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Abstract

Pattern dynamics on curved surfaces are ubiquitous. Although the effect of surface topography

on pattern dynamics has gained much interest, there is a limited understanding of the roles of

surface geometry and topology in pattern dynamics. Recently, we reported that a static pattern

on a flat plane can become a propagating pattern on a curved surface [Nishide and Ishihara, Phys.

Rev. Lett. 2022]. By examining reaction-diffusion equations on axisymmetric surfaces, certain

conditions for the onset of pattern propagation were determined. However, this analysis was

limited by the assumption that the pattern propagates at a constant speed. Here, we investigate

the pattern propagation driven by surface curvature using weakly nonlinear analysis, which enables

a more comprehensive approach to the aforementioned problem. The analysis reveals consistent

conditions of the pattern propagation similar to our previous results, and further predicts that

rich dynamics other than pattern propagation, such as periodic and chaotic behaviors, can arise

depending on the surface geometry. This study provides a new perspective on the relationship

between surfaces and pattern dynamics and a basis for controlling pattern dynamics on surfaces.

I. INTRODUCTION

Pattern formation occurs at a wide range of scales in natural and engineered systems,

including nanoscale metal stripes, chemical waves, fish and animal skin, vegetation, and

atmospheric convection [1–8]. The stages in which pattern formation occurs are diverse

in terms of spatial dimensions and geometries, among which curved surfaces are common

and fundamental. In particular, biological systems are rich sources of pattern dynamics on

curved surfaces [9–15]. Recent developments in experimental techniques for measuring and

controlling curved surfaces have revealed the functional roles of curved surfaces in pattern

formation [16–18]. Bin/Amphiphysin/Rvs domain proteins sense the curvature of cellular

membranes and regulate the cellular shape [19, 20]. The distribution of the mechanosensitive

protein Piezo1 is regulated by membrane curvature [21]. Cellular migration is guided by the

curvature of a substrate and is called “curvotaxis” [22]. The thickness of a cellular sheet

depends on the curvature of the substrate [23].
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Several theoretical studies have revealed the effects of geometry and topology on pattern

formation and dynamics. Geodesic curvature causes the splitting [24], rectification [25], and

swirling [14, 26, 27] of excitable waves and variations in the wavefront speed [28–30]. It

also controls the position of the localization pattern [31, 32]. The rectification of propagat-

ing patterns by curved surfaces was also reported in the collective motion of self-propelled

particles [33]. For pattern dynamics described by polar and nematic variables, topological

defects are constrained by Poincaré–Hopf theorem on closed surfaces [34], and have been

investigated in liquid crystals [35, 36], flocking [37], and active nematics [38]. This restric-

tion plays a critical role in hydra regeneration, where singular points of cortical actin fibers

dictate the positional information of morphogenesis [15].

Turing patterns, a prominent example of pattern formation [39–42], have also attracted

much interest in their dynamics on curved surfaces; in fact, Turing himself studied the

pattern on a sphere to consider embryogenesis [39]. Since then, Turing patterns have been

studied on several curved surfaces [43–46]: spheres [39, 47–51], hemispheres [52, 53], tori [51,

54], ellipsoids [54, 55], and deformed axisymmetric cylinders and spheres [56]. These studies

have reported that the profile and position of a Turing pattern change to reflect the surface

shape. For example, Frank et al. studied pattern formation on a cylinder with a ridge, and

found that the stripe pattern position is modulated by the ridge, termed as “pinning” [56].

All these studies presumed that a Turing pattern, which is static on a flat plane, remains

static irrespective of the surface geometry.

We recently reported that a Turing pattern can no longer remain static on curved sur-

faces [57], indicating a new mechanism of pattern propagation caused by surface curvature,

i.e., a pattern that is static on a flat plane propagates on a curved surface. We primar-

ily studied patterns on axisymmetric surfaces, which enabled a tractable analysis. Linear

stability analysis indicates no sign of Hopf bifurcation, similar to the standard Turing in-

stability condition, and the growth rate near the uniform state is indistinguishable between

flat planes and curved surfaces (see Sec. II B). Thus, analysis incorporating nonlinearity is

required to understand the onset of such time-dependent dynamics. We performed numeri-

cal simulations and theoretical analyses based on the relationship between the propagation

velocity and the pattern profile (see Eq. (7) in Sec. II C) and revealed that the onset of

propagation is conditioned by symmetries of the surface and pattern. The helical pattern

propagates unless the surface is reflection-symmetric, whereas the parallel pattern is always

3



static (see Fig. 1). These results are generic and were confirmed by numerical simulations

of the Brusselator [58, 59] and Lengyel–Epstein [60, 61] models.

In this paper, we adopt an alternative analysis method to uncover the manner in which a

static pattern on a plane can propagate on a curved surface. Our previous analysis assumed

that patterns propagate at a constant velocity along the azimuthal direction and used the

relationship in Eq. (7). Instead, in this study, we consider the solution of the reaction-

diffusion equation (RDE) in the vicinity of the Turing bifurcation point and perform a weakly

nonlinear analysis. Near the bifurcation point, the amplitudes of the pattern profile are

small, which allows us to expand the pattern by the superposition of a few linear modes and

derive the amplitude equations [46, 59, 62–64]. The obtained amplitude equations indicate

that different mode-mode interactions occur depending on the symmetries of the surface

and pattern profile, resulting in either the onset or suppression of pattern propagation. This

analysis not only leads to consistent results as in [57], but further predicts that non-trivial

dynamics other than propagating patterns, including periodic and chaotic behaviors, can

appear on curved surfaces. These results are confirmed by numerical simulations.

This paper is organized as follows. Sec. II describes the setup of our problem, and sum-

marizes our previous results that the Turing pattern can propagate on a curved surface. In

Sec. III, the amplitude equations for the RDE on an axisymmetric surface are discussed.

Possible forms of amplitude equations depending on the surface and pattern symmetries are

determined. In Sec. IV, the correspondence between the steady-state solutions of the ampli-

tude equations and static and propagating patterns is discussed. In Sec. V, the amplitude

equations for the Brusselator model are derived and the discussions in the previous sections

are numerically confirmed. Sec. VI shows that surface curvature can cause diverse pattern

dynamics other than propagation, which is a summary of the joint paper [65]. Finally, the

results are summarized in Sec. VII.

II. MODEL AND PROPAGATING PATTERN

A. Model

We study reaction-diffusion systems on an axisymmetric surface represented by r =

(x, r(x) cos θ, r(x) sin θ) (Fig. 2(a)). The coordinates x and θ are defined as −2π ≤ x < 2π
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and 0 ≤ θ < 2π, respectively, and periodic boundary conditions are used for both axes

unless otherwise mentioned. We consider the general form of the RDE as follows:

∂tu = D∆u+R(u), (1)

where u is the vector representation of the chemical concentrations and a function of the

position on the surface (x, θ) and the time t, D is a diagonal matrix composed of the

diffusion coefficients, ∆ is the Laplace–Beltrami operator, and R(u) is the reaction term.

