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We illuminate the fundamental mechanism responsible for the transition between the non-
Hermitian skin effect and defect-induced localization in the bulk. We study a Hamiltonian with
non-reciprocal couplings that exhibits the skin effect (the localization of all eigenvectors at one
edge) and add an on-site defect in the center. Using a two-scale asymptotic method, we characterize
the long-scale growth and decay of the eigenvectors and derive a simple and intuitive effective model
for the transition that occurs when the defect is sufficiently large that one of the modes is localized
at the defect site, rather than at the edge of the system.

Introduction.—Understanding and harnessing systems
that are non-Hermitian but have real spectra represents
one of the most exciting and active frontiers in the
physical sciences [1–5]. For example, lattices with non-
reciprocal couplings have been studied at length for their
ability to support spectra composed exclusively of eigen-
modes that are exponentially localized at one edge of
the system [6–18]. This phenomenon, known as the non-
Hermitian skin effect, has deep implications for localiza-
tion and transport properties and has been realised in
settings including quantum systems [10], acoustic meta-
materials [11, 12], elastic media [13], dimerized systems
[6, 14] and multi-dimensional models [15–18].

The non-Hermitian skin effect is a very strong local-
ization phenomenon and there is significant interest in
understanding how it behaves in the presence of imper-
fections and disorder [19–27]. The effect is known to
persist in the presence of small disorder; however, when
sufficiently large defects are added, Anderson-type effects
can cause eigenvectors to be localized within the bulk of
the system (away from the edge). The most common set-
ting in which to study these effects is the non-Hermitian
Anderson model, which is typically a nearest-neighbour
Hamiltonian with a random potential (independent on
each site) and non-reciprocal coupling strengths [19, 20].
Many studies have considered this model’s spectral prop-
erties in the presence of periodic boundary conditions,
to understand its topological features and how its com-
plex spectrum behaves in the presence of disorder [19–
25]. However, one of the most exciting features of non-
Hermitian systems is that altering the boundary condi-
tions can drastically affect their bulk properties [25]. In-
deed, in a finite-sized model with open or fixed boundary
conditions at the edges, the skin effect can occur [1, 6–18].
In this case, when imperfections are introduced there is
the additional challenging question of predicting where
eigenvectors will be localized since the site where a given

eigenvector is localized is the result of competition be-
tween defect-induced localization in the bulk and local-
ization due to the skin effect at the edge. This Letter de-
velops an effective model to illuminate this competition
and the resulting transition between the two regimes.

The defect-induced localization transition in non-
Hermitian systems is fundamentally different from classi-
cal Hermitian analogues [28, 29]. In Hermitian settings,
if localization within the bulk occurs, it will typically
do so for any arbitrarily small defect size. In our non-
Hermitian setting, however, the localizing strength of the
skin effect means that small defects do not induce local-
ization within the bulk. Instead, there is some non-zero
critical defect size at which the defect is sufficiently large
to induce localization. This transition can be predicted
from the topological origins of the non-Hermitian skin ef-
fect [24, 25, 30]. Due to the theory of Toeplitz operators,
eigenvectors corresponding to eigenvalues falling within
a specified region of the complex plane (specified by the
winding number of the associated symbol) must be lo-
calized at the edge [31, 32]. The boundary of this region
is where the localization transition occurs as eigenmodes
escaping it (due to the influence of defects) can be local-
ized within the bulk. This can be used to quantify the
robustness of the skin effect [26, 27] and to characterize
the critical defect size at which an eigenvalue crosses the
boundary and a localization transition occurs.

In this Letter, the localization transition due to de-
fects in a system exhibiting the non-Hermitian skin effect
is revealed. We develop a two-scale effective model for
the localization transition that occurs when sufficiently
large defects are added to a lattice with non-reciprocal
couplings. This characterizes the competition between
localization at the edge due to the non-Hermitian skin
effect and defect-induced localization in the bulk. Our
approach to characterizing the effective properties of the
system near to this localization transition is a variant
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of the two-scale asymptotic methods known variously as
k · p theory [33, 34] or high-frequency homogenization
(HFH) [35]. These two-scale methods have a long history
in mathematics [36, 37] and have been applied to a vari-
ety of settings including optics [38, 39], phononic crystals
[40], semiconductors [34], elastic composites [41], frame
and lattice structures [42, 43], materials with imperfect
interfaces [44, 45] and forced problems [46]. Most rele-
vant to our work are methods for discrete systems [47]
and for describing localization due to defects [28, 29].

