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Particle-hole symmetry and chiral symmetry play a pivotal role in multiple areas of physics,
yet they remain unstudied in systems with nonlinear interactions whose nonlinear normal modes
do not exhibit U(1)-gauge symmetry. In this work, we establish particle-hole symmetry and chiral
symmetry in such systems. Chiral symmetry ensures the quantization of the Berry phase of nonlinear
normal modes and categorizes the topological phases of nonlinear dynamics. We show topologically
protected static boundary modes in chiral-symmetric nonlinear systems. Our theoretical framework
extends particle-hole and chiral symmetries to nonlinear dynamics, whose nonlinear modes do not
necessarily yield U(1)-gauge symmetry.

I. INTRODUCTION

Non-spatial symmetries govern the fundamental prin-
ciples of physics in multiple areas. In high-energy
physics, the combination of particle-hole, parity, and
time-reversal symmetries dictate the existence of anti-
particles [1]. In quantum mechanics, time-reversal sym-
metry demands that eigenstates with half-integer spins
must be doubly degenerate, which is known as the
Kramers’ degeneracy [2, 3]. In soft matter and engi-
neering physics, chiral symmetry reveals the chiral image
of mechanical floppy modes and states of self-stress [4–
7], governing the mechanical failure and stability [8–11],
respectively. Additionally, in condensed-matter physics,
time-reversal, particle-hole, and chiral symmetries clas-
sify topological phases of matter in a “ten-fold” way [12–
15]. This classification enables fundamental understand-
ing of symmetry-protected topological phases with po-
tential applications for quantum information technol-
ogy [14, 16–20].

Non-spatial symmetries have been the subject of ex-
tensive study in both linear [21–24] and nonlinear sys-
tems [25–37]. For instance, time-reversal and parity sym-
metries have been thoroughly explored in the context of
mechanical, electrical and photonic structures [38–45],
enabling novel designs of microcavities [46], circuit meta-
materials [47], and plasmonic waveguides [48]. Other
non-spatial symmetries, such as particle-hole symmetry
and chiral symmetry, have been studied in linear sys-
tems and special nonlinear systems, such as the Kerr
and beyond-Kerr nonlinear interactions [49–52] that pre-
serve U(1)-gauge symmetry on the nonlinear wave func-
tions [53, 54], and Rock-Paper-Scissors cycles in zero-sum
games [55–59]. However, the rigorous definition and es-
tablishment of (anti-unitary) particle-hole symmetry and
(unitary) chiral symmetry have not been addressed in
nonlinear systems that do not exhibit U(1)-gauge sym-
metry in their nonlinear wave functions.

Nonlinear interactions are ubiquitous in nature, such
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as nonlinear mechanical [38, 60–63] and electrical struc-
tures [64, 65], circadian rhythms of living cells [66],
and quantum fluids in optical lattices [67]. These non-
linear mechanisms possess unique features that cannot
be observed in linear systems, including soliton propa-
gation [68–70], nonlinear localized modes [71], bifurca-
tion [72], and chaos [73]. Given the significant influence
of particle-hole symmetry and chiral symmetry on linear
systems, it is intriguing to ask what happens when these
two symmetries encounter nonlinear dynamics.

In this work, we study the nonlinear dynamics using
generalized nonlinear Schrödinger equations. We extend
the concept of particle-hole symmetry and chiral symme-
try to nonlinear dynamics, where the nonlinear modes do
not necessarily possess U(1)-gauge symmetry. We inves-
tigate the nontrivial consequences on nonlinear topolog-
ical physics that are derived from particle-hole and chi-
ral symmetries. Our motivation derives from the history
of linear topological insulators, where although extensive
research had been conducted in topological physics, there
continued to be fundamental importance in the “non-
spatial” classification of symmetry-protected topological
phases [12, 13]. Such a “ten-fold” non-spatial-symmetry
classification significantly enhances the potential applica-
tion of topological physics, such as topological quantum
computation.

To explore the impact of particle-hole and chiral sym-
metries on nonlinear topological physics, we investigate
the geometric phase of nonlinear normal modes under the
adiabatic evolution of system parameters. We find that,
interestingly, this adiabatic geometric phase can be quan-
tized by chiral symmetry, and defines the topologically
trivial and non-trivial phases of the generalized nonlinear
Schrödinger equations. In the topologically non-trivial
phase, nonlinear modes appear at the open boundaries
of the system. These modes possess “topological pro-
tection” as they show resistance against disturbances to
both the modes themselves and the nonlinear interac-
tions. Furthermore, due to chiral symmetry, the frequen-
cies of nonlinear boundary modes are pinned at zero.
Consequently, these topologically robust modes are static
in time. Finally, we use a Lotka-Volterra model [74–76]
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to demonstrate the practical application of our results.
The organization of this paper is as follows. Section

II defines the model, which is the generalized nonlinear
Schrödinger equations. Section III derives the adiabatic
geometric phase in nonlinear normal modes. This adia-
batic phase is separated into two parts: the Berry phase
of nonlinear normal modes, and the component that is
unique to nonlinear systems. In Section IV, we discuss
two types of non-spatial symmetries: particle-hole sym-
metry and chiral symmetry. Notably, we demonstrate
the quantization of the Berry phase of nonlinear normal
modes under chiral symmetry. Section V investigates the
topological phases in both linear and nonlinear regimes
and discusses the nonlinear topological boundary modes.

II. THE MODEL
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FIG. 1. The model of nonlinear dynamics. (a) The diatomic
two-dimensional square lattice, with the primitive vectors êx
and êy represented by the black arrows. (b) Red and blue
dots mark the 1 and 2 sites within the unit cell. The non-
linear interactions within 1 or 2 sites (between 1 and 2 sites)
are denoted by black solid lines (red dashed lines). We use
the quadratic nonlinearity as the example for our nonlinear
topological physics. (c) The nonlinear band structure [77, 78]
of the model with the quadratic interactions specified in Eqs.
(2), where ϵ = 0.001. gx = 0.9, gy = 0.1, and mode am-
plitudes A = 10ϵ. (d) Enlarged nonlinear band structure in
(c) illustrates the relationships among time-reversal, particle-
hole, and chiral partner modes.