The Laplace–Beltrami operator ∆ characterizes the effect of the surface curvature on the

system [67]. In general, for a curved surface r = r(x1, x2) parameterized by the coordinates

(x1, x2), the Laplace–Beltrami operator ∆ for a scalar-field variable is determined by the

metric tensor gij = ∂ir · ∂jr, where we use the notation ∂i ≡ ∂/∂xi:

∆• =
1
√
g
∂i

(
√
ggij∂j •

)
, (2)

where, gij is the inverse of gij, g ≡ | det(gij)|, and we use the Einstein summation convention

for repeated indices. For an axisymmetric surface, gxx = 1 + r′2, gθθ = r2, gxθ = gθx = 0,

and
√
g = r

√
1 + r′2, where r′ ≡ dr(x)/dx. The Laplace–Beltrami operator is given by:

∆• =
1

r
√
1 + r′2

∂x

(
r√

1 + r′2
∂x •

)
+

1

r2
∂2θ • . (3)

We assume that Eq. (1) has a unique uniform steady solution, u0, that satisfies R(u0) = 0,

and the steady-state solution becomes unstable because of the Turing instability indicated

by the dispersion relation discussed below.

As a representative example, we use the Brusselator model given by

∂tu = Du∆u+ u2v − bu− u+ a ,

∂tv = Dv∆v − u2v + bu , (4)

where u(t, x, θ) and v(t, x, θ) represent the chemical concentrations at the position on the

surface (x, θ) and time t, Du and Dv are the diffusion coefficients of u and v, respectively,

and a and b are model parameters. The Brusselator model has a uniform steady solution,

u0 = (a, b/a)T , and, although it can show various spatiotemporal patterns including static

stripes, spiral propagation, and oscillatory patterns [66], in this study we selected parameter

sets such that the system exhibits a Turing pattern on a flat surface. For the numerical data

presented in this study, we verified that the pattern is static on a flat plane. The details of

the numerical simulation method are provided in Supplemental Text Sec. S1 [68].
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B. Linear stability analysis

Turing instability is characterized by the dispersion relation µ(λ), where λ is the eigen-

value of the Laplace–Beltrami operator. The dispersion relation µ(λ) is obtained by a linear

stability analysis at the uniform state u = u0, as an eigenvalue of the linear operator

L = D∆+ ∂uR(u0) , (5)

where ∂uR(u0) denotes the Jacobian matrix of R(u) at u = u0. The eigenfunctions of

L are represented by Uλ,k(x, θ) = AλWλ,k(x, θ), with the Laplace–Beltrami eigenfunction

Wλ,k(x, θ) defined by ∆Wλ,k = −λWλ,k. For flat surfaces, λ coincides with the square of

the wavenumber. For an axisymmetric surface, Wλ,k can be factored into Wλ,k(x, θ) =

Xλ,k(x)e
ikθ, where k is the wavenumber along the θ-direction and is an integer. Xλ,k(x) is a

function of x ∈ [−2π, 2π) and is the solution to the following equation:

r√
1 + r′2

∂x

(
r√

1 + r′2
∂xXλ,k

)
+
(
λr2 − k2

)
Xλ,k = 0 , (6)

under the periodic boundary condition. Note that the eigenvalue λ is a nonnegative real

number (λ ∈ R+
0 ), which is a general feature of the Laplace–Beltrami operator. In addition,

the eigenvalues are discretized for a closed surface with a finite area. The eigenvalues are

degenerate two-fold for k ̸= 0, for which Wλ,k(x, θ) and Wλ,−k(x, θ) are pairwise eigenfunc-

tions that correspond to the anti-phase shift along the θ-axis. Vector Aλ is the eigenvector

of the matrix −λD+∂uR(u0), where LUλ,k = µ(λ)Uλ,k is satisfied. The dispersion relation

µ(λ) represents the growth rate of a mode characterized by λ. For Turing instability, µ(λ)

takes real positive values within a finite range of λ, and the corresponding eigenvector Aλ is

a real-valued vector. Note that the dispersion relation µ(λ), and thus the Turing condition,

is the same for any surface.

C. Pattern propagation on axisymmetric surface

By setting the parameters in the Brusselator model to (a, b,Du, Dv) = (2.0, 4.5, 0.5, 1.8),

we obtain the dispersion relation shown in Fig. 2(b). In the numerical simulation of the

RDE, the initial small fluctuation around the uniform solution u0 grows and the chemical

concentration eventually forms a spatially periodic pattern (i.e., the Turing pattern). The

pattern is static on a plane (Fig. 2(c)), whereas it propagates on an axisymmetric surface, as
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shown in Fig. 2(d). Futhermore, the propagation is observed when the Neumann boundary

condition is employed (Fig. S1 [68]).

The velocity of the pattern is related to the pattern profile and surface shape. Assuming

a traveling wave solution u(x, ρ) with ρ = θ− ωt, the angular velocity ω along the θ-axis is

obtained by the following equation:

ω = − ⟨∂ρu,R⟩
⟨∂ρu, ∂ρu⟩

, (7)

where the inner product is defined by

⟨Φ(x1, x2),Ψ(x1, x2)⟩ ≡
∫
dS Φ†(x1, x2)Ψ(x1, x2) , (8)

with the area element dS =
√
gdx1dx2, and Φ† denoting the Hermitian adjoint vector of Φ.

In our previous study [57], we used Eq. (7) to reveal the relationship between pattern

propagation and the symmetry of patterns and surfaces, as summarized in Fig. 1. The

analysis therefore largely depended on the assumption that the pattern propagates at con-

stant speed. Note also that we primarily studied axisymmetric surfaces with 2π-periodicity

along the x-axis; in this study, we will show that the loss of the 2π-periodicity results in the

propagation of the parallel pattern.

III. AMPLITUDE EQUATION AND SYMMETRY OF SYSTEM

A. Mode decomposition of the pattern dynamics

We analyze the propagating pattern on an axisymmetric surface by expanding the pattern

using eigenfunctions of the linear operator in a uniform state, Uλ,k(x, θ) = AλWλ,k(x, θ).

If the pattern is not significantly far from the bifurcation point of the Turing instability,

where the uniform solution u0 becomes unstable, the pattern profile can be approximated

by a linear combination of a few eigenfunctions Uλ,k. We evaluate the expansion coefficients

by numerically calculating the inner product between the eigenfunction Uλ,k(x, θ) and the

propagating pattern U (t, x, θ) ≡ u(t, x, θ)− u0.

This expansion was applied to the numerically obtained Brusselator patterns (see Figs. 3

and S2–S4 [68]). The helical propagating pattern shown in Figs. 3(a) and (b) is well approx-

imated by two pairwise eigenfunctions with the same wavenumber, k = 2. Fig. 3(c) shows
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the main part of the expansion:

U∗(t, x, θ) = C1(t)Uλ1,k(x, θ) + C2(t)Uλ2,k(x, θ) (9)

+ C̄1(t)Uλ1,−k(x, θ) + C̄2(t)Uλ2,−k(x, θ) .

This closely approximates the original patterns U = u(t, x, θ) − a and V = v(t, x, θ) − b/a.