The two-scale effective model proposed in this work
characterizes eigenvectors near to the localization tran-
sition as the product of a short-scale modified standing
mode and a long-scale amplitude function. The short-
scale modified standing mode is the eigenvector that ex-
ists when the system is exactly at the localization transi-
tion point. This is the non-Hermitian analogue of the ref-
erence Bloch mode used in k ·p theory and HFH [29, 33–
35]. We derive an equation for the long-scale amplitude
function which characterizes the effective properties of
the system in an asymptotic neighbourhood of the transi-
tion point. Solutions of this effective model will be either
exponentially decaying or growing away from the defect,
revealing whether an eigenvector is either localized at
the defect or the edge, respectively. The switch between
these two regimes, captured by the effective model, is the
localization transition in question.

To demonstrate our two-scale method, we consider a
model that is a variant of the non-Hermitian Hamiltoni-
ans introduced by Hatano and Nelson [19, 20], which has
non-reciprocal coupling terms and a modulated on-site
potential function. In order to illuminate the fundamen-
tal physics of the localization transition, we consider the
simplest model that captures its key features. This is a
homogeneous potential with a single defect in the cen-
ter of the array. We derive the critical defect size at
which the localization transition occurs and introduce a
two-scale ansatz to derive an effective model that holds
close to this point. This gives quantitative predictions for
eigenvectors on either side of the transition, which are lo-
calized either at the edge or at the defect, as captured by
the effective model.

The unperturbed skin effect.—We are interested in the
eigenvalues of the non-Hermitian Hamiltonian

Hψn = Vnψn + e−γψn−1 + eγψn+1, (1)

where Vn : Z → R is some potential function and γ > 0
is a real constant that characterizes the non-reciprocity
of the system.

In the unperturbed case, when Vn = v ∈ R for all n,
(1) is a truncated Toeplitz matrix with symbol given by

fH(s) = v − eγs− e−γs−1, (2)

for s ∈ S1 ⊂ C, the unit circle in the complex plane [31].
Let W be the set of all z ∈ C such that the winding
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FIG. 1. Hamiltonians with non-reciprocal couplings exhibit
the non-Hermitian skin effect whereby eigenvalues falling
within a specified region W are all localized at one edge of
the system, as shown in (c), (d) and (e). All the eigenvalues
for this 29-site system are shown in the complex plane in (a),
along with the region W. When a defect d is added to the
potential at one of the sites, this can cause an eigenvalue to
leave W and be localized at the defect site, as shown in (b).
We propose a two-scale effective model for this transition.

number of fH around z is negative. Then, it is a general
property of truncated Toeplitz matrices that any eigen-
value falling within W will correspond to an eigenvector
that is exponentially localized at one edge [31, 32]. This
phenomenon is the non-Hermitian skin effect. Some ex-
amples of eigenvectors that are localized at an edge due
to the skin effect are shown in Fig. 1(c)-(e). The corre-
sponding eigenvalues all fall within the shaded grey re-
gion W in the complex plane in Fig. 1(a). This spectrum
is that of a system of 29 sites with a defect at the center.
This defect is sufficiently large that one of the eigenval-
ues has escaped W and the corresponding eigenvector is
localized at the defect site, as shown in Fig. 1(b). Since
the eigenvalues are always real valued, they can only leave
the region W at the points E = v ± 2 cosh γ. How the
eigenvectors change as the eigenvalues cross these points
is the transition we will capture in this work.

Defect-induced localization.—To examine the funda-
mental mechanism of the transition from localization due
to the skin effect to defect-induced localization in the
bulk, we study the spectrum of the Hamiltonian (1) with
a single defect in the on-site potential. That is, we sup-
pose that Vn = v + dδn,0 where d ∈ R characterizes the
magnitude of the defect and δn,m is the Kronecker delta.
Adding a small defect will not be sufficient to cause local-
ization in the bulk as the eigenvalues will still be within
W. The localization transition occurs at a non-zero de-
fect size given by d = ±2 sinh γ. This critical defect size
causes an eigenvalue to take the value E = v ± 2 cosh γ
which falls at the transition points on the boundary of
W. The critical defect size does not depend on the back-
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Eigenmode Effective amplitude: f(εn) |U±(n)|