Nonlinear dynamics, including mechanical lattices [79–
81], electrical structures [64], and nonlinear materi-
als [82, 83], can be described by generalized nonlinear
Schrödinger equations. Unlike Bose-Einstein condensates
and Kerr-nonlinear optics, nonlinear interactions in these
classical structures do not possess U(1)-gauge symmetry
in their nonlinear normal modes [40, 71]. To establish

particle-hole symmetry and chiral symmetry in general-
ized nonlinear Schrödinger equations, we consider a two-
dimensional square lattice with the primitive vectors êx
and êy, as illustrated in Fig. 1. The unit cells are iden-
tified by two integers nx and ny, corresponding to their
positions r = nxêx + ny êy. Within each unit cell, there

exist two classical fields, namely Ψ
(1)
r and Ψ

(2)
r . The dy-

namics of these classical variables are governed by the
following generalized nonlinear Schrödinger equations,

i∂tΨ
(1)
r = +

∑
⟨r′,r⟩,i′=1,2

U(Ψ(1)
r ,Ψ

(i′)
r′ ),

i∂tΨ
(2)
r = −

∑
⟨r′,r⟩,i′=1,2

U(Ψ(2)
r ,Ψ

(i′)
r′ ). (1)

Here, ⟨r′, r⟩ denotes the nearest-neighbor sites r and r′

in the square lattice. U(Ψ
(i)
r ,Ψ

(i′)
r′ ) is a real-coefficient

quadratic polynomial that describes the nonlinear inter-

action between the classical fields Ψ
(i)
r and Ψ

(i′)
r′ :

U(Ψ(i)
r ,Ψ

(i′)
r′ ) = (ϵ+Ψ(i)

r )Ψ
(i′)
r′

[
(nx − n′x)(1− δii′)

+

(
− δnx,n′

x
δny,n′

y
+
∑
j=x,y

gj |nj − n′j |
)
δii′

]
, (2)

where ϵ represents the linear on-site potential, and gj for
j = x, y accounts for the nonlinear effects between the
nearest-neighbor classical fields. These constant param-
eters are positive and real numbers, with ϵ≪ 1 utilized to
emphasize the significance of nonlinear effects. This non-
linear interaction is pictorially represented by the black
solid and red dashed lines in Fig. 1(b).

This model is capable of describing a number of phys-
ical systems. When the amplitude of the classical fields
is much smaller than ϵ, this classical model is in the lin-
ear regime. The topological boundary modes in this lin-
earized classical model can mimic the quantum fermionic
edge states within the Bogoliubov-de Gennes Hamilto-
nian of topological superconductors [84, 85]. When the
mode amplitude becomes comparable or greater than ϵ,
the model is highly nonlinear in the classical field vari-
ables. In this regime, the static solutions of this non-
linear Schrödinger-type dynamics can mimic the static
solutions of the Lotka-Volterra model [74, 86, 87], which
we elaborate later in Section V.

This nonlinear interaction, as represented by Eq. (2),
yields the inequality:

U(eiθΨ(i)
r , eiθΨ

(i′)
r′ ) ̸= eiθU(Ψ(i)

r ,Ψ
(i′)
r′ ), (3)

indicating that the U(1)-gauge symmetry in the non-
linear wave functions is broken. To further clarify this
statement, we denote the nonlinear wave function as the
following form

Ψ = (. . . ,Ψ(1)
r ,Ψ(2)

r , . . .)⊤. (4)
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This is a column vector with 2N components, where N is
the number of diatomic unit cells, and ⊤ denotes matrix
transpose. In a concise representation, Eqs. (1) can be
written as

i∂tΨ = H(Ψ) (5)

whereH(Ψ) is a nonlinear mapping of Ψ, and is called the
nonlinear Hamiltonian. It is a 2N×1 column vector with
each element given by Eq. (2). Again, we emphasize that
the nonlinear Hamiltonian does not preserve the U(1)-
gauge symmetry in the nonlinear modes by showing

H(eiθΨ) ̸= eiθH(Ψ). (6)

In Section IV, we will demonstrate that the nonlinear
model in Eq. (1) respects particle-hole symmetry and
chiral symmetry.

III. ADIABATIC GEOMETRIC PHASE OF
NONLINEAR NORMAL MODES

In this section, we derive the geometric phase that
arises from the adiabatic evolution of nonlinear normal
modes in the model presented in Eqs. (1). The adiabatic
geometric phase is especially useful in characterizing the
topological phases and predicting the existence of topo-
logical boundary modes in nonlinear dynamics.

When the amplitudes of classical fields are much
smaller than ϵ, the nonlinear Hamiltonian can be lin-
earized into a two-band matrix Hamiltonian Ĥk [85].
This Hamiltonian describes the oscillation of classical
variables governed by the eigenfrequency ω = ω(k),
where the wavevector k = (kx, ky) resides in the two-
dimensional Brillouin zone.

Nonlinearities become increasingly important as mode
amplitude rises, making nonlinear normal modes sig-
nificantly deviate from sinusoidal waves of linear sys-
tems [64, 71, 88, 89]. Specifically, nonlinear normal
modes with the plane-wave format satisfy the expression

Ψk,ω = (Ψ
(1)
k (k · r − ωt),Ψ

(2)
k (k · r − ωt+ ϕk))

⊤ (7)

according to the nonlinear extension of the Bloch theo-

rem [71, 90]. Here, Ψ
(1)
k (θ) and Ψ

(2)
k (θ) represent the 2π-

periodic non-sinusoidal functions, while ϕk characterizes
the relative phase between these wave components. The
frequencies of these nonlinear normal modes, denoted
by ω = ω(k, A), are influenced by both the wavevec-
tors k and mode amplitudes A, deviating from their lin-
ear counterparts. It is worth emphasizing that in non-
linear systems, the number of nonlinear modes can ex-
ceed the degrees of freedom, allowing nonlinear localized
modes [71, 91] and “looped band structures” [92–95] to
emerge from the effect of bifurcation. However, in this
work, our scope is limited to the simple case that bifurca-
tion does not occur, and these additional excitations do
not emerge from the nonlinear dynamics. Thus, plane-
wave nonlinear normal modes can be uniquely defined

based on their amplitude, wavevector, and frequency, al-
lowing the nonlinear system to be effectively described
as a “two-band nonlinear model.”
We adiabatically evolve the plane-wave nonlinear nor-

mal mode as the wavevector k = k(t) follows a closed
trajectory C in the Brillouin zone [96]. Based on the
nonlinear extension of the adiabatic theorem [97, 98], at
time t, the nonlinear normal mode follows the ansatz

Ψ = Ψk(t),ω

(
−
∫ t

0

ω(t′,k(t′))dt′ − γ(t)

)
, (8)

where γ(t) denotes the phase shift of the nonlinear nor-
mal mode during the adiabatic evolution. When the
wavevector k completes a closed-loop travel in the Bril-
louin zone, the wave function acquires a phase γC , known
as the adiabatic geometric phase [99, 100].
As per the Whitham modulation theory [101–103],

during the adiabatic evolution of the wavevector k in re-
ciprocal space, the mode amplitude A and relative phase
ϕk (as defined in Eq. (7)) should change slowly. Con-
sequently, the adiabatic phase, denoted by γC , can be

separated into two components: γC = γ
(B)
C + γ

(NL)
C . The

first term, γ
(B)
C , is referred to as the Berry phase of non-

linear normal modes, which originates from the change
in the relative phase ϕk. On the other hand, the second

term, γ
(NL)
C , arises from the change in the mode ampli-

tude. In the upcoming discussion, we will examine γ
(B)
C

and γ
(NL)
C individually.