Here, the complex coefficients C1 and C2 represent the amplitudes and phases of the cor-

responding modes, which are given by |Ci| and Θi = tan−1
(
Im(Ci)/Re(Ci)

)
, respectively.

C̄ indicates the complex conjugate of C. As u(t, x, θ) is a real function, the coefficients of

the pairwise eigenfunction are complex conjugates. Notably, a single pair of eigenfunctions,

Wλ,±k(x, θ) = Xλ,±k(x)e
±ikθ, is insufficient to express the helical pattern; at least two pairs

of eigenfunctions are required. In the present example, the two eigenvalues are indicated by

the colored dots in the dispersion relation shown in Fig. 3(d), and the corresponding eigen-

modes are shown in Fig. 3(e). As the pattern propagates along the θ-axis, the coefficients

of these modes, C1 and C2, oscillate periodically with constant amplitudes |C1| and |C2|,

respectively, and with the same frequency kω, where ω is the angular velocity of the pattern

propagation (Figs. 3(f) and (g)). Thus, Eq. (9) can be expressed as

U∗(t, x, θ) = 2
(
|C1|Aλ1X1 cos(k(θ − ωt) + θ1)

+ |C2|Aλ2X2 cos(k(θ − ωt) + θ2)
)
, (10)

where θ1 and θ2 denote, respectively, the phases of C1 and C2 at t = 0. This expression

indicates that the pattern propagates with a constant shape and velocity.

The static patterns are also well approximated by two pairwise eigenfunctions with the

same wavenumber k, where C1 and C2 are constants (Figs. S2–S4 [68]). Overall, these

results indicate that the time evolution of the propagating pattern can be described by the

coefficients Ci(t) for a few modes.

B. Amplitude equations for axisymmetric surfaces

Based on the observations earlier, we approximate a pattern on a surface using two pairs

of eigenfunctions with the same wavenumber k in the θ-direction as

U(t, x, θ) = C1Aλ1Wλ1,k + C2Aλ2Wλ2,k + c.c. , (11)
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where c.c. indicates the complex conjugate of the former terms, and the coefficients C1(t)

and C2(t) are functions of time t. We explore amplitude equations that describe the pattern

dynamics on an axisymmetric curved surface.

∂tC1 = H1(C1, C2) , (12)

∂tC2 = H2(C1, C2) . (13)

We mainly consider the situation in which two pairs of real eigenfunctions with the same

k, namely Aλ1Wλ1,k and Aλ2Wλ1,k, are relevant. This situation meets the aforementioned

helical pattern and other cases (see Supplemental Text Sec. S4 for cases in which the two

modes have different wavenumbers k1 and k2 [68]). In the vicinity of the Turing bifurcation

point, the amplitudes of these modes, |C1| and |C2|, are both expected to be small, and the

right-hand sides of the amplitude equations, H1(C1, C2) and H2(C1, C2) , can be expanded

with respect to C1 and C2 [63]. The symmetries inherent in the system impose strong

restrictions on the possible forms of the amplitude equations, as investigated in this section.

The amplitude equations can also be derived from the original RDE using methods such as

the reductive perturbation method [64]; we will carry out the derivation for the Brusselator

model in Sec. V.

1. Amplitude equations for general axisymmetric surfaces

For an axisymmetric surface, the RDE is invariant about the translation by arbitrary pθ

along the θ-direction, Tθ, and the reflection about the θ-direction, Mθ:

Tθ : θ 7→ θ + pθ,
∀pθ ∈ R , (14)

Mθ : θ 7→ −θ . (15)

The actions of the transformations Tθ and Mθ on a pattern (see Eq. (11)) can be recast

because their actions on the amplitudes are as follows:

Tθ : (C1, C2) 7→ (C1e
−ikpθ , C2e

−ikpθ) , (16)

Mθ : (C1, C2) 7→ (C̄1, C̄2) . (17)

The amplitude equations, which are the reduction equations of RDE, should also be invariant

to these transformations. Thus, the general form of the amplitude equations up to the third-

9



order expansion of Ci is given by

∂tC1 = a1C1 + a2|C1|2C1 + a3|C2|2C2 + a4|C1|2C2

+ a5|C2|2C1 + a6C
2
1 C̄2 + a7C

2
2 C̄1 , (18)

∂tC2 = b1C2 + b2|C1|2C1 + b3|C2|2C2 + b4|C1|2C2

+ b5|C2|2C1 + b6C
2
1 C̄2 + b7C

2
2 C̄1 , (19)

where the coefficients aj and bj are real values owing to the invariance of the transformation

Mθ. The second-order terms do not appear in the equations. The coefficients a1 and b1

coincide with growth rates µ(λ1) and µ(λ2), respectively. The other coefficients are not

determined solely by the discussion of symmetries given here. Below, we assume that the

coefficients are chosen such that the solution does not diverge; otherwise, higher-order terms

are required to prevent divergence.

Using the complex variables C1 and C2 as C1 = ηeiϕ, C2 = ξeiψ, the pattern profile in

Eq. (11) can be written as

U(t, x, θ) = 2ηAλ1Xλ1,k cos(kθ + ϕ)

+ 2ξAλ2Xλ2,k cos(kθ + ψ) , (20)

where the amplitudes, η and ξ, and phase variables, ϕ and ψ, are real-valued functions of

time t. The amplitude equations can be rewritten as follows:

∂tη =
(
a1 + a2η

2 + a5ξ
2
)
η + a7ηξ

2 cos(2α)

+
(
a3ξ

2 + (a4 + a6)η
2
)
ξ cos(α) , (21)

∂tξ =
(
b1 + b3ξ

2 + b4η
2
)
ξ + b6η

2ξ cos(2α)

+
(
b2η

2 + (b5 + b7)ξ
2
)
η cos(α) , (22)

ηξ∂tα = −
(
a3ξ

4 + (a4 − a6 + b5 − b7)η
2ξ2 + b2η

4

+ 2(a7ξ
2 + b6η

2)ηξ cos(α)
)
sin(α) , (23)

where we introduce the phase difference α ≡ ϕ − ψ. These equations are closed in three

variables, η, ξ, and α, because the system is invariant for translation along the θ-axis. Note

also that they are invariant under the transformation α → −α because the system has

reflection-symmetry along the θ-axis. The phase variables ϕ and ψ evolve according to the
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following equations:

η∂tϕ = −ξ((a4 − a6)η
2 + a3ξ

2) sin(α)

− a7ηξ
2 sin(2α), (24)

ξ∂tψ = +η(b2η
2 + (b5 − b7)ξ

2) sin(α)

+ b6η
2ξ sin(2α). (25)

Eqs. (21)–(23), supplemented by Eqs. (24) and (25), constitute the general form of the

amplitude equations for pattern dynamics on an axisymmetric surface. Note that the derived

amplitude equations Eqs. (18) and (19) are also valid for non-Turing systems as long as the

system satisfies similar conditions such as invariance to the transformations Eqs. (14) and

(15).