FIG. 2. The maximal or minimal eigenvectors of a 29-site system with a defect in the center. (a)-(e) show the eigenvector with
the largest eigenvalue in a system with a positive defect d = 2 sinh γ + αϵ. The effective amplitude predicted by our two-scale
model (6) is shown in a dotted line. Inset shows the eigenvalues in the complex plane with W shaded and the eigenvalue of the
plotted eigenvector circled in red. (f)-(j) show the analogous eigenpairs for a negative defect d = −(2 sinh γ +αϵ). γ = 0.4 and
v = 1 are used throughout and the values of α ∈ {−1, 1} and ϵ > 0 are shown above each plot.

ground potential v since changing v translates both the
spectrum and the region W. The corresponding eigen-
vectors have the form

U±(n) =

{
(±1)n n ≤ 0,

(±e−2γ)n n > 0.
(3)

They are modified standing modes in the sense that they
are standing modes (which are either periodic or anti-
periodic) on the left of the defect and decay quickly to
the right. Variants of U± for a finite-sized system are
shown in Figs. 2(c) and 2(h).

To develop an effective model for the transition we con-
sider a system that is an ϵ-perturbation of the critical
system for some 0 < ϵ≪ 1. We consider the potential

Vn = v ± (2 sinh γ + αϵ)δn,0, (4)

where α ∈ {−1, 1} captures the sign of the perturbation
away from the critical defect size.

The eigenvectors plotted in Figs. 1 and 2 display typ-
ical two-scale behaviour: oscillations on a short length
scale with a slowly varying amplitude that is modulated
on a longer scale. To capture this, we introduce the
continuous long-scale variable η = ϵn and seek a two-
scale solution as an asymptotic series ψn = Ψ(0)(η, n) +
ϵΨ(1)(η, n) + . . . with eigenvalue E = E(0) + ϵE(1) +
ϵ2E(2) + . . . . Details of this asymptotic analysis can be
found in the Supplemental Material, which has some cru-
cial differences from the traditional application to Hermi-
tian systems. The leading-order form of the eigenvector

is

Ψ(0)(η, n) = f(η)U±(n), (5)

where U±(n) are the modified standing modes given in
(3) and f(η) is a long-scale amplitude modulation that
solves the Schrödinger eigenvalue problem

cosh γfηη(η) + αδ(η)f(η) = ±E(2)f(η). (6)

This effective model characterizes the transition between
localization at the edge and at the defect site. It has
a solution which decays away from the defect (so that
f → 0 as η → ±∞) if and only if α > 0. Conversely,
when α < 0 any solution of (6) must be exponentially
growing away from the defect, meaning the eigenvector
will be localized at the edge. Thus, the model shows
that there can be localization at the defect site if and
only if the defect is larger than the critical size. The first
eigensolution of (6) is

f(η) = exp

(
− α

2 cosh γ
|η|

)
, (7)

with eigenvalue E(2) = ±(4 cosh γ)−1. Collecting the
other terms in the asymptotic expansion for the eigen-
value (see the Supplemental Material for details) gives

E = v ± 2 cosh γ ± ϵα tanh γ ± ϵ2
1

4 cosh γ
+O(ϵ3). (8)

The leading-order approximation of the eigenvector
(18) is compared to numerical solutions in Fig. 2. The
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(a) (b) Numerical
Asymptotic

FIG. 3. The maximal or minimal eigenvalues for a system
with either (a) a positive defect or (b) a negative defect, re-
spectively. Numerical values for a 29-site system with a single
defect d = ±(2 sinh γ+αϵ) at the center are compared to the
asymptotic formula (8) for γ = 0.4 and v = 1.

numerical solutions are obtained for a finite-sized system
with 29 sites and Dirichlet boundary conditions at either
ends. As a result, the eigenvectors experience some edge
effects (visible at the left edge) which are not accounted
for in the effective model. However, we see very good
agreement away from the edges including, crucially, near
to the defect site. First, we observe in 2(c) and 2(h)
that when ϵ = 0 the eigenvector is the modified standing
mode given by U± in (3). When α < 0 the eigenvec-
tors are localized at the left edge of the system due to
the skin effect. This is shown in Figs. 2(a), 2(b), 2(f) and
2(g), where we see that the effective amplitude (with f(η)
being exponentially growing away from the defect) is ac-
curately predicting the profile of the eigenvector near to
the defect. Finally, when α > 0 the modes are localized
at the defect site (n = 0). Again, the effective amplitude
gives a good prediction of the profile (with the localiza-
tion being due to the fact that f(η) is exponentially de-
caying in this case). The good agreement shown in Fig. 2
is in spite of the fact that the system is relatively small
(and the eigenvectors experience edge effects at the ends
of the array) and holds even for relatively large values of
the asymptotic parameter ϵ.