As described in Appendix A, the derivation of the
Berry phase of nonlinear normal modes involves comput-
ing the evolution of the relative phase ϕk as the wavevec-
tor k undergoes adiabatic changes:

γ
(B)
C =

∮
C

∑
l

(
l|ψ(2)

lk |2∇kϕk − i
∑
i=1,2

ψ
(i)∗
lk ∇kψ

(i)
lk

)
∑
l′
l′
(
|ψ(1)
l′k |2 + |ψ(2)

l′k |2
) · dk.

(9)

Here, ψ
(i)
lk = (2π)−1

∫ 2π

0
e−ilθΨ

(i)
k dθ is the l-th Fourier

component of the nonlinear wave, Ψ
(i)
k , with i = 1, 2. We

emphasize that for Schrödinger equations with linear [3]
or nonlinear interactions that exhibit U(1)-gauge sym-
metry [104] in their eigenstates, the eigenmodes can be
described using fundamental harmonics only. This re-

duces Eq. (9) to the Berry phase in Ref. [99], γ
(B)
C,linear =

i
∮
C
dk · ⟨Ψk,ω|∇k|Ψk,ω⟩ (see Appendix A for details).

Usually, γ
(B)
C is not quantized in systems without sym-

metry constraints. However, γ
(B)
C can be quantized if

non-spatial symmetries are incorporated in the system,
which we address in Section IV(D).
The Whitham modulation theory [101–103] also indi-

cates that mode amplitude should change during adia-
batic evolution. This effect gives rise to an additional
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contribution to the adiabatic geometric phase [99], de-

noted as γ
(NL)
C . However, as we will demonstrate in Sec-

tion IV(C), chiral symmetry imposes a constraint that
causes the amplitudes of the two wave components of a
nonlinear normal mode to be equal. This constraint re-
sults in the mode amplitude staying unchanged, up to the
normalization factor of the wave function. Consequently,

we have found that the adiabatic geometric phase γ
(NL)
C

vanishes under such constraints. This vanishing result is
derived in Ref. [99] and in Appendix A. As a result, the

Berry phase of nonlinear normal modes, γ
(B)
C , is the only

contribution to the adiabatic geometric phase. Under
the constraint of chiral symmetry, this Berry phase takes
quantized values and classifies the topological phases of
the nonlinear dynamics.

IV. PARTICLE-HOLE SYMMETRY, CHIRAL
SYMMETRY, AND TOPOLOGICAL INDEX OF

NONLINEAR SYSTEMS

In this section, we establish particle-hole symmetry
and chiral symmetry for nonlinear dynamics. We show
that chiral symmetry can be used to quantize the Berry
phase of nonlinear normal modes in the model described
by Eqs. (1). This quantized index serves as a topological
invariant and defines the topologically trivial and non-
trivial phases of the nonlinear dynamics.

We briefly review time-reversal symmetry that has
been well-established in nonlinear dynamics [49, 71,
105, 106]. The nonlinear system is time-reversal invari-
ant if the equations of motion remain unchanged un-

der the time-reversal transformation (Ψ
(1)
r (t),Ψ

(2)
r (t)) →

(Ψ
(1)∗
r (−t),Ψ(2)∗

r (−t)). This invariance arises from the
real-coefficient polynomials of the nonlinear interactions
in terms of the field variables. The formal expression of
time-reversal symmetry is T H(Ψ) −H(T Ψ) = 0, where
H(Ψ) is the nonlinear Hamiltonian, and the time-reversal
operator, T = K; t→ −t, involving complex conjugation
and reversing the sign of time. Here, H(T Ψ) means that
we perform the time-reversal operation on the nonlinear
wave Ψ, and then we operate on T Ψ using the nonlin-
ear Hamiltonian (nonlinear mapping) H. This symmetry
implies that for a nonlinear wave Ψk,ω in a time-reversal
symmetric model, there exists a time-reversed partner
solution with the wavevector −k, denoted as Ψ−k,ω =

T Ψk,ω = (Ψ
(1)∗
k (k · r + ωt),Ψ

(2)∗
k (k · r + ωt + ϕk))

⊤, as
pictorially indicated by the red arrow and dot in Fig.
1(d).

The time-reversal operator satisfies T 2 = 1 and is anti-
unitary, aligning with the operator for linear Schrödinger
equation of spinless particles [2, 107]. In the linear
regime, time-reversal symmetry simplifies to the conven-
tional form, T ĤkT −1 = Ĥ−k, where Ĥk represents the
linearized Hamiltonian in reciprocal space.

A. Particle-hole symmetry of nonlinear dynamics

Here, we introduce the particle-hole operator and its
corresponding symmetry for nonlinear systems.
In a particle-hole symmetric system, the motion equa-

tions in Eqs. (1) remain unchanged under the particle-

hole transformation, (Ψ
(1)
r ,Ψ

(2)
r ) → (Ψ

(2)∗
r ,Ψ

(1)∗
r ). This

invariance is equivalently captured by the constraint,

CH(Ψ) +H(CΨ) = 0, C = IN ⊗ σxK, (10)

where C is the particle-hole operator, IN is the N × N
identity matrix, and σx is the Pauli matrix. One im-
portant characteristic of the particle-hole operator we
have defined is its anti-unitary property, which arises
from the complex conjugation involved in the operator.
This property, in turn, results in the reversal of the fre-
quency and momentum of the original nonlinear wave
(see Eq. (7)) in the system under particle-hole trans-
formation. Therefore, for a nonlinear normal mode Ψk,ω

with the wavevector k and frequency ω, the particle-hole-
symmetric model has a corresponding nonlinear sister so-
lution with a wavevector −k and frequency −ω, denoted
as

Ψ−k,−ω = CΨk,ω =

(Ψ
(2)∗
k (k · r − ωt),Ψ

(1)∗
k (k · r − ωt− ϕk))

⊤, (11)

as depicted by the black arrow in Fig. 1(d). The particle-
hole operator satisfies C2 = 1 and is anti-unitary, aligning
with the operator defined for linear systems [2, 85].
These results, including the particle-hole symmetry

presented in Eq. (10) and the particle-hole-partner mode
in Eq. (11), naturally apply to linear and nonlinear sys-
tems that respect the U(1)-gauge symmetry. Further-
more, in these U(1)-symmetric systems, Eqs. (10) can
be reduced to the well-studied format defined in recipro-
cal space, namely CĤkC−1 = −Ĥ−k.