2. Amplitude equations for reflection-symmetric surfaces

An axisymmetric surface can have additional symmetries. Here, we consider the case in

which the surface is reflection-symmetric about the x-axis, satisfying r(x) = r(−x), where

the origin of the x-axis can be arbitrary because of the periodic boundary condition. For

such a surface, RDE is invariant under the reflection about the x-direction, Mx:

Mx : x 7→ −x . (26)

The eigenfunctions of the Laplace–Beltrami operator Xλ,k(x) are either even or odd with

respect to x. The action of the reflection Mx on Ci is dependent on the parity of Xλi,k(x)

and acts as

Mx : Ci 7→

 +Ci if Xλi,k is an even function ,

−Ci if Xλi,k is an odd function .
(27)

When Xλ1,k(x) and Xλ2,k(x) are both even or odd functions, the amplitude equations are

the same as those in the general case of Eqs. (18) and (19). However, when Xλ1,k(x) and

Xλ2,k(x) are a combination of even and odd functions, the amplitude equations are reduced

to

∂tC1 = a1C1 + a2|C1|2C1 + a5|C2|2C1 + a7C
2
2 C̄1 , (28)

∂tC2 = b1C2 + b3|C2|2C2 + b4|C1|2C2 + b6C
2
1 C̄2 , (29)
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corresponding to the case a3 = a4 = a6 = 0 and b2 = b5 = b7 = 0 in Eqs. (18) and (19). The

amplitude and phase variables obey

∂tη =
(
a1 + a2η

2 + a5ξ
2
)
η + a7ηξ

2 cos(2α) , (30)

∂tξ =
(
b1 + b3ξ

2 + b4η
2
)
ξ + b6η

2ξ cos(2α) , (31)

∂tα = −(a7ξ
2 + b6η

2) sin(2α) , (32)

and

∂tϕ = −a7ξ2 sin(2α) , (33)

∂tψ = +b6η
2 sin(2α) . (34)

3. Amplitude equations for 2π-periodic surface along the x-axis

The axisymmetric surface can be periodic along the x-axis, satisfying r(x) = r(x + px),

where px is a constant smaller than the axial length of the surface. Here, we consider a

simple case in which the surface is 2π-periodic (as in our previous study [57]), satisfying

r(x) = r(x+ 2π), and the domain of x is defined as −2π ≤ x < 2π. For such a surface, the

RDE is invariant to the 2π-translation along the x-axis and Tx,2π is defined as

Tx,2π : x 7→ x+ 2π , (35)

and reflection about the θ-direction, Mθ. According to Bloch’s theorem [71], the eigenfunc-

tions of the Laplace–Beltrami operator Xλ,k(x) either change sign or remain unchanged by

the action of Tx,2π.

Xλ,k(x+ 2π) = ±Xλ,k(x). (36)

The action of 2π-translation Tx,2π on Ci act as

Tx,2π : Ci 7→

 +Ci if Xλi,k(x+ 2π) = +Xλi,k(x),

−Ci if Xλi,k(x+ 2π) = −Xλi,k(x)
(37)

When Xλ1,k(x) and Xλ2,k(x) both undergo the same transformation by Tx,2π, the amplitude

equations are the same as those in the general case of Eqs. (18) and (19). Conversely, when

Xλ1,k(x) and Xλ2,k(x) undergo transformations of different signs by Tx,2π, the amplitude

equations are the same as those on the reflection-symmetric surface in Eqs. (28) and (29).
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4. Patterns consisting of single paired modes

The patterns can be dominated by only a single paired mode, as exemplified in Fig. 4,

where the amplitudes of the other modes decrease.

U = CAλXλ,ke
ikθ + c.c. . (38)

The pattern is always reflection-symmetric around the θ-axis as U(x, θ) = U(x,−θ) where

the origin of the θ-axis is properly chosen. Based on the invariance by the transformations

Tθ and Mθ, the amplitude equation is given by

∂tC = a1C + a2|C|2C , (39)

where a1 coincides with the growth rate µ(λ) and a2 is supposed to be a negative real value.

With C = ηeiϕ, we obtain:

∂tη = a1η + a2η
3 , (40)

∂tϕ = 0 . (41)

These equations indicate that the pattern does not exhibit propagation.

5. Patterns on a flat surface

Summarizing the analysis for the flat surface case is helpful. On the xy-plane, the pattern

can be expanded by using the Fourier mode ei(kxx+kyy). The stripe pattern resulting from

Turing instability (Fig. 2) comprises at most two paired modes and is approximated by

U = (C1e
i(kxx+kyy) + C2e

i(kxx−kyy))A+ c.c. . (42)

The amplitude equations are derived by considering that the plane is invariant to translations

and reflections:

∂tC1 = a1C1 + a2|C1|2C1 + a5|C2|2C1 , (43)

∂tC2 = b1C2 + b3|C2|2C2 + b4|C1|2C2 . (44)

Then, amplitudes and phases obey

∂tη = a1η + a2η
3 + a5ηξ

2 , (45)

∂tξ = b1ξ + b2ξ
3 + b4η

2ξ , (46)

∂tϕ = ∂tψ = 0 , (47)
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and pattern propagation is not possible. In the case of a plane, coupling with higher-order

harmonic modes such as eikxx and ei2kxx can result in propagating waves, even in a one-

dimensional (1D) system [63]. We ignore such situations because they generally occur far

from the Turing bifurcation point and depend on the specific nature of the system, such as

domain size (see Supplemental Text Sec. S4 [68]).

IV. STEADY-STATE SOLUTIONS OF AMPLITUDE EQUATIONS

Here, we investigate the steady-state solutions of the amplitude equations derived in the

preceding section: (η, ξ, α) = (η0, ξ0, α0). For the given solution, the symmetries of the

corresponding patterns and phase velocities ∂tϕ, ∂tψ are determined. As a pattern of single

paired modes cannot propagate (see Eq. (41)), we consider the case in which two pairs of

modes are relevant and η0 and ξ0 are assumed to be non-zero.

A. Steady-state solutions of Eqs. (30)–(32)

The amplitude equations (30)–(32) are obtained for the reflection-symmetric surface with

eigenfunctions that have different parities as X1(−x) = X1(x) and X2(−x) = −X2(x)

(Sec. III B 2), or for a 2π-periodic surface with eigenfunctions that transform differently as

X1(x+ 2π) = X1(x) and X2(x+ 2π) = −X2(x) (Sec. III B 3). In the steady-state, either of

the following relationships should hold from Eq. (32):

α0 =
nπ

2
, n ∈ Z , (48)

a7ξ
2
0 + b6η

2
0 = 0 . (49)

For the solution α0 = nπ/2 (Eq. (48)), the phase equations in Eqs. (33) and (34) satisfy

∂tϕ = ∂tψ = 0, indicating that this solution represents a static pattern. The profile of the

pattern is expressed as

U(x, θ̂) = 2η0Aλ1Xλ1,k(x) cos
(
θ̂
)
+ 2ξ0Aλ2Xλ2,k(x) cos

(
θ̂ − α0

)
(50)

=

2η0Aλ1Xλ1,k(x) cos
(
θ̂
)
+ 2(−1)n−1ξ0Aλ2Xλ2,k(x) cos

(
θ̂
)

if α0 = nπ

2η0Aλ1Xλ1,k(x) cos
(
θ̂
)
+ 2(−1)n−1ξ0Aλ2Xλ2,k(x) sin

(
θ̂
)

if α0 = (n+ 1/2)π

(51)
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where θ̂ = kθ+ϕ0 and ϕ0 is a constant determined by the initial condition. When α0 = nπ,

the pattern is reflection-symmetric along the θ-axis, satisfying U(x, θ̂) = U(x,−θ̂). Fig. 5(a)

shows an example of a 2π-periodic surface, where we set r(x) = 2 + 0.3 cos(x) + 0.2 sin(x).