The asymptotic formula (8) for the minimal or maxi-
mal eigenvalue (which may escape W for sufficiently large
defects) is compared to numerical values in Fig. 3. The
same system of 29 sites from Fig. 2 is used. Again, we
see excellent agreement, even for large ϵ and in spite of
the edge effects that occur in the finite-sized system.

Conclusions.— Our results show that, despite the ex-
otic features of non-Hermitian systems and their some-
times counter-intuitive localization properties, defect-
induced localization transitions can be described con-
cisely and intuitively. Our effective model means that
the competition between localization at the edge and at
a defect site within the bulk can be predicted without
intensive computations. As non-Hermitian systems are
increasingly used in applications such as sensing [48, 49],
tunneling [50] and more [3, 7], it is imperative to have
at hand a broad array of analytical and numerical tools.
Our results add a valuable new approach to the toolbox
for studying localization phenomena in non-Hermitian
systems.

The two-scale effective model developed here gives in-
sight into the fundamental mechanism that causes eigen-
vectors to transition between localization at an edge and
at a defect site in the bulk due. This effective model re-
duces localization at either the edge or the defect site to
the growth or decay of a long-scale modulation function.
Meanwhile, the short-scale oscillations of eigenvectors are
captured by a modified standing wave. As well as provid-
ing new intuition, this model gives accurate predictions
of the profiles of eigenvectors on either side of the local-
ization transition, even for large values of the asymptotic
parameter and in small arrays (with edge effects due to
fixed boundary conditions).
An exciting future direction for investigation is extend-

ing these methods to non-reciprocal lattices with poten-
tials given by independent random variables on multiple
sites (known variously as the non-Hermitian Anderson
model [19–22]). Our work considered the simplest pos-
sible model that displayed the essential features of the
transition between skin and defect localization. This has
illuminated the fundamental mechanism responsible for
the competition between these two localization effects.
B.D. is supported by EPSRC under grant number

EP/X027422/1. R.V.C.’s work was funded by UK Re-
search and Innovation (UKRI) under the UK govern-
ment’s Horizon Europe funding guarantee [grant number
10033143].
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Supplementary Material

POSITIVE DEFECT

We are interested in solutions of the difference equation

vψn + (2 sinh γ + αϵ)δn,0ψn + e−γψn−1 + eγψn+1 = Eψn, (9)

where the defect d = 2 sinh γ + αϵ has been chosen to be an O(ϵ) perturbation away from the critical defect size
d = 2 sinh γ (which leads to the largest eigenvalue being exactly on the boundary of W). We introduce the continuous
long-scale variable η = ϵn and will seek a two-scale solution in terms of n and η. For convenience, we elect to switch
the O(ϵ) part of the defect onto the long-scale variable η. To do so, we make the association δn,0 = ϵδ(η). This is
a standard equivalence (used in e.g. [28]) and is taken to give the appropriate normalization between the Kronecker
and Dirac deltas when re-scaling. This can be seen formally by comparing the expressions

1 =

∫ ∞

−∞
δ(η) dη =

∫ ∞

−∞
δ(ϵn)ϵ dn, (10)

and

1 =

∞∑
n=−∞

δn,0 =

∫ ∞

−∞
δn,0 dn, (11)

where integration with respect to the discrete variable n should use the counting measure. This leads to the difference
equation

vψn + 2 sinh γδn,0ψn + αϵ2δ(η)ψn + e−γψn−1 + eγψn+1 = Eψn. (12)

We seek a two-scale solution ψn = Ψ(η, n). We can Taylor expand in the long-scale variable to see that

ψn−1 = Ψ(η − ϵ, n− 1) = Ψ(η, n− 1)− ϵΨη(η, n− 1) +
1

2
ϵ2Ψηη(η, n− 1) + . . . , (13)