B. Chiral symmetry of nonlinear dynamics

Chiral symmetry naturally arises in nonlinear sys-
tems when both time-reversal and particle-hole sym-
metries are present. The model described by Eqs.
(1) remains unchanged under the chiral transformation

(Ψ
(1)
r (t),Ψ

(2)
r (t)) → (Ψ

(2)
r (−t),Ψ(1)

r (−t)). Mathemati-
cally, chiral symmetry is expressed as the constraint on
the nonlinear Hamiltonian given by

SH(Ψ) +H(SΨ) = 0, S = T · C, (12)

where S = T · C represents the chiral symmetry operator
that combines the effects of time-reversal and particle-
hole transformations. It is worth noting that the result-
ing chiral symmetry operator, which is a combination of
time-reversal and particle-hole symmetry operators ex-
pressed as S = T · C, is unitary in nature. This is
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due to the anti-unitary nature of both time-reversal and
particle-hole symmetry operators, which cancels out to
produce a unitary chiral symmetry operator that is crit-
ical for characterizing the topological properties of the
nonlinear system, which we address in the following sub-
section. Thus, for a nonlinear normal mode Ψk,ω with
frequency ω, chiral symmetry predicts the existence of a
partner solution with frequency −ω, denoted as

Ψk,−ω = SΨk,ω =

(Ψ
(2)
k (k · r + ωt),Ψ

(1)
k (k · r + ωt− ϕk))

⊤. (13)

This relationship is depicted by the green arrow and dot
in Fig. 1(d). This chiral operator is unitary and yields
S2 = 1, agreeing perfectly with the chiral operator for
linear topological insulators.

These results, including the chiral symmetry presented
in Eq. (12) and the chiral-partner mode in Eq. (13),
naturally apply for linear and nonlinear systems that re-
spect the U(1)-gauge symmetry. Furthermore, in these
U(1)-symmetric systems, Eqs. (12) can be reduced to the
well-studied format [107–109] defined in reciprocal space,

namely SĤkS−1 = −Ĥk. Finally, our study highlights
an important aspect of chiral-symmetric nonlinear sys-
tems. We find that the chiral-symmetric partner nonlin-
ear mode swaps the two wave components of a nonlinear
normal mode. This swapping leads to a result where the
two wave components in a nonlinear normal mode share
the same mode amplitude.

Our nonlinear model exhibits time-reversal, particle-
hole, and chiral symmetries, which is the extension of
symmetry class BDI defined in the ten-fold classification
of linear topological insulators [108].

C. Berry phase of nonlinear normal modes
quantized by chiral symmetry

In a purely linear Schrödinger equation, the summa-
tion of Berry phases across all energy bands is always zero
due to the topological triviality of the fiber bundle [96]
associated with a complete and orthogonal set of eigen-
basis in a matrix Hamiltonian [96]. Combined with chiral
symmetry, this sum rule naturally results in the quantiza-
tion of linear Berry phase [110]. However, this conclusion
does not hold for nonlinear dynamics, because nonlinear
normal modes do not necessarily have completeness and
orthogonality when matrix analysis fails. Therefore, the
quantization of Berry phase of nonlinear normal modes
in a chiral-symmetric nonlinear system, as expressed in
Eq. (9), remains an open question.

Here, we demonstrate that under chiral symmetry, the
Berry phase of nonlinear normal modes still remains
quantized for nonlinear systems. Moreover, the quan-
tization of the Berry phase of nonlinear normal modes
suggests that it can serve as a potential topological index
for characterizing the topological phases of the underly-
ing nonlinear dynamics.

To demonstrate that chiral symmetry is still capable of
quantizing the Berry phase of nonlinear normal modes,
we consider the nonlinear normal mode Ψk,−ω = SΨk,ω,
which is the chiral-partner mode of Ψk,ω. We perform
an adiabatic evolution on this chiral-partner mode by
slowly varying the wavevector k(t) along a closed-loop
trajectory C in the Brillouin zone. When we adiabati-
cally evolve the chiral-symmetric partner mode, Ψk,−ω,
this mode can be considered as having a frequency of ω
but with the arrow of time reversed. Consequently, the
mode acquires a term γ(t) in its phase variable, via

Ψ(t) = Ψk(t),−ω

(∫ t

0

ω(t′,k(t′))dt′ + γ(t)

)
. (14)

Substituting this result into the nonlinear motion equa-
tions, namely i∂tΨk(t),−ω = H(Ψk(t),−ω), we can com-
pute the geometric phase when the wavevector k travels
along the trajectory C. This adiabatic evolution allows
the chiral-symmetric nonlinear mode to obtain the adi-

abatic geometric phase, γC = γ
(B)
C (note that γ

(NL)
C = 0

in chiral-symmetric systems, as shown in Appendix A),
from which the Berry phase of nonlinear normal modes,

γ
(B)
C , is obtained:

γ
(B)
C =

∮
C

∑
l

(
l|ψ(1)

lk |2∇kϕk + i
∑
i=1,2

ψ
(i)∗
lk ∇kψ

(i)
lk

)
∑
l′
l′
(
|ψ(1)
l′k |2 + |ψ(2)

l′k |2
) · dk.

(15)

Since both Eq. (9) and (15) describe the same Berry
phase of nonlinear normal modes under the same evolu-
tion trajectory, we equate them, and obtain the result

γ
(B)
C =

1

2

∮
C

∇k ϕk · dk = nπ, n = 0, 1. (16)

This equation demonstrates the quantization of the Berry
phase of nonlinear normal modes under the constraint
of chiral symmetry, which serves as the topological in-
variant of the considered nonlinear dynamics. n = 0, 1
correspond to the nonlinear topologically trivial and non-
trivial phases, respectively. Due to the quantized nature
of this Berry phase, it cannot change continuously upon
the variations of system parameters, including the mode
amplitudes and coupling parameters. Below, we leverage
the invariance of this topological number to investigate
the corresponding nonlinear topological edge modes.

V. NONLINEAR TOPOLOGICAL PHASES AND
BOUNDARY MODES

We have demonstrated the topological invariance of the
Berry phase of nonlinear normal modes using chiral sym-
metry. In this section, we exemplify the impact of this
topological number on the nonlinear physics, where the
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interactions are specified as the example in Eqs. (2) with
the quadratic nonlinearities. Specifically, we investigate
the topological phases and the corresponding boundary
physics of the system in both the linear and nonlinear
regimes.

(a)

(c) (d)

(b)
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FIG. 2. Topological phases and boundary modes. (a) Non-
linear topological phase diagram of the model with quadratic
nonlinearities. (b) Brillouin zone with the integration trajec-
tories of Berry phases of nonlinear normal modes indicated.
(c) Disks’ size and color represent the spatial profile of the
weakly nonlinear topological edge mode. (d) Spatial distribu-
tion of the topological boundary mode in the highly nonlinear
regime.

A. Topological phases and boundary modes in the
linear regime

When the quadratic nonlinearities are small compared
to the linear parts, the nonlinear system can be approx-
imated as linear Schrödinger equations. This regime is
valid when mode amplitudes A ≪ ϵ. This allows us to
perform a momentum-space decomposition and simplify
the linearized equations of motion using the equation,
i∂tΨk,ω = Ĥk,ωΨk,ω, where the the linear wave func-

tion is represented as Ψk,ω = (Ψ
(1)
k ,Ψ

(2)
k )⊤, the matrix

Hamiltonian, Ĥk,ω, reads

Ĥk,ω = 2ϵσy sin kx + ϵσz

(
− 1 + 2

∑
j=x,y

gj cos kj

)
, (17)

where k = (kx, ky) is the wavevector within the two-
dimensional Brillouin zone, and σx,y,z are Pauli matrices.
This Hamiltonian possesses chiral symmetry, namely a
unitary chiral symmetry operator S = σx anti-commutes
with it [85, 107]: {σx, Ĥk,ω} = 0.