In the other case, α0 = (n+1/2)π, the pattern symmetry depends on the surface symmetry.

On reflection-symmetric surfaces, the pattern is inversion-symmetric, satisfying U(x, θ̂) =

U(−x,−θ̂). On 2π-periodic surfaces, the pattern is invariant against the simultaneous

transformation of reflection about the θ-axis and 2π-translation along the x-axis, satisfying

U(x, θ̂) = U(x+2π,−θ̂). Fig. 5(b) shows an example of the case on a reflection-symmetric

surface (r(x) = 2.2 + 0.2 cos(x) + 0.4 cos(x/2)).

For the steady-state solution given by Eq. (49), the phase velocities ∂tϕ and ∂tψ are

generally non-zero and constant (∂tϕ = ∂tψ ̸= 0), indicating a propagating pattern. The

pattern shows neither reflection- nor inversion- symmetry because of the superposition of

the two paired modes in α0 ̸= nπ/2. This non-trivial solution was omitted in the previous

approach [57]. Fig. 5(c) shows an example of a propagating pattern on a 2π-periodic surface

(r(x) = 1.9 + 0.21 cos(x) + 0.06 sin(2x)). This non-trivial solution is absent on a flat-plane

where b6 = a7 = 0 (see Eqs. (43) and (44)).

B. Steady-state solutions of Eqs. (21)–(23)

Next, we consider the steady-state solutions of the general amplitude equations given by

Eqs. (21)–(23). The equations are obtained for a general axisymmetric surface (Sec. III B 1),

for cases in which X1(x) and X2(x) are both even or odd functions on a reflection-symmetric

surface (Sec. III B 2), or when X1(x) and X2(x) are transformed with the same sign by 2π-

translation along the x-axis on a 2π-periodic surface (Sec. III B 3). In the steady-state,

Eq. (23) yields to either of the following solutions:

α0 = nπ, n ∈ Z, (52)

cosα0 = −a3ξ
4
0 + (a4 − a6 + b5 − b7)η

2
0ξ

2
0 + b2η

4
0

2(a7ξ20 + b6η20)η0ξ0
, (53)

a3ξ
4
0 + (a4 − a6 + b5 − b7)η

2
0ξ

2
0 + b2η

4
0 = 0

with a7ξ
2
0 + b6η

2
0 = 0 . (54)

From Eqs. (24) and (25), the first solution α0 = nπ represents a static pattern whereas the

others represent propagating patterns. Note that at a3 = a4 = a6 = b2 = b5 = b7 = 0, the
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solutions Eqs. (53) and (54) coincide with the solutions α0 = (n+1/2)π included in Eq. (48)

and Eq. (49), respectively.

For the solution α0 = nπ, the static pattern takes the form of the first line of Eq. (51)

and is reflection-symmetric about the θ-axis. The pattern has an additional symmetry de-

pending on the surface symmetry and combination of eigenfunctions. When both X1(x)

and X2(x) are even functions on the reflection-symmetric surface, the pattern has symmetry

U(x, θ̂) = U(x,−θ̂) = U(−x, θ̂) = U(−x,−θ̂), while when both are odd, it has the symme-

try U(x, θ̂) = U(x,−θ̂) = U(−x, θ̂ + π) = U(−x,−θ̂ + π). An example of the latter static

pattern is shown in Fig. 6(a) (r(x) = 1.95 + 0.21 cos(x) − 0.06 cos(2x) + 0.015 cos(x/2)).

On a 2π-periodic surface, when X1(x + 2π) = X1(x) and X2(x + 2π) = X2(x + 2π), the

pattern has the symmetry U(x, θ̂) = U(x,−θ̂) = U(x + 2π, θ̂) = U(x + 2π,−θ̂), while

when X1(x + 2π) = −X1(x) and X2(x + 2π) = −X2(x + 2π), it has U (x, θ̂) = U(x,−θ̂) =

U(x+ 2π, θ̂ + π) = U(x+ 2π,−θ̂ + π). An example of the latter static pattern is shown in

Fig. 6(b) (r(x) = 1.8 + 0.15 cos(x) + 0.09 cos(2x)).

For other solutions, Eqs. (53) and (54), α0 takes a non-trivial value, and the corresponding

propagating patterns have no symmetry. Fig. 6(c) presents an example for the solution of

Eq. (53) on a general axisymmetric surface (r(x) = 2.2 + 0.2 cos(x) + 0.4 cos(x/2− π/4)).

Regarding the solution Eq. (54), the parameters are required to satisfy additional conditions,

such as a3b
2
6 + b2a

2
7 − a7b6(a4 − a6 + b5 − b7) = 0, which are unlikely to be achieved.

C. Classification of parallel and helical patterns by steady-state solution of am-

plitude equations

The dynamics of the parallel and helical patterns (Fig. 1) can be understood using the

steady-state solutions discussed above. On a 2π-periodic surface along the x-axis, paral-

lel patterns are static, whereas helical patterns are static only on a reflection-symmetric

surface (Fig. 7 (a)–(c)). These patterns correspond to the steady-state solution α0 = π/2

in Eq. (48), each consisting of eigenfunctions with characteristic symmetry; for instance,

the helical pattern on a reflection-symmetric surface is composed of eigenfunctions with

X1(x) = X1(−x) = X1(x + 2π) and X2(x) = −X2(−x) = X2(x + 2π). The helical pat-

tern begins to move because of the loss of reflection-symmetry [57], which corresponds to

the steady-state solution in Eq. (53) of the amplitude equations in Eqs. (21)–(23), where
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X1(x) = X1(x+ 2π), X2(x) = −X2(x+ 2π) and the phase difference α0 ̸= nπ (Fig. 7(d)).

The parallel static pattern on a 2π-periodic surface along the x-axis satisfies X1(x) =

X1(x + 2π) and X2(x) = −X2(x + 2π). Because of the loss of the 2π-periodicity of the

surface, these relationships no longer hold, and the solution of the amplitude equations

becomes Eq. (48), indicating the onset of a propagating wave in a parallel pattern. A

numerical example is shown in Fig. 8.