ψn+1 = Ψ(η + ϵ, n+ 1) = Ψ(η, n+ 1) + ϵΨη(η, n+ 1) +
1

2
ϵ2Ψηη(η, n+ 1) + . . . , (14)

where the subscripts are used to denote differentiation with respect to that variable. In addition to this Taylor
expansion, we will seek solutions of (12) in terms of asymptotic expansions:

Ψ = Ψ(0) + ϵΨ(1) + ϵ2Ψ(2) + . . . , (15)

E = E(0) + ϵE(1) + ϵ2E(2) + . . . . (16)

Substituting (13)–(16) into (12) yields a hierarchy of equations in ϵ. At leading order, we have

vΨ(0)(η, n) + 2 sinh γδn,0Ψ
(0)(η, n) + e−γΨ(0)(η, n− 1) + eγΨ(0)(η, n+ 1) = E(0)Ψ(0)(η, n). (17)

This has solution

Ψ(0)(η, n) = f(η)U+(n), (18)

with eigenvalue E(0) = v + 2 cosh γ, where

U+(n) =

{
1 n ≤ 0,

(e−2γ)n n > 0.
(19)

and f(η) is some long-scale function that is not yet determined. This form of the leading-order solution (18) is
consistent with the traditional applications of high-frequency homogenization to Hermitian systems [35]. It is given
by U+(n), which is the mode that exists when ϵ = 0 (and is reminiscent of a standing wave, at least on the left of
the defect site), modulated by some slowly-varying amplitude function f(η). Determining f(η), which describes the
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long-scale variation of the eigenmode at leading order and thus captures whether the eigenmode is localized at the
defect or not, is the primary goals of this analysis.

Collecting the terms at order ϵ, we have the equation

vΨ(1)(η, n) + 2 sinh γδn,0Ψ
(1)(η, n) + e−γΨ(1)(η, n− 1)− e−γΨ(0)

η (η, n− 1) + eγΨ(1)(η, n+ 1) + eγΨ(0)
η (η, n+ 1)

= E0Ψ(1)(η, n) + E(1)Ψ(0)(η, n).

(20)

A solution for Ψ(1) with the same form as (18) exists provided that

−e−γΨ(0)
η (η, n− 1) + eγΨ(0)

η (η, n+ 1) = E(1)Ψ(0)(η, n). (21)

Inserting the expression (18) for Ψ(0) gives different behaviour depending on the sign of n (and, consequently, of η).
If n < 0 we have that

2 sinh γfη(η) = E(1)f(η), (22)

whereas for n > 0

−2 sinh γfη(η) = E(1)f(η). (23)

We elect to capture this sign change using the continuous variable η (since sgn(η) = sgn(n), where sgn(x) = |x|/x is
the standard sign function), yielding the first-order ODE

2 sinh γfη(η) = −E(1)sgn(η)f(η). (24)

This equation represents a crucial difference from the application of high-frequency homogenization to the corre-
sponding Hermitian system, as in [28]. When γ = 0 and the system is Hermitian, the left-hand side vanishes meaning
E(1) = 0 and the defect eigenvalue is an O(ϵ2) perturbation of E(0). In this case, if γ ̸= 0 then E(1) ̸= 0. However,
(24) is not sufficient to determine either the function f(η) or the constant E(1). We must proceed to higher orders of
ϵ and return to (24) later.

We can also collect the terms at order ϵ2, which yields the equation

vΨ(2)(η, n) + 2 sinh γδn,0Ψ
(2)(η, n) + αδ(η)Ψ(0)(η, n) + e−γΨ(2)(η, n− 1)− e−γΨ(1)

η (η, n− 1) +
1

2
e−γΨ(0)

ηη (η, n− 1)

+ eγΨ(2)(η, n+ 1) + eγΨ(1)
η (η, n+ 1) +

1

2
eγΨ(0)

ηη (η, n+ 1) = E(0)Ψ(2)(η, n) + E(1)Ψ(1)(η, n) + E(2)Ψ(0)(η, n).

