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Abstract: The integration and innovation of finance and technology have 

gradually transformed the financial system into a complex one. Analyses of the causes 

of abnormal fluctuations in the financial market to extract early warning indicators 

revealed that most early warning systems are qualitative and causal. However, these 

models cannot be used to forecast the risk of the financial market benchmark. Therefore, 

from a quantitative analysis perspective, we focus on the mean and volatility 

uncertainties of the stock index (benchmark) and then construct three early warning 

indicators: mean uncertainty, volatility uncertainty, and ALM-G-value at risk. Based on 

the novel warning indicators, we establish a new abnormal fluctuations warning model, 

which will provide a short-term warning for the country, society, and individuals to 

reflect in advance.  

 

1. Introduction 

Basic innovation and technology are fundamental to maintaining a healthy 

economy (Brumfiel, 2008). The integration of finance and technology can optimize 

financial allocation efficiency and satisfy people’s diversified demands. Financial 

innovation has optimized the financial system but also increased financial market 

instability; thus, the economic system has gradually changed from a classical to a 

complex system (Arthur, 1999). A complex system has critical thresholds and shifts 
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abruptly from one state to another (Scheffer et al., 2009). Insights into the dynamics of 

a complex system can be gained by focusing on large fluctuations (Gabaix et al., 2003). 

The tipping points in financial markets include systemic market crashes and severe 

depressions (Robert et al., 2008). The accumulation of a series of abnormal financial 

fluctuations led to the financial crisis, which collapsed the financial system and 

increased social unemployment; the negative impact was difficult to eliminate in a short 

time. Therefore, studying abnormal financial fluctuations can help understand complex 

systems to maintain the stability and sustainability of the financial system (Pettifor, 

2020). Scientists insist that establishing an early warning system to detect abnormal 

financial fluctuations would be necessary when society avoids such fluctuations in the 

future (Buchanan, 2009). 

There are three classical early warning systems for abnormal fluctuations in 

financial markets. The estimations of these systems are mostly linear and simple, 

although the cause of many fluctuations is nonlinear in reality. Thus, combined with the 

theory of complex economic systems (Battiston et al., 2016), many models, such as the 

artificial neural network (Nag and Mitra, 1999), binary recursive tree (SR. Ghosh and 

AR. Ghosh, 2003), and hybrid causal (Lin et al., 2008) models, have been developed. 

Most warning systems focus on analyzing the causes of abnormal financial fluctuations 

to extract early warning indicators and monitor the changes in these indicators. Hinsen 

(2010) demonstrated that these indicators are overly simplistic in that they ignore the 

non-quantifiable aspects of the financial market. In addition, these models cannot 

provide the specific time of an abnormal fluctuation or reflect its impact on the 

benchmark (stock index). 

The stock market is a barometer of the economy and a signal of a country’s 

economic situation. Moreover, stocks represent a company's financial assets and 

essentially mirror its performance. Hence, the stock market can effectively indicate 

abnormal fluctuations in financial markets. Therefore, it is important to mine stock 

market information to warn about abnormal financial fluctuations. We first study the 

data characteristics of the stock indexes, including the mean of the first-order moment, 

and the volatility of the second-order moment. Second, we explore stock market risk. 
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Value at risk system (VaR) is an important risk measurement tool for stock markets. 

However, the VaR model has some limitations in terms of providing early warning 

about financial crises. It cannot predict the exact timing of crises (Nocetti, 2006). 

Additionally, under the assumption of normally distributed returns, the VaR model can 

only be applied to calm periods (Berger and Missong, 2014). This is because the 

classical VaR model cannot cover different kinds of uncertainty in the financial market, 

such as mean and volatility uncertainties. Moreover, in the context of robust statistics, 

it has been argued that the data satisfy a family of models but not a single model (Huber, 

1981; Walley, 1991).  

Peng (1997, 2004, 2006, 2008, 2019) originally developed the fundamental 

rigorous mathematical theory of nonlinear expectation. The nonlinear law of large 

numbers and nonlinear central limit theorem show that the accumulation of many small 

mean and volatility uncertainties does not disappear, resulting in model uncertainty. 

Subsequently, upper and nonlinear normal distributions are developed and used to 

describe model uncertainty. Therefore, we introduce uncertainty (mean or volatility 

uncertainties) into the VaR model. Recently, Peng et al. (2023) developed a novel VaR 

model based on volatility uncertainty: G-VaR model (Peng and Yang, 2022). Based on 

Jin and Peng’s (2016, 2021)  -max-mean estimation method, we found an adaptive 

window that satisfies the convergence result in the sample. Peng et al. (2023) 

demonstrated that the G-VaR model captures the long-term average loss of risky assets 

and performs better than the GARCH model. However, the restriction on window 

choice makes it difficult to apply the G-VaR model to more complex risk characteristics. 