The Hamiltonian Ĥk,ω has multiple phases. Specifi-
cally, when the interaction parameters are in the grey
region of Fig. 2(a) (i.e., the interaction parameters sat-
isfy |gy| ≥ |gx − 1/2|

⋃
|gy| ≥ |gx + 1/2|), the system

becomes gapless, as the linear band structures touch at
a pair of zero-frequency points. As a result, the linear
Berry phase becomes singular and ill-defined when the in-
tegration trajectory passes through these gapless points.
When the linear bands touch at the gapless points, the
corresponding static eigenstates are given by

Ψr(t) = (1,±1)⊤eikw·r/
√
2, (18)

whose frequency and wavevector are ω = 0 and ±kw,
respectively. For the parameters that lie in the region
of |gy| ≥ |gx − 1/2|, we have the wavevectors kw =
(0, arccos[(1 − 2gx)/2gy]). When the parameters are in
the region |gy| ≥ |gx+1/2|, the wavevectors are given by
kw = (π, arccos[(1 + 2gx)/2gy]). We note that the zero-
frequency nature of these gapless bulk states stems from
the chiral symmetry [111].

On the other hand, in the blue region of Fig. 2(a) (the
parameters yield |gy| < |gx − 1/2|

⋂
|gy| < |gy + 1/2|),

and in the red region of Fig. 2(a) (with the parameters
that yield −gx + 1/2 < gy < gx − 1/2

⋃
gx + 1/2 < gy <

−gx − 1/2), the lattice is fully gapped and the linear
Berry phase becomes well-defined:

lim
A→0

γ
(B)
C (A) = i

∮
C

dk · ⟨Ψk,ω|∇k|Ψk,ω⟩, (19)

where C is the closed-loop trajectory for the adiabatic
evolution of the wavevector k in the two-dimensional
Brillouin zone. Specifically, we define two types of closed
trajectories, C(ky) : kx = −π → π; ky and C(kx) : ky =
−π → π; kx, which integrate over all kx for a given ky
and all ky for a given kx, respectively. The linear Berry
phase corresponding to the horizontal trajectory C(ky) is
denoted as γC(ky), while that corresponding to the verti-
cal trajectory C(kx) is denoted as γC(kx).

Due to the chiral symmetric nature of the linearized
Hamiltonian [85], these Berry phases, namely γC(ky) and
γC(kx), are guaranteed to have integer multiples of π.
Moreover, due to the fully gapped nature of the linear
band structure, the Berry phases γC(ky) and γC(kx) re-
main unchanged for any kx and ky ranging from −π to
π. To characterize the topological phases of the linearized
model, we define the “2D polarization [112]” as a mea-
sure of the linear Berry phases averaged by the Brillouin
zone,

lim
A→0

RT(A) =
1

2π2

∫ π

−π

[
lim
A→0

γ
(B)
C(ky)

(A)dky êx +

lim
A→0

γ
(B)
C(kx)

(A)dkxêy

]
. (20)

When the parameters are in the red region of Fig. 2(a),
the topological polarization is given by limA→0 RT(A) =
êx, indicating that the linear system is in the topologi-
cal phase. On the other hand, when the parameters are
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within the blue region of Fig. 2(a), the topological polar-
ization becomes limA→0 RT(A) = 0, indicating that the
system is in the topologically trivial regime.

According to the principle of bulk-boundary correspon-
dence in topological band theory, the behavior of the sys-
tem at the boundary is determined by the topological in-
variant derived from the bulk bands of the lattice. In the
red region of Fig. 2(a), the topological polarization vec-
tor takes the value limA→0 RT(A) = êx, indicating the
emergence of topologically protected boundary modes in
the system. These boundary modes can be analytically
solved using the Jackiw-Rebbi-type solution,(

Ψ
(1)
r (t)

Ψ
(2)
r (t)

)
=

Aeikyny (e−κ+(ky)nx − e−κ−(ky)nx)

(
1
−1

)
, (21)

where A is the mode amplitude, ky is the wave number
in the transverse y-direction, and the spatial decay rates
κ±(ky) yield κ±(ky) > 0. This edge mode is exponen-
tially localized on the left open boundary of the square
lattice. In contrast, in the topologically trivial phase with
the parameters that lie in the blue region of Fig. 2(a), the
topological polarization vector takes the trivial value of
limA→0 RT(A) = 0, indicating the absence of topological
boundary modes in this linear non-topological phase.

Chiral symmetry of the linearized Hamiltonian leads
to an important property in the frequency spectrum of
the bulk modes. This ensures that the frequencies of
the bulk modes arise in pairs of ±ω, reflecting the chi-
ral symmetry of the Hamiltonian. This property in the
bulk mode frequencies has significant implications for the
frequencies of topological edge states in the system. In
particular, the frequency of the topological edge state is
constrained to be pinned at zero. This is because, if the
frequency of the topological state, ω, is nonzero, then a
partner topological state with the frequency of −ω must
also arise at the same boundary. These two boundary
states can couple and open a band gap on the lattice
boundary, violating the topological protection of the edge
states. Therefore, topological edge states must have zero
frequency and do not evolve in time, satisfying the static

condition ∂tΨ
(i)
r = 0 for i = 1, 2 and for all r. The static

nature of topological boundary modes remains valid for
the nonlinear system as chiral symmetry extends to the
fully nonlinear regime.

B. Topological phases and boundary modes in the
nonlinear regime

We now consider the topological phases and the corre-
sponding boundary modes in the Schrödinger-type equa-
tions in the nonlinear regime.

Intriguingly, even in the strongly nonlinear regime, the
system remains gapless when the parameters are in the

grey-shaded regime of Fig. 2(a). This is because non-
linear zero-frequency bulk modes can still arise in the
nonlinear regime of the system, maintaining the sys-
tem’s gapless nature. The nonlinear static bulk modes
can be analytically obtained by imposing the condition

∂tΨ
(i)
r = 0 for i = 1, 2 and for all r, because chiral

symmetry assures the frequency of the nonlinear gapless
mode to stay at zero. The nonlinear mode in the lattice
system is described by Eq. (18), which is identical to
that obtained from the linearized model. The presence
of zero-frequency nonlinear bulk modes in the parameter
region defined by the grey regime of Fig. 2(a) yields the
closure of the nonlinear band gap, which we define as the
“nonlinear gapless phase” of the system.