(25)

Once again, a solution for Ψ(2) with short-scale dependence given by (19) can be constructed provided that the other
terms cancel. Assuming the η-dependent part of Ψ(1) also satisfies (24), we are left with

αδ(η)Ψ(0)(η, n) +
1

2
e−γΨ(0)

ηη (η, n− 1) +
1

2
eγΨ(0)

ηη (η, n+ 1) = E(2)Ψ(0)(η, n). (26)

Substituting Ψ(0)(η, n) = f(η)U+(n) from (18) gives

αδ(η)f(η)U+(n) +
1

2
e−γfηη(η)U

+(n) +
1

2
eγfηη(η)U

+(n) = E(2)f(η)U+(n), (27)

for n < 0 and

αδ(η)f(η)U+(n) +
1

2
e−γe2γfηη(η)U

+(n) +
1

2
eγe−2γfηη(η)U

+(n) = E(2)f(η)U+(n), (28)

for n > 0. In either case, this can be rearranged to give a Schrödinger eigenvalue problem f(η) and E(2):

cosh γfηη(η) + αδ(η)f(η) = E(2)f(η). (29)
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The Schrödinger eigenvalue problem (29) is our effective model for the localization at the defect site. We observe,
firstly, that it has a decaying solution f(η) → 0 as η → ±∞ for positive E(2) if and only if α > 0. To see this, we
multiply (29) by f and integrate to obtain

[cosh γfηf ]
∞
∞ − cosh γ

∫ ∞

−∞
(fη)

2 dη + αf(0)2 = E(2)

∫ ∞

−∞
f2 dη, (30)

from which it is clear that limη→±∞ fηf = 0 only if α > 0 (since we expect E(2) > 0 so that the eigenvalue will fall
outside of W and not be localized at the left edge of the system due to the skin effect). When α > 0, the solution can
be found using Fourier transforms. We let α = 1 and then in Fourier space (29) becomes

− cosh γξ2f̂(ξ) + f(0) = E(2)f̂(ξ), (31)

from which we find that

f̂(ξ) =
f(0)

E(2) + cosh γξ2
. (32)

Applying the inverse Fourier transform yields the solution

f(η) =
f(0)

2
√
E(2) cosh γ

exp

−
√

E(2)

cosh γ
|η|

 . (33)

Inspecting the value at η = 0 shows that 2
√
E(2) cosh γ = 1, from which we have that

E(2) =
1

4 cosh γ
. (34)

Fixing the normalization of f(η) to be such that supη |f(η)| = f(0) = 1, gives that

f(η) = exp

(
− 1

2 cosh γ
|η|

)
. (35)

Now that we have identified f(η), we can use (24) to find the value of E(1). Differentiating (35) yields

fη(η) = − 1

2 cosh γ
sgn(η)f(η), (36)

which can be compared with (24) to see that

E(1) = tanh γ. (37)

Bringing this all together, we have found that, if and only if α = 1 > 0, there exists an eigenmode localized at the
defect site n = 0 which has eigenvalue

E = v + 2 cosh γ + ϵ tanh γ + ϵ2
1

4 cosh γ
+O(ϵ3), (38)

and leading-order profile

ψn = U+(n) exp

(
− 1

2 cosh γ
|ϵn|

)
+O(ϵ), (39)

where U+(n) was specified in (19).
When α < 0, the effective model (29) is still solvable but its solution will not decay as η → ±∞. Indeed, we

expect the general solution of (29) to be of the form f(η) = A exp(−
√
E(2)/ cosh γη) +B exp(

√
E(2)/ cosh γη). The

constants A and B will be different for η < 0 and η > 0 to account for the discontinuity in the derivative fη(η) at
η = 0 that is introduced by the δ(η) term. Matching the solutions such that f(η) is continuous and fη(η) has a jump
of magnitude (cosh γ)−1 at η = 0 leads to the normalized solution

f(η) = exp

(
1

2 cosh γ
|η|

)
, (40)
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where we have let α = −1. Noting that

fη(η) = sgn(η)
1

2 cosh γ
f(η), (41)

and

fηη(η) =
1

4(cosh γ)2
f(η) +

1

cosh γ
δ(η)f(η), (42)

we can see that substitution into (29) yields the corresponding eigenvalue E(2) = (4 cosh γ)−1 (which is unchanged
from α < 0). However, the switch from decay to growth on either side of the defect has led to a change of sign in
(41), such that substitution into (24) leads to E(1) = − tanh γ.
Combining the analysis for the α > 0 and α < 0 cases, we find the leading-order profile of the eigenvector to be