To reflect the dynamic, uncertainty, and complexity of the time series, we provide 

an adaptive learning method for estimating the parameters in the G-VaR model (ALM-

G-VaR). Theoretically, the violation rate of the G-VaR model converges to the given 

risk level with a probability of 1. However, based on historical data, the violation rate 

of the G-VaR does not stable. Therefore, with a given risk level, our main idea is to 

adjust the adaptive window according to the observation of the violation rate. If the 

violation rate is larger than the given risk level, we adjust the degree of volatility 
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uncertainty in the G-VaR parameters by reducing the value of the adaptive window; 

otherwise, we increase the value of the adaptive window.  

We define abnormal financial fluctuations as a two-day downward trend with a 

stock index smaller than -5%. In general, to construct an early warning system for 

abnormal financial fluctuations, we develop three indicators: mean uncertainty, 

volatility uncertainty, and G-VaR. First, we introduce an early warning signal for the 

mean uncertainty of the stock index. By analyzing the time series characteristics of the 

stock index, we establish suitable early warning thresholds and issue warning signals 

by monitoring the absolute and relative values of mean uncertainty, which refers to the 

lower mean and the difference between the upper and lower means. Subsequently, we 

examine an early warning indicator for volatility uncertainty and establish an early 

warning threshold to monitor signals related to upper volatility and the difference 

between the upper and lower volatilities. Finally, based on volatility uncertainty, we 

devise a risk assessment benchmark, ALM-G-VaR, and establish three cautionary 

thresholds. The initial cautionary level is the G-VaR at -0.05, which is intended for the 

surveillance of abnormal fluctuations in stock prices. The two subsequent indicators 

signaling potential financial crises are the downward line below or near -0.04 and the 

last warning line below or near -0.10. We use the 2008 global financial crisis to evaluate 

the predictive power of the developed early warning system with respect to real 

abnormal financial fluctuations, and then utilize the classification performance 

evaluation metrics following further intuitive instructions. To facilitate the comparison, 

in addition to calculating the precision and miss rate, we also calculate the harmonic 

mean, 𝐹1 of the precision and recall rate. Regarding early warnings about abnormal 

financial fluctuations, the three indicators possess mutual corroborative capacity, and a 

holistic assessment can yield preliminary warning signals for impending abnormal 

fluctuations. The cautionary cues derived from the mean and volatility uncertainties 

elucidate the potential occurrence of abnormal financial fluctuations in the near future, 

whereas the specific timing of the abnormal fluctuations can be inferred from the 

cautionary indications provided by the ALM-G-VaR indicators.  
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2. Results 

This study utilizes the nonlinear expectation theory to analyze the stock index 

(benchmark) in the financial market and explore new early warning systems for 

detecting abnormal financial fluctuations. First, we construct an early warning index 

for mean uncertainty and establish appropriate warning thresholds for different 

financial markets by monitoring the lower mean and the mean differences, which can 

be predicted in advance. Second, we establish volatility uncertainty, comprising the 

upper volatility and volatility ratio, to detect abnormal fluctuation events in financial 

markets. Based on these, we further develop the ALM-G-VaR model, which initially 

issues an early warning of abnormal stock price fluctuations using the -0.05 threshold; 

then, we examine the significant downward trend of -0.04 and the ALM-G-VaR value 

of -0.10 to provide a two-day advance warning for even larger abnormal financial 

fluctuations and crises. For empirical analysis, five prominent financial market 

indexes—the Standard & Poor’s 500 index and NASDAQ index in the United States, 

Financial Times Stock Exchange 100 index in the United Kingdom, Frankfurt DAX 

Index in Germany, and Hushen 300 Index in China—are selected to capture the global 

financial market risk. For simplification, we refer to these indexes as the S&P500, IXIC, 

FTSE, GDAXI, and CSI300, respectively. An overview of the paper is presented in 

Figure 1. 
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Figure 1 Overview of the paper 

To assess the performance of the early warning system established for detecting 

abnormal financial fluctuations, we first consider the 2008 global financial crisis, a 

catastrophic event that led to the downfall of global financial markets, as an illustration 

of its effectiveness. We use stock index returns for two days from January 1, 2007 to 

January 1, 2010 to predict a financial crisis two days in advance. Subsequently, by 

expanding the dataset, we further examine the early warning system for abnormal 

financial fluctuations from January 1, 2008 to June 15, 2023. We can equate the crisis 

alert to a classification problem, where a positive class can be defined as the occurrence 

of abnormal financial fluctuations. The specific calculation method is described in 

Section 4.2. This meticulous examination allows us to make an informed assessment of 

the precision and effectiveness of these warnings.  