D. Summary of amplitude equations and steady-state solutions

We derived the amplitude equations (18) and (19) for a general axisymmetric surface on

which two pairs of modes couple with each other, and the static and propagating patterns

correspond to the steady solutions of the amplitude equations. Some coupling terms are

eliminated because of the symmetry of the surface (see Eqs. (28) and (29)), which suppresses

pattern propagation. The propagation of helical and parallel patterns is caused by the loss

of reflection-symmetry and 2π-periodicity, respectively, of the surface along the x-axis. For

a flat surface, the amplitude equations are reduced to Eqs. (43) and (44), and the pattern is

always static. The relationships obtained for the pattern dynamics and the symmetry of the

surface and pattern are consistent with those reported in a previous study [57]. In addition,

from the amplitude equations, we obtained a non-trivial solution (Eq. (49)) for which the

pattern generally has no specific symmetry and propagates. This solution allows the Turing

pattern to propagate even on highly symmetric surfaces. A propagating pattern on a sphere

was observed in numerical simulation [57].

V. AMPLITUDE EQUATION FOR THE BRUSSELATOR MODEL

A. Reductive perturbation method

The amplitude equations for RDE on axisymmetric curved surfaces can be derived by

applying the reductive perturbation method to reaction-diffusion systems in the vicinity

of the Turing bifurcation. Consider the general RDE expressed in Eq. (1), for which we

explicitly include a bifurcation parameter ν in the reaction term as R(u, ν). As before, we

assume that the equation has a unique uniform steady solution, u0, satisfying R(u0, ν) = 0.

The uniform solution becomes unstable for ν > 0, and a Turing pattern occurs.
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In the vicinity of the Turing bifurcation at a positive, sufficiently small value of ν, the

amplitude of the pattern, |U | ≡ |u− u0|, is expected to be small, and expanding the RDE

by U and ν is feasible. The amplitude equations can then be derived from the RDE; see

the details of the derivation in Supplemental Text Sec. S2 [68]. In summary, the pattern

dynamics of the RDE are approximated by a lower-order expansion with respect to ν and

amplitude Ci, and the pattern dynamics are dominated by the time evolution of Ci:

U(t) = U0({Ci(t)}) + ρ({Ci(t)}) , (55)

∂tCi(t) = Hi({Ci(t)}) , (56)

where U0 and ρ are the first- and higher-order terms in the amplitudes, respectively, and

the second equation is referred to as the amplitude equation. These are derived in Eq. (S41)

and in Eq. (S42), respectively. The obtained equation (S42) not only validates Eqs. (18)

and (19), which are derived as a general form of the amplitude equations, but also deter-

mines their coefficients. The simpler forms of amplitude equations (28) and (29) can be

understood as follows. As shown in Eqs. (S44)–(S49), the coefficients include integrals of

the products of the Laplace–Beltrami eigenfunctions Xλi,k. For example, if the surface is

reflection-symmetric about the x-axis and X1(x) and X2(x) are a pair of even and odd

functions, some coefficients are equal to zero owing to the combination of the parity of the

eigenfunctions in the integrands, and Eq. (S42) coincides with Eqs. (28) and (29).

B. Derivation of Amplitude equation for Brusselator model

We derive the amplitude equations for the Brusselator model in Eqs. (18) and (19) follow-

ing the general procedure described in Supplemental Text Sec. S2 [68]. We choose the bifur-

cation parameter ν = b− b0, where the reference parameters of the reductive perturbation,

(a, b0, Du, Dv), are set such that the growth rates at the two Laplace–Beltrami eigenvalues,

µ(λ1) and µ(λ2), both become zero. For positive ν, the pattern can be approximated as

U = C1(t)Aλ1Wλ1,k + C2(t)Aλ2Wλ2,k + c.c. , (57)

where Aλ1 and Aλ2 are eigenvectors of the linear operator:

L0 =

−λiDu + b0 − 1 a2

−b0 −λiDv − a2

 . (58)
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Here, λi (i = 1, 2) are the eigenvalues of the Laplace–Beltrami operator for Wλi,k and are

determined from the surface shape. The eigenvalues λi and parameters (a, b0, Du, Dv) satisfy

the relation explained in Supplemental Text Sec. S3 [68]. The eigenvectors Aλi and their

conjugate vectors Bλi are expressed by Eqs. (S52) and (S53), respectively. The coefficients

of the amplitude equations are then calculated using the products of Aλi and Bλi , and the

integral with respect to Xλi,k. For more details, see Supplemental Text Sec. S3 [68].

C. Comparison between Brusselator model and amplitude equations

We numerically solve the amplitude equations derived earlier, and we compare the solu-

tion with that of the Brusselator model. In particular, we explore the steady-state solution

of the amplitude equations, which corresponds to either a static or propagating pattern,

and confirm the claims given in Sec. IV. Dynamics other than the static and propagating

patterns are discussed in the next section.

1. Comparison procedure

The amplitude equations were derived using the following procedure. First, we fixed

the surface and selected two pairs of Laplace–Beltrami eigenvalues, λ1 and λ2, that were

adjacent in the spectral space, and then determined the corresponding eigenfunctions,W1,±k

and W2,±k. These were chosen to have the same wavenumber k. Next, we set the diffusion

coefficients Du and Dv and then determined the model parameters a and b0 to satisfy the

determinant of L0 to zero (see Eqs. (S58) and (S59)). Subsequently, we set the bifurcation

parameter ν(= b − b0), which was chosen to be sufficiently small and of the order of 10−2.

The parameters were chosen so that the system would exhibit Turing instability, where the

growth rates µ(λ1) and µ(λ2) were real and positive values. Finally, we determined the

coefficients of the amplitude equations, aj and bj (j = 1, 2, . . . , 7), from Eqs. (S43)–(S49),

and performed numerical simulations. We also numerically solved the Brusselator model

(the original system) using the same surface and parameters.

We compared the solutions obtained from the amplitude equations and the Brusselater

model in the phase space of η, ξ and phase differences α. For the Brusselator model, (η, ξ, α)

was obtained by taking the inner product between the patternU and eigenvectorsBλ1Wλ1,±k

19



and Bλ2Wλ2,±k, where U(t, x, θ) = U0(t, x, θ) +O(|ν|) and

U0(t, x, θ) = η(t)eiϕ(t)Aλ1Wλ1,k(x, θ)

+ ξ(t)eiψ(t)Aλ2Wλ2,k(x, θ) + c.c. , (59)

where Aλ1 and Aλ2 are the same as the eigenvectors in the amplitude equations.

2. Comparison of static and propagating patterns

The results of the numerical simulations for the amplitude equations and Brusselator

model are summarized in Fig. 9, in which the blue and orange points represent the steady

solutions (η0, ξ0, α0) of the amplitude equations and Bursselator model, respectively. Pat-

terns on axisymmetric surfaces and their projection onto the x-θ plane are also shown,

where the left panels show the amplitude equations and the right panels show the Brusse-

lator model. The coefficients of the amplitude equations are summarized in Supplemental

Table S1 [68].

Figs. 9(a) and (b) show static patterns of the steady solutions. For Fig. 9(a), helical

static patterns on the reflection-symmetric and 2π-periodic surface are obtained through the

direct simulation of the Brusselator model, while the constructed pattern from the amplitude

equations exhibits a similar static pattern with phase difference α0 = π/2. For Fig. 9(b),

which employs the same parameter set as that in Fig. 6(a), the orbit of the amplitude

equations reach a solution similar to that of the corresponding Brusselator model, with

phase difference α0 = 0.