ψn = U+(n) exp

(
− α

2 cosh γ
|ϵn|

)
+O(ϵ), (43)

with associated eigenvalue

E = v + 2 cosh γ + ϵα tanh γ + ϵ2
1

4 cosh γ
+O(ϵ3). (44)

NEGATIVE DEFECT

The above analysis can be repeated for the case of a negative defect. Here, we study the difference equation

vψn − 2 sinh γδn,0ψn − αϵ2δ(η)ψn + e−γψn−1 + eγψn+1 = Eψn, (45)

and proceed to seek solutions in terms of similar expansions similar to (15) and (16). The leading-order equation is

vΨ(0)(η, n)− 2 sinh γδn,0Ψ
(0)(η, n) + e−γΨ(0)(η, n− 1) + eγΨ(0)(η, n+ 1) = E(0)Ψ(0)(η, n). (46)

This admits the solution

Ψ(0)(η, n) = f(η)U−(n), (47)

with eigenvalue E0 = v − 2 cosh γ, where

U−(n) =

{
(−1)n n ≤ 0,

(−e−2γ)n n > 0.
(48)

Once again, the goal is to find the long-scale function f(η).
Collecting the terms at order ϵ gives the equation

vΨ(1)(η, n)− 2 sinh γδn,0Ψ
(1)(η, n) + e−γΨ(1)(η, n− 1)− e−γΨ(0)

η (η, n− 1) + eγΨ(1)(η, n+ 1)

+ eγΨ(0)
η (η, n+ 1) = E(0)Ψ(1)(η, n) + E(1)Ψ(0)(η, n).

(49)

As above, we want that

−e−γΨ(0)
η (η, n− 1) + eγΨ(0)

η (η, n+ 1) = E(1)Ψ(0)(η, n), (50)

which leads to the first-order ODE

fη(η) =
E(1)

2 sinh γ
sgn(η)f(η), (51)

which is the same as (24) up to a change of sign of the constant on the right-hand side.
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Proceeding to the ϵ2 terms, we find the equation

vΨ(2)(η, n)− 2 sinh γδn,0Ψ
(2)(η, n)− αδ(η)Ψ0(η, n) + e−γΨ2(η, n− 1)− e−γΨ1

η(η, n− 1) +
1

2
e−γΨ0

ηη(η, n− 1)

+ eγΨ2(η, n+ 1) + eγΨ1
η(η, n+ 1) +

1

2
eγΨ0

ηη(η, n+ 1) = E0Ψ2(η, n) + E1Ψ1(η, n) + E2Ψ0(η, n).

(52)

Using the same logic as above, we arrive at the equation

−αδ(η)f(η)U−(n)− 1

2
e−γfηη(η)U

−(n− 1)− 1

2
eγfηη(η)U

−(n+ 1) = E(2)f(η)U−(n), (53)

which leads to a Schrödinger eigenvalue problem for f(η) and E(2), which is analogous to (29):

cosh γfηη(η) + αδ(η)f(η) = −E(2)f(η). (54)

Repeating the analysis of (29) but with the sign of the eigenvalue changed, we see that (54) admits a decaying solution
for f(η) if and only if α > 0 and E(2) < 0. Thus, letting α = 1 leads to the solution

f(η) = exp

(
− 1

2 cosh γ
|η|

)
, (55)

along with

E(2) = − 1

4 cosh γ
. (56)

Using (51), this leads to

E(1) = − tanh γ. (57)

Finally, we can conclude that, if and only if α = 1 > 0, there exists an eigenmode localized at the defect site n = 0
which has eigenvalue

E = v − 2 cosh γ − ϵ tanh γ − ϵ2
1

4 cosh γ
+O(ϵ3), (58)

and leading-order profile

ψn = U−(n) exp

(
− 1

2 cosh γ
|ϵn|

)
+O(ϵ), (59)

where U−(n) was specified in (48).
The analysis for the α < 0 case is, again, similar to the previous section. We find that the exponentially decaying

solution (55) switches to an exponentially growing mode. Thus, we obtain the general expressions for the eigenvector

ψn = U−(n) exp

(
− α

2 cosh γ
|ϵn|

)
+O(ϵ), (60)

and its associated eigenvalue

E = v − 2 cosh γ − ϵα tanh γ − ϵ2
1

4 cosh γ
+O(ϵ3), (61)

which hold for α ∈ {−1, 1}.
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