The system with parameters in the blue and red
regimes of Fig. 2(a) is in the nonlinear fully gapped
phase, because these phases are devoid of the previously
discussed zero-frequency nonlinear bulk modes. This
property allows the topological numbers of the system
to be well-defined and invariant as mode amplitudes rise.
Thus, we define the 2D topological polarization of the
lattice in the fully nonlinear regime:

RT(A) =
1

2π2

∫ π

−π

[
γ
(B)
C(ky)

(A)dky êx + γ
(B)
C(kx)

(A)dkxêy

]
.

(22)

The red-shaded parameter regime shown in Fig. 2(a)
corresponds to the nonlinear topological phase of the sys-
tem described by the nonlinear Schrödinger equation in
Eqs. (1). In this regime, the topological polarization
takes the form RT(A) = êx, indicating the presence of
nonlinear topological boundary modes at the edges of
the lattice. We can calculate the spatial profile of these
boundary modes by imposing static boundary conditions
and solving for the corresponding eigenstates. The re-
sulting static nonlinear mode is described by Eq. (21)
and is exponentially localized on the left open boundary
of the lattice. In the blue-shaded regime of Fig. 2(a), the
system is in the nonlinear topologically trivial phase as
described by the nonlinear Schrödinger equation in Eqs.
(1). The topological polarization in this regime takes the
form RT(A) = 0, indicating that there are no nonlinear
topological boundary modes present at the edges of the
lattice.

A remarkable feature of the system under considera-
tion is its topological invariance under increasing mode
amplitudes in both the non-trivial and trivial phases.
This phenomenon arises from the fact that mode am-
plitudes have a global effect on the nonlinear dynamics
of the system and do not alter the topological properties
of the lattice. This explains the invariance of the topo-
logical Berry phases and polarization for growing mode
amplitudes.
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C. Applications to the static modes in other
nonlinear models

To further explore the implications of the previous re-
sults for nonlinear systems, we investigate the static non-
linear modes in a different nonlinear model, namely the
Lotka-Volterra network. To this end, we study the follow-
ing nonlinear equations of motion with Lotka-Volterra-
type nonlinear interactions,

∂tΨ
(1)
r =

∑
r′,i′=1,2

U(Ψ(1)
r , (−1)i

′+1Ψ
(i′)
r′ ),

∂tΨ
(2)
r =

∑
r′,i′=1,2

U(−Ψ(2)
r , (−1)i

′+1Ψ
(i′)
r′ ). (23)

Although the dynamical properties between the Lotka-
Volterra model and the Schrödinger-type nonlinear equa-
tions in Eqs. (1) are significantly different [113], their
static properties are remarkably similar, thanks to the
presence of chiral symmetry. The reason is as follows.

In the Schrödinger equation, chiral symmetry ensures
that the frequencies of nonlinear normal modes emerge in
pairs of ±ω. Therefore, nonlinear topological mode must
have zero-frequency, because if the frequency of the topo-
logical mode were non-zero, a chiral-partner topological
mode with the frequency of −ω must appear. These two
topological modes can interfere and break their topolog-
ical nature. As a result, the nonlinear topological mode
must be static. This static nonlinear topological mode is

equivalent to setting i∂tΨ
(i)
r = 0 in the Schrödinger equa-

tion. On the other hand, the stationary solutions in the

Lotka-Volterra model are obtained by setting ∂tΨ
(i)
r = 0.

This finding suggests that the (Schrödinger) static mode
is very much similar as the (Lotka-Volterra) static mode,
because these two zero-frequency solutions are obtained

by substituting i∂tΨ
(i)
r = 0 and ∂tΨ

(i)
r = 0 in the

Schrödinger and Lotka-Volterra models, respectively.
The notion of drawing a comparison between the static

solution of the Lotka-Volterra and Schrödinger mod-
els originates from seminal works [4–11], which estab-
lished an analogy between static mechanics in Newtonian
equations of motion and the static solutions in chiral-
symmetric Schrödinger equations. The topological prop-
erties of Newtonian mechanics are defined by introduc-
ing an auxiliary chiral-symmetric Schrödinger equation,
where we can compute the topological index of this auxil-
iary Schrödinger equation. We then utilize this auxiliary
Schrödinger topological number to describe the topology
of static Newtonian mechanics, although the dynamical
features of these two models differ significantly.

Building upon this notion, the static solutions for both
the Schrödinger and Lotka-Volterra models can be ob-

tained by setting ∂tΨ
(i)
r = 0 for i = 1, 2 and all r. This

analogy facilitates the derivation of the static nonlinear
boundary mode in Eq. (23). The phase diagram of
the Lotka-Volterra-type model is depicted by Fig. 2(a),
comprising three distinct regions: the nonlinear gapless,

topologically non-trivial, and trivial phases, represented
by the grey, red, and blue-shaded areas, respectively.
The Lotka-Volterra-type model exhibits topologically

distinct boundary properties in the red and blue areas
of the phase diagram. In the red parameter region, the
model exhibits the emergence of nonlinear static edge
modes from the boundary of the square lattice. These
edge modes are in line with the derived nonlinear topolog-
ical polarization of RT(A) = êx. It should be noted that
the population of species must be real and positive num-
bers, which imposes a constraint on our analysis. Under
this constraint, we obtain the nonlinear boundary mode(

Ψ
(1)
r (t)

Ψ
(2)
r (t)

)
= A(e−κ+(ky=0)nx − e−κ−(ky=0)nx)

(
1
1

)
,

(24)

where A is the mode amplitude. The spatial decay rate
satisfies κ±(ky = 0) > 0, and is explicitly expressed
in Appendix B. This result indicates that the nonlin-
ear boundary mode is exponentially localized on the left
open boundary of the system, confirming its topological
nature. The spatial decay rate of the nonlinear boundary
mode is in perfect agreement with the decay properties
of the topological edge modes in the linear and nonlinear
regimes of the Schrödinger-type equations in Eqs. (1).
Moreover, the nonlinear boundary mode corresponds to
the nonlinear topological polarization, RT(A) = êx, in
the topologically non-trivial phase. In contrast to the red
region, the blue region of the phase diagram of the Lotka-
Volterra-type model is devoid of nonlinear topological
static modes. This behavior is in line with the derived
trivial nonlinear topological polarization, RT(A) = 0.

(a) (b)

0 50T 100T
0

0.5

1

0 50T 100T
0

0.5

1

10-4

FIG. 3. The temporal evolutions of topologically protected
boundary modes are shown in (a) and (b) for the weakly non-
linear and fully nonlinear regimes, respectively. In both cases,
the modes evolve for t = 100T and still maintain their stabil-
ity.