Figs. 9(c) and (d) show propagating patterns with phase differences α0 ̸= nπ/2, respec-

tively. For Fig. 9(c), the helical propagating pattern is constructed from the amplitude

equations for a surface without reflection-symmetry. α0 slightly deviates from π/2 and the

pattern is propagating (see also Fig. 10(c)). The patterns and dynamics obtained from the

amplitude equations and Brusselator model are in close agreement. For Fig. 9(d), the pa-

rameters in Fig. 5(c) are used, where the phase difference is given by the non-trivial solution

Eq. (49). We found that pattern dynamics constructed by the amplitude equations are sim-

ilar to those of the original Brusselator model, indicating that the amplitude equations can

capture the non-trivial propagating solution.
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3. Approximation accuracy against bifurcation parameter

The approximation accuracy against the bifurcation parameters of the helical propagating

pattern was evaluated. Under the same conditions as those shown in Fig. 9(c), the bifurcation

parameter ν was changed from 0.01 to 0.1 in steps of 0.01, resulting in the observation

of similar helical patterns. The patterns obtained from the amplitude equations closely

approximated those of the Brusselator model, as shown in Figs. 10(a), (b), and (c), in which

the amplitudes η and ξ and the phase difference α of amplitude equations and the original

Brusselator model are in close agreement. Figs. 10(a) and (b) confirm that the leading

order of the amplitudes is O(|ν|3/2), which is assumed to derive the amplitude equations

(Supplemental Text Sec. S2 [68]). The velocities obtained from the amplitude equations and

the original Brusselator model are in close agreement (with difference O(ν3)), and converge

as the bifurcation parameter ν approaches zero (Fig. 10(d)). Consequently, the numerical

simulations confirm that the amplitude equations provide a reasonable approximation of the

Brusselator model.

VI. PATTERN DYNAMICS OTHER THAN PROPAGATION

In Sec. III and Sec. V, we derived the amplitude equations for an axisymmetric surface and

investigated the steady-state solutions corresponding to the static and propagating patterns.

The generic form of the derived equations (Eqs. (18) and (19)) allows us to further explore

the possible dynamics, other than propagation, of the RDE on general axisymmetric surfaces;

the pattern dynamics are explored by numerically searching for non-stationary solutions of

the amplitude equations. In the joint paper [65], we discuss this issue in detail; this section

provides a summary of the results. As explained below, our results indicate that the Turing

pattern can exhibit oscillatory and chaotic behaviors on curved surfaces.

A. Limit cycle solution and pattern dynamics

We explored the possible pattern dynamics on curved surfaces by conducting numeri-

cal searches for amplitude equations (18) and (19). By changing the surface and model

parameters of the Brusselator model, the corresponding amplitude equations were derived

and numerically solved. For a given parameter set, the derivation of the amplitude equa-
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tions is the same as that described in Sec. VC, where we used the surface r(x) = d +∑N
n=1 (sn sin(nx) + cn cos(nx)) with x ∈ [0, 2π) and N = 5. For an efficient search, the

range of the x-axis was narrowed.

The surface shape and dispersion relations with parameters (a, b0, Du, Dv) = (1.5, 2.97, 0.5, 2.2),

ν = 0.02, d = 1, s2 = 0.15, s3 = 0.4 and other surface parameters set to zero are shown

in Fig. 11(a) and (b), respectively. We found that the amplitude equations have a limit

cycle solution, as represented by the blue line in Fig. 11(c) (see Supplemental Table S1 for

the coefficients of the amplitude equations [68]). The corresponding pattern exhibits prop-

agation accompanied by oscillations, as shown in Fig. 11(d) left column. The bifurcation

analysis suggests that the oscillatory pattern dynamics appear via Hopf bifurcation from

the propagating pattern [65]. We also validated that the original Brusselator model yields

similar dynamics (Fig.11(c) orange line and (d) right column). On a flat surface, the pattern

remains static as an ordinary Turing pattern. This example demonstrates that the Turing

pattern can exhibit more complex dynamics than propagation depending on the surface

geometry.

B. Chaotic dynamics in amplitude equations

We also searched for complex dynamics by changing the coefficients aj and bj (j =

2, 3, . . . , 7) as arbitrarily selectable parameters, with a1 and b1 chosen as real positive val-

ues to satisfy the condition of Turing instability. Note that, although this method does not

identify the corresponding Brusselator model because of the difficulty in determining surface

and model parameters from the coefficients, it allows for a general and efficient investigation

of what pattern dynamics are possible. In addition to the limit cycle solution, we observed

chaotic dynamics, as shown in Fig. 12. The appearance of the chaotic dynamics can be

understood in terms of period-doubling bifurcation against parameter b3 (Fig. 12(b)). The

other coefficients of the amplitude equations are listed in Supplemental Table S1 [68]. The

existence of such a chaotic solution in the amplitude equations suggests that rich and com-

plex dynamics are possible depending on the geometry of the surface shape. However, the

corresponding patterns have not yet been obtained for the Brusselator model on axisym-

metric surfaces.

As the search using the amplitude equations is limited to the region near the Turing bifur-
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cation point on axisymmetric surfaces, we examined the Brusselator model under broader

conditions. We found an example of chaotic pattern dynamics on a deformed spherical

surface, as shown in Fig. 13(a) and [65]. The surface is not axisymmetric and given by

a radial function R(θ, ϕ) = d + k(cos(2θ) − 1) cos(θ) cos(mϕ) in polar coordinate with

(d, k,m) = (6, 0.206, 2). The parameters for the Brusselator model were chosen to be the

same as those used in Fig. 2, indicating that the pattern is static on a flat plane. We checked

the initial condition sensitivity of the dynamics by comparing two time series of numerical

simulations with slightly different initial conditions; the almost identical time series in the

early stage eventually become distinguished in the late stage (Fig. 13(b); see details [65]).

These results show that chaotic pattern dynamics can arise due to the surface geometry.

VII. DISCUSSION

In our previous study, we reported that a Turing pattern that is static on a flat plane can

propagate on curved surfaces [57]. Using the relationship in Eq. (7), in which the pattern

is assumed to move at a constant speed, we clarified that losses of symmetry in the surface

and pattern, such as reflection asymmetry along the x-axis of an axisymmetric surface, are

required for pattern propagation.

In this study, we performed weakly nonlinear analysis as a complementary approach.

