﬁN/z,OBc ‘5-”>*

- <5:|e—iﬁ1:11v/2,0130|5:’> (S96)

for any |&) and |¢”). Substituting this into Eq. (S95), we obtain

JE—

g,6

|B> < Z e*iﬁﬁN/z,OBc |7) (7] e*iﬁHN/z.OBC ‘5l> ® |&/> _ Z e*%ﬁHN/z,OBC ‘5’> ® |5/> . (S97)
5/

Therefore, for any observable O defined on the subsystem L, we get
(BIO1B) = Tr[p3,08c0); (598)
where ,6‘]3\5,“;‘2’0}30 is the Gibbs state for H ~N/2,0Bc- Hence the thermodynamic limit yields
Jim (5|O|B) = lim e3¢5 opcOl- (899)

In the thermodynamic limit, the Gibbs state converges to the KMS state regardless of whether periodic or open
boundary conditions are imposed. Since we are now considering a one-dimensional system, there exists a unique KMS
state at finite temperature [48, 49]. Consequently, expectation values of local observables in the Gibbs state do not
depend on boundary conditions in the thermodynamic limit. Thus, using Eq. (13), we finally obtain

lim (8]0|8) = lim Tr[p=*"Q. (S100)
N—o00 N—oo

O
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FIG. S3. Deviation of the volume-law coeffi-
cient of the entanglement entropy of zero-energy
eigenstates |0, ) defined by Eq. (S101) in the
FIG. S2. Entanglement entropy of the EAP state and its orthogonal zero-momentum sector of Model 1 from that of
degenerate state | L) between a subsystem A = {1,2,.-. ¢} of length ¢ the maximally entangled state. We set the pa-

and its complement as a function of £ for Model 1 with N = 10. We set rameters as J*Y = e, JY* = 1,JY* = 7, J* =
the parameters as J*Y = ¢, JY* =1, JY* =7, J*Y =0,hY =1InT7. 0,hY =In7 and N = 10.
DEGENERACY

Degeneracy in Model 1

According to Theorem 2, the EAP state |1;00) is an energy eigenstate with an eigenvalue E = 0 of Model 1 for
arbitrary parameters. Without loss of generality, we can take J*¥ = 0 by an appropriate rotation around y axis, so we
set the parameters of Model 1 as J*Y =e¢, JY* =1,JY* =7, J?*Y = 0,hY = In7. By the exact diagonalization, we find
that |1;00) is doubly degenerate in the zero-momentum sector for N = 10,12, 14, 16. Let us investigate entanglement
properties of states in this eigenspace, which we will write as Hr—o,g=0. Let | L) denote the state orthogonal to |1;00)
in Hp—o,p=o. All states in Hy—o,g=0 can be expressed as a linear combination of |1;00) and |L):

10,0) = V1= X[1;00) + e*™VX|L)  (0<A<1,0<0<1). (S101)

First, we investigate the bipartite entanglement in | 1) (corresponding to the case of A = 1). We plot in Fig. S2 the
entanglement entropy S4 between a subsystem A = {1,2,---, ¢} of length ¢ and its complement as a function of ¢. It
can be seen that | 1) is almost maximally entangled, but is different from EAP states.

Next, we confirm that all states in the eigenspace Hy—o,r—0 are maximally entangled states. To investigate the
coefficient of the volume-law scaling, we compute the entanglement entropy of |#,\) between a subsystem of length
1 and its complement for various A and 6 and show in Fig. S3 the deviation from the coefficient of the maximally
entangled state, 1 — S4—_(1}/log2. It can be observed that for all states in Hy—o,p=0, the volume-law coefficients are
significantly close to the maximal coefficient.

Thus, there are not any low entangled states in the eigenspace, and hence the EAP state is not a superposition of
such states.

Nondegenerate Hamiltonian with next-nearest-neighbor interactions

In this subsection, by extending the Hamiltonian (S16) to the next-nearest-neighbor interacting one, we provide a
Hamiltonian having an EAP state as an eigenstate that is nondegenerate in the corresponding momentum sector.

Suppose that H is translation invariant and satisfies .J 5‘; = 0 for any subset X with D(X) > 4. Then, it can be
characterized by 48 coupling constants, J*, J* and h* (u,v = x,y,z and A = 2,9, 2,0, where 6° := i) From
Theorem 1 of the main text, it is straightforward to show that, when N/2 is a multiple of 2, the EAP states |2;11, 10)
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FIG. S4. Distribution of the ratio of consecutive level spacings of model (S102). We use eigenenergies in the subspace of
momentum k = /2 and parity P = £1 (regarding rotation by 7 around z-axis). The parameters are given below Eq. (S104).

and |2;10,11) are eigenstates of H if and only if H can be written as

N
TZT 5T 52 YZY A ZY AT AZ YZL AY Az AT
H= Z J J+10'J+2+J &Y 0+10 +2—|—J O'J0]+1CT +2+J 0707110542
Jj=1

+ J 5 z Z+10‘j+2+Jx 576 9: 1+J +J90 +Jy +1-|—h o‘) (8102)

Here all parameters are arbitrary, and hence it is an extension of Eq. (S16). .
Because the EAP states |2;11,10) and |2;10,11) are related to each other by translation 7 as

712:11,10) = +[2;10,11),, (S103)
712;10,11) = — |2;11,10), (S104)

their superposition (|2;11,10) £ i]2;10,11))/v/2 is included in the eigenspace of translation with the momentum
k = +m/2. Therefore, we investigate degeneracy of energy eigenvalues in the subspace of k = 7/2. We set h* =
J =e, JW =m, JY*" =1n2, JYW =1n3, J*** =1nb, J* =1n7, JY*¥ =1Inll, J¥*¥ =1n13, and J?** =Inl7. By
exact diagonalization, we numerically find that, at least for N = 8,12, 16, 20, the eigenvalue E = 0 is nondegenerate
in the subspace of k = 7/2.

We also verify the nonintegrability of model (S102). Because of the existence of J**# model (S102) is not
mapped to a free fermionic (integrable) system by the Jordan-Wigner transformation. We confirm nonintegrabil-
ity of model (S102) by calculating the distribution of the ratio of consecutive level spacings, as in Fig. S1. Figure S4
plots the distribution constructed from energy eigenvalues in the eigenspace of translation 7 and Z; transformation
®j-v:1 6% with momentum k = 7 /2 and parity P = £1. This plot is well described by the Gaussian unitary ensem-
ble distribution [45] (dashed line) and well separated from the Poisson distribution [45] (dotted line), indicating the
nonintegrability of the model.

Note that, because the interference term between |2;11,10) and |2;10, 11) does not affect the expectation values of
local observables whose support size are less than N/2, any state described by a linear combination of |2;11,10) and
|2;10,11) is locally indistinguishable from the maximally mixed state.

Combining all results of this subsection, we can say that the state (|2; 11, 10)=4 [2; 10, 11))/v/2 is a thermal eigenstate
of the nonintegrable Hamiltonian (S102), and is nondegenerate in the corresponding momentum sector [50].
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