To validate the analytical results of the emergence
of nonlinear topological boundary modes in the Lotka-
Volterra-type model, we perform numerical simulations
and present the results in Figs. 2(c,d) and Fig. 3. The
numerical simulations confirm the emergence of the non-
linear topological modes on the open boundary that cuts
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the topological polarization vector RT(A) = êx, as pre-
dicted by the analytical results. This topologically pro-
tected mode exhibits high stability in both temporal and
spatial aspects, highlighting its robustness against small
perturbations or fluctuations. We initialize the mode
with ±10% spatial fluctuations and ±10% spatial varia-
tions in the nonlinear interactions, as shown by the bond
lengths in Figs. 2(c,d). The numerical simulations indi-
cate that the nonlinear topological mode remains highly
stable even after t = 102T of self-oscillation, both in the
weakly and strongly nonlinear regimes. The characteris-
tic period of the nonlinear normal mode in the fully non-
linear regime is T = 2π. The stability of the nonlinear
topological mode confirms its robustness and reliability
against small perturbations or fluctuations.

Chiral symmetry has notable effects on these nonlin-
ear topological boundary modes. Firstly, this symmetry
locks the frequencies of topological modes at zero, regard-
less of their amplitudes. These static modes are distinct
from spatial symmetry-induced topological modes, which
are sensitive to amplitudes and prone to losing nonlinear
stability [38, 77]. Secondly, chiral symmetric nonlinear
topological modes are unaffected by the breakdown of
spatial symmetries, as observed in Figs. 2(c,d). Con-
versely, spatial symmetry-induced topological modes are
quickly disrupted by spatial symmetry-breaking bound-
ary conditions.

VI. CONCLUSIONS AND OUTLOOK

In this work, we extend the two non-spatial sym-
metries, including particle-hole symmetry and chiral
symmetry, to nonlinear dynamics whose nonlinear
wave functions do not necessarily possess U(1)-gauge
symmetry. Chiral symmetry can quantize the Berry
phase of nonlinear normal modes, determining their
topological phases, and facilitating the emergence of
nonlinear topological boundary modes. These modes
have pinned frequencies at zero. They exhibit high
stability against disruptions in spatial symmetries. Our
work enables the non-spatial classification of nonlinear
systems, expanding the ten-fold classification of linear
topological insulators [108]. Our findings may suggest
potential applications in nonlinear dynamics, where the
stability conferred by nonlinear topology could aid in
resilience against parameter changes.

Note added— Recently, we became aware of a related
independent effort on the chiral symmetry of nonlinear
dynamics [114].
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Appendix A: Berry phase of nonlinear normal modes

In this section, we derive the adiabatic geometric phase
of nonlinear normal modes. We consider the nonlinear
equations of motion in a translationally invariant lattice,
with i∂tΨ(t) = H(Ψ), in which the plane-wave nonlinear
normal mode reads Ψk,ω(k ·r−ωt). We consider an adia-
batic evolution to the nonlinear mode by slowly changing
the wavevector k that follows a closed-loop trajectory in
the Brillouin zone. Under the evolution, the nonlinear
wave takes the format of

Ψ = Ψk,ω

(
−
∫ t

ω(t′)dt′ − γ(t)

)
(A1)

where γ(t) is the adiabatic geometric phase that arises
from the temporal evolution. This mode should satisfy
the nonlinear equations of motion, which leads to

i∂tΨ = i

[
∂Ψk,ω

∂k

dk

dt
−
(
ω +

dγ

dt

)
∂Ψk,ω

∂θ
+ ∂tδΨ

]
,(A2)

where δΨ = Ψ − Ψk,ω denotes mode change, and θ =∫ t
ω(t′)dt′ + γ(t) denotes the phase variable of the non-

linear mode. Since the shape of the nonlinear mode can
vary during the process of adiabatic evolution, the non-
linear Hamiltonian also changes in this adiabatic process,
leading to the expansion of the nonlinear Hamiltonian in
terms of the mode variation δΨ:

H(Ψ) = H(Ψk) +

(
δΨ

∂H

∂Ψ
+ δΨ∗ ∂H

∂Ψ∗

)
Ψk,ω

. (A3)

Employing the relationship −iω∂θΨk,ω = H(Ψk,ω), we
combine Eqs. (A2, A3) and obtain the equations of mo-
tion for the nonlinear mode, which read

∂Ψk,ω

∂θ

dγ

dt
=
∂Ψk,ω

∂k

dk

dt
+

i

(
δΨ

∂H

∂Ψ
+ δΨ∗ ∂H

∂Ψ∗ − i∂tδΨ

)
Ψk,ω

. (A4)

Eq. (A4) contains two terms on the right-hand side. The
first term corresponds to the Berry phase of nonlinear
normal modes in nonlinear normal modes. The second
term arises from the change in the mode shape and am-
plitude due to the adiabatic evolution, which can affect
the nonlinear Hamiltonian of the system. Together, these
terms contribute to the overall adiabatic geometric phase
of the nonlinear normal modes.
To gain a more detailed understanding of the nonlinear

normal mode, we express it in terms of a Fourier series.

Specifically, we write Ψk,ω(θ) =
∑
l(ψ

(1)
lk , ψ

(2)
lk e

ilϕk)⊤eilθ,

where ψ
(1)
lk and ψ

(2)
lk are the Fourier components of the
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mode in the two wave components, respectively, and ϕk
is the relative phase between the two components. Thus,
we obtain

∂Ψk,ω

∂θ
=
∑
l

(
ψ
(1)
lk , ψ

(2)
lk e

ilϕk

)⊤
ileilθ,

∂Ψk,ω

∂k
=
∑
l

[
∂ψ

(1)
lk

∂k
,

(
∂ψ

(2)
lk

∂k
+ ilψ

(2)
lk

∂ϕk
∂k

)
eilϕk

]⊤
eilθ.

(A5)

We now use Eqs. (A5) to substitute results into Eq.

(A4). We then multiply both sides of Eq. (A4) by Ψ†
k,ω

and integrate over the phase variable θ from 0 to 2π. This
procedure leads us to derive the following relationship:

dγ

dt

∑
l

l
∑
j

|ψ(i)
lk |2 =

dk

dt

∑
l

l ∂ϕk
∂k

|ψ(2)
lk |2 − i

∑
j

ψ
(j)∗
lk

∂ψ
(i)
lk

∂k

+

∫ 2π

0

dθ

2π
Ψ†

k,ω

(
δΨ

∂H

∂Ψ
+ δΨ∗ ∂H

∂Ψ∗ −H(Ψ)δΨ

)
Ψ=Ψk,ω

(A6)

where the relationship i∂tδΨ = H(Ψ)δΨ has been
adopted. Finally, we integrate over the time variable t
and obtain the Berry phase of nonlinear normal modes:

γC = γ
(B)
C + γ

(NL)
C . (A7)

In Eq. (A7), there are two contributions in the adiabatic
geometric phase. The first term is the Berry phase of
nonlinear normal modes,

γ
(B)
C =

∮
C

dk

∑
l

(
l ∂ϕk

∂k |ψ(2)
lk |2 − i

∑
j ψ

(j)∗
lk

∂ψ
(i)
lk

∂k

)
∑
l l
∑
j |ψ

(i)
lk |2

. (A8)

The second term

γ
(NL)
C =

∫
dt

(∑
l

l
∑
j

|ψ(i)
lk |2

)−1

∫ 2π

0

dθ

2π
Ψ†

k,ω

(
δΨ

∂H

∂Ψ
+ δΨ∗ ∂H

∂Ψ∗ −H(Ψ)δΨ

)
Ψ=Ψk,ω

(A9)

is known as the “purely nonlinear” contribution to the
adiabatic geometric phase, as it arises solely from the
nonlinear interactions within the system. Specifically, it
represents the change in the nonlinear Hamiltonian with
respect to the variation of the nonlinear normal mode,
which arises due to the dependence of the Hamiltonian
on the mode amplitude. We emphasize that this term
vanishes for the purely linear Schödinger-type equations.