This analysis allowed us to explore the generic dynamics of the Turing pattern on curved

surfaces near the bifurcation point. The analysis was also advantageous in that the surface

and pattern symmetries, which were treated separately in the previous study [57], could be

integrated using the eigenfunctions of the Laplace–Beltrami operator, which are determined

by the surface shape. Because the mode decomposition of the helical and parallel patterns

revealed that static and propagating patterns are described by the two paired modes, we

derived the amplitude equations of two complex variables corresponding to the two paired

modes. The obtained amplitude equations enabled the classification of pattern dynamics

in the vicinity of the Turing bifurcation depending on the symmetry of the pattern and

the surface shape. For a general axisymmetric surface, the steady-state solution of the

amplitude equations, Eqs. (18) and (19), enables pattern propagation. If a surface has

reflection-symmetry or 2π-periodicity along the x-axis, the amplitude equations depend on

the combination of the modes. For helical and parallel patterns, the amplitude equations
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drop several terms and are reduced to Eqs. (28) and (29), for which a propagation solution

is no longer possible (see below for a nontrivial solution). On a flat plane, the amplitude

equations are even simpler (Eqs. (43) and (44)), and the pattern caused by the Turing

instability does not move. Overall, the interaction between the modes is more intense on

general surfaces and leads to the onset of moving patterns. The propagation conditions given

by the relationship between the surface and pattern symmetry are consistent with previous

results.

The present study revealed several points beyond previous results. First, we found that

the periodicity along the x-axis is involved in determining the pattern dynamics. The

parallel pattern does not move on the 2π-periodic surface (Fig. 1), whereas the loss of

periodicity causes pattern propagation (Fig. 8). Second, the pattern can propagate even

on a surface with reflection-symmetry and 2π-periodicity, corresponding to the nontrivial

steady-state solution of the amplitude equations. For such a solution, the pattern profile

is not symmetric. This type of solution is consistent with the propagating pattern on a

sphere determined numerically in the previous study [57]. Third, a weakly nonlinear analysis

revealed that patterns on axisymmetric surfaces exhibited more complex dynamics than

propagation, including oscillating and chaotic chemical waves. Some of these dynamics were

confirmed through numerical simulations of the RDE for the Brusselator model (Fig. 11).

In particular, motivated by the chaotic solutions in the amplitude equations, we found a

chaotic Turing pattern by direct numerical simulation of Brusselator model on a deformed

spherical surface (see the joint paper [65]). These findings provide a new perspective on the

intricate interplay between surface characteristics and pattern dynamics.

The present study should be extended to pattern dynamics on general surfaces without

axisymmetry, for which weakly nonlinear analysis is applicable. By performing numerical

simulations of the RDE on several surfaces, we observed chaotic patterns (Fig. 13) and

moving patterns with varying speeds (see Movie 2 [68]). Here, we briefly consider these

patterns in terms of the amplitude equations: without axisymmetry (i.e., no translational

invariance along the θ-axis), amplitude equations can have quadratic terms representing

additional interactions among modes, and more complex dynamics could arise. A detailed

analysis is required in the future.

Pattern dynamics driven by surface curvature are applicable to natural and engineering

systems. By controlling the parameters of the surfaces and reactions, the pattern can be
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switched between oscillating, static, and propagating states. In biological systems, such

dynamics can be used for information transduction, guidance of cellular migration, and

positioning of molecular localization. Analyses using amplitude equations are useful for

predicting pattern dynamics and can also provide a basis for the engineering of patterns

on curved surfaces. In the future, analysis of the stability and bifurcation of the amplitude

equations will further improve our understanding of pattern dynamics on general curved

surfaces, and will also be useful for dynamics in network systems [72, 73], and on deformable

surfaces [74–76].
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FIG. 1. Relationships among pattern propagation, pattern profile, and surface symmetry reported

in [57]. The helical pattern propagates on a reflection-asymmetric surface. The surface shapes are

given by the radial function r(x) = 1.7 + 0.3 cos(x) + 0.05 cos(2x) (for the reflection-symmetric

surface) and r(x) = 1.7 + 0.3 cos(x) + 0.05 sin(2x) (for the reflection-asymmetric surface with

−2π ≤ x < 2π). The color map represents u(x, θ), with a more intense yellow color indicating a

higher chemical concentration.
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FIG. 2. Propagating pattern on axisymmetric surface. (a) Axisymmetric surface; radial func-

tion r(x) is shown in the right. (b) Dispersion relation of Brusselator model with parameter set

(a, b,Du, Dv) = (2.0, 4.5, 0.5, 1.8). (c) Static pattern on a flat surface for Brusselator model. (d)

Propagating pattern (left panel) and kymograph along the θ axis on the pale red line (right panel).

The surface radius is r(x) = d + k1 cos(x) + k2 sin(2x), where (d, k1, k2) = (1.7, 0.3, 0.05).
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cate the two paired modes of the approximation. (e) Eigenfunctions of the two paired modes.
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evolution of phases Θ1 (blue) and Θ2 (orange) for the two paired modes.
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FIG. 9. Comparison of steady solutions for the Brusselator model and amplitude equations. (a)–

(d) Trajectories (η, ξ, α) for the amplitude equations (blue) and the Brusselator model (orange)

are shown in the left panels, with steady-state solutions indicated by large points. Patterns on

surfaces and their projected images onto x-θ planes are also shown for the amplitude equations and

the original Brusselator model. Parameters are set as (a) r(x) = 1.7 + 0.18 cos(x) + 0.03 cos(2x),

(a, b0, Du, Dv) = (2.29, 4.86, 0.5, 1.8) and ν = 0.05. (b) r(x) = 1.95 + 0.21 cos(x) − 0.06 cos(2x) +

0.015 cos(x/2), (a, b0, Du, Dv) = (1.64, 3.41, 0.5, 1.9) and ν = 0.02. (c) r(x) = 1.7 + 0.18 cos(x) +

0.03 sin(2x), (a, b0, Du, Dv) = (2.29, 4.86, 0.5, 1.8) and ν = 0.05. (d) r(x) = 1.9 + 0.21 cos(x) +

0.06 sin(2x), (a, b0, Du, Dv) = (1.62, 3.54, 0.5, 1.8) and ν = 0.01.
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FIG. 10. Approximation accuracy of amplitude equations for Brusselator model. (a) Amplitudes

η and (b) ξ, (c) phase difference α, and (d) velocity ω are plotted against bifurcation parameter ν.

The blue and orange lines represent the amplitude equations and the original Brusselator model,

respectively.
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FIG. 11. Limit cycle solution. (a) Surface r(x) = 1 + 0.15 sin(2x) + 0.4 sin(3x) (b) Dispersion

relation and Laplace–Beltrami eigenvalues corresponding to the two paired modes (orange and

green points). (c) Trajectory of the limit cycle solution (η, ξ, α) (left) and time series of η, ξ and α

(right). The blue and orange lines represent the amplitude equations and the original Brusselator

model, respectively. (d) Snapshots of the limit cycle solutions and kymographs along the θ-axis

represented by pale red lines for the amplitude equations (left) and Brusselator model (right). See

also Movie 1 [68].
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FIG. 12. Chaotic dynamics in amplitude equations. (a) Trajectory of chaotic solution at

b3 = −0.09. (b) Bifurcation diagram (top) and Lyapunov exponent (bottom) against b3. For

the bifurcation diagram, the value of η on a Poincaré section is determined by dη/dt = 0 was

plotted for each value of b3.
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FIG. 13. Chaotic dynamics of Turing pattern on a deformed sphere. (a) Time evolution of Turing

pattern. (b) Time series of chemical concentrations U = u−a at a point of the surface. The orange

and light blue lines represent two different time series with slightly different initial conditions. See

the joint paper [65] for details.
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