To investigate the relationship between the conven-
tional linear Berry phase and Berry phase of nonlinear

normal modes, we consider the Hamiltonian for the lin-
ear and nonlinear Schrödinger equations that respect the
U(1)-gauge symmetry in the wave functions, which is
given by

H(Ψ) = H0Ψ+ g|Ψ|2Ψ. (A10)

Here, H0 is the linear part of the dynamics, represented
by a matrix, and g is the coefficient of the nonlinearity.
In these systems, the nonlinear normal modes can be
represented by sinusoidal waves,

Ψk,ω(k · r − ωt) = Ψke
i(k·r−ωt)

= (Ψ
(1)
k ,Ψ

(2)
k eiϕk)⊤ei(k·r−ωt). (A11)

Here, the normalization condition given by |Ψ(1)
k |2 +

|Ψ(2)
k |2 = 1 has been adopted.
To simplify the Berry phase of nonlinear normal

modes, γ
(B)
C , and the purely nonlinear contribution to

the adiabatic geometric phase, γ
(NL)
C , we employ the rela-

tionships given by the representation of nonlinear normal
modes as sinusoidal waves, as presented in Eq. (A11). In
particular, we note that nonlinear plane waves in these
systems contain only the fundamental harmonic, which

allows us to simplify the expressions for ψ
(1)
lk and ψ

(2)
lk as

ψ
(1)
lk = Ψ

(1)
k δl1 and ψ

(2)
lk = Ψ

(2)
k δl1, respectively. Plugging

these simplifications into γ
(B)
C reduces the Berry phase of

nonlinear normal modes as

γ
(B)
C =

∮
C

dk ·

∑
l

(
l|ψ(2)

lk |2 ∂ϕk

∂k + i
∑
j ψ

(j)∗
lk

∂ψ
(i)
lk

∂k

)
δl1∑

l′ l
′
(∑

j′ |ψ
(j′)
l′k |2

)
δl′1

=

∮
C

dk ·

|ψ(2)
1k |

2 ∂ϕk
∂k

+ i
∑
j

ψ
(j)∗
1k

∂ψ
(i)
1k

∂k


=

∮
C

dk · i

∑
j

Ψ
(j)∗
k ∂kΨ

(i)
k − i|Ψ(2)

k |2∂kϕk


=

∮
C

dk · i(Ψ(1)∗
k ,Ψ

(2)∗
k e−iϕk)∂k

(
Ψ

(1)
k

Ψ
(2)
k eiϕk

)

=

∮
C

dk · i⟨Ψk|∂k|Ψk⟩ = γ
(B)
C,linear, (A12)

where Ψk = (Ψ
(1)
k ,Ψ

(2)
k eiϕk)⊤ is the eigenvector of the

Hamiltonian, and γ
(B)
C,linear denotes the conventional form

of Berry phase in linear systems. At this point, we have
shown that the Berry phase of nonlinear normal modes,
as expressed in Eq. (9), can be reduced to the conven-
tional Berry phase when the nonlinear wave functions
yield U(1)-gauge symmetry.
When considering nonlinear interactions of the form

H(Ψ) = H0Ψ+ g|Ψ|2Ψ, (A13)
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we can compute the contribution of nonlinear interac-

tions to the adiabatic geometric phase, γ
(NL)
C . By us-

ing the relationships ∂H(Ψ)/∂Ψ = H0 + 2g|Ψ|2 and

∂H(Ψ)/∂Ψ∗ = gΨ2, we can substitute into γ
(NL)
C to ob-

tain the result

γ
(NL)
C

=

∫
dt

(∑
l

l
∑
j

|ψ(i)
lk |2δl1

)−1

∫ 2π

0

dθ

2π
Ψ†

k,ω

(
δΨ

∂H

∂Ψ
+ δΨ∗ ∂H

∂Ψ∗ −H(Ψ)δΨ

)
Ψk,ω

=

∫
dt

∫ 2π

0

dθ

2π

Ψ†
k,ω

(
δΨ

∂H

∂Ψ
+ δΨ∗ ∂H

∂Ψ∗ −H(Ψ)δΨ

)
Ψk,ω

=

∫
dt g

(
Ψ2Ψ†δΨ† +Ψ†2ΨδΨ

)
Ψk,ω

. (A14)

Appendix B: Analytical results of nonlinear
topological boundary modes

In this section, we analyze the decay rate of the non-
linear boundary mode by setting the static condition,

∂Ψ
(i)
r /∂t = 0, and simplifying the Schrödinger-type non-

linear equations of motion, as given by

Ψ(1)
r −

∑
j=x,y

gj(Ψ
(1)
r+êj

+Ψ
(1)
r−êj )−Ψ

(2)
r+êx

+Ψ
(2)
r−êx = 0,

Ψ(2)
r −

∑
j=x,y

gj(Ψ
(2)
r+êj

+Ψ
(2)
r−êj )−Ψ

(1)
r+êx

+Ψ
(1)
r−êx = 0.

(B1)

We analyze the behavior of the nonlinear boundary
mode, which is exponentially localized on the left open
boundary and takes the form of a plane wave in the trans-
verse y direction. Using this ansatz, we derive the wave
amplitudes and substitute from the static motion equa-
tions given by Eq. (B1). The resulting solution, as given
by Eq. (21), provides an analytic expression for the spa-
tial decay rates of the edge mode, which are expressed
as

κ±(ky) =

− ln

[ 1
2 − gy cos ky ±

√
( 12 − gy cos ky)2 + 1− g2x

gx + 1

]
.(B2)

The analytical expression for the spatial decay rates of
the nonlinear boundary mode, as given by Eq. (B2),
reveals important insights into the behavior of the mode
at different values of the nonlinearity parameters and the
transverse wavevector. In particular, we find that within
the red region of parameter space in Fig. 2(a), where
−gx+1/2 < gy < gx− 1/2

⋃
gx+1/2 < gy < −gx− 1/2,

the decay rates are positive, indicating that the mode
described by Eq. (21) is exponentially localized on the
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and P. G. Kevrekidis, “Standing and traveling waves
in a model of periodically modulated one-dimensional
waveguide arrays,” Phys. Rev. E 108, 024214 (2023).

[69] Ross Parker, Alejandro Aceves, Jesús Cuevas-Maraver,
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