2.1 Time series 

The stock market is the barometer of the economy, a signal of the future economic 

situation, and is indicative of large financial fluctuations. Therefore, we focus on the 

stock market, consider the log return of stock data, and extract the changing 

characteristics from abnormal financial fluctuations. For example, for the S&P500 

index from January 1, 2007 to January 1, 2010, there was a cliff-like drop during the 

2008 global financial crisis. We set the warning line as -0.05 for the log return, and the 

warning signal is issued by the log return of S&P500 index for September 23, 2008. As 

the timing of the financial crisis is based on the stock market crash on September 23, 

2008, it can be viewed as the beginning of the 2008 global financial crisis. In 2009, log 

returns breached the early warning line on several occasions. Based on the above 

analysis, we explain that a financial meltdown is typically reflected in a significant 

downturn in stock index time series. By examining the mean uncertainty, volatility 

uncertainty, and risk measurement ALM-G-VaR, we can extract valuable information 

to investigate an effective abnormal fluctuation early warning system. To enhance 

comprehension of the article, we provide pertinent clarifications for certain technical 

terms mentioned therein, which are given in Table 1. More details on the mean and 

volatility uncertainties can be found in Section 4. 
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Table 1 Clarifications for certain technical terms 

Notation Name Explanation 

- 
Financial abnormal 

fluctuation  

Two consecutive days with the decline in the log return of 

stock index exceeding 5% 

𝜇 Lower mean Minimum value of mean uncertainty 

𝜇 Upper mean Maximum value of mean uncertainty 

𝜇 − 𝜇 Mean difference 
Difference between the maximum mean and the minimum 

mean 

𝜎 Lower volatility Minimum value of volatility uncertainty 

𝜎 Upper volatility Maximum value of volatility uncertainty 

𝜎/𝜎 Volatility ratio 
Ratio of the maximum volatility and the minimum volatility 

 

We employed the precision rate (P), miss rate (M), and harmonic mean (F1) to 

evaluate the warning performance of mean and volatility uncertainties. The P is the ratio 

of correct warning samples to the total warning samples. 

=
+

TP
P

TP FP
. 

M is the proportion of false warning samples to the total number of actual fluctuation 

samples. 

=
+

FN
M

TP FN
. 

The recall rate (R) is the proportion of correct warning samples to the total number of 

actual fluctuation samples. 

=
+

TP
R

TP FN
. 

F1 can be calculated by harmonic mean of precision and R, 

1

1 1 1 1

2

 
= + 

 F P R
. 

Furthermore, we have 

1

2

2
=

+ +

TP
F

TP FP FN
. 

2.2 Mean uncertainty 

Here, we develop the warning indicators for mean uncertainty, and monitor its 

values, namely the lower mean and the difference between the upper and lower means 

(mean difference). Subsequently, we set up appropriate early warning lines to issue 
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crisis signals. The classical mean value fails to reflect the mean aggregation due to the 

nonlinearity and uncertainty in financial market. Thus, we use the nonlinear expectation 

theory to describe the nonlinearity and uncertainty of the financial market and assume 

the log returns of the stock indexes satisfy maximal distribution. Employing the  -

max-mean parameter estimation method developed by Jin and Peng (2016, 2021), we 

further use a moving block method to estimate the mean uncertainty. Block lengths 
0n  

and 
1n   affect the degree of uncertainty; thus, we select the appropriate length by 

experimenting multiple times with difference sizes of the window. Table 2 presents the 

specific settings of window length and Section 4.2 presents the method. 

Figure 2 shows the classical, upper, and lower mean values of the S&P500 index. 

A lower mean value denotes the worst-case average return and demonstrates a 

pronounced downward trend than the classical mean value, implying a smaller return. 

Hence, we use the lower mean as an early warning indicator and set its lower bound as 

the warning line. Furthermore, when the difference between the upper and lower mean 

values is larger, the uncertainty of the mean value is increased. Thus, we set the upper 

bound as the warning line and monitor it using a crisis warning system. The warning 

lines vary for different financial markets, and the specific settings are listed in Table 2. 

 

Figure 2 Upper, lower, and classical means of the S&P500 index 

Figures 3 and 4 present the mean uncertainty of the S&P500 index. The warning 
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lines are 0.01 for the lower mean and 0.015 for the mean difference. We can observe 

that the lower mean and mean difference of the S&P500 index triggered the warning 

lines and issued warning signals on September 19, two days before the crisis. Moreover, 

on January 23, the mean uncertainty of the S&P500 index sent alerts corresponding to 

the 2008 global stock disaster. The above observation is also correct for the IXIC and 

FTSE indexes (see Table 2), which indicates that the mean uncertainty can send out 

early warning signals two days in advance, and the warning signals of the lower mean 

and mean difference can mutually support one another. In addition, owing to the delayed 

influence of Germany and the relatively minimal impact of China during the financial 

crisis, there was no alarm on the GDAXI and CSI300 indexes mean uncertainties in 

September 2008. Thus, mean uncertainty can serve as a crisis early warning indicator. 

Subsequently, to analyze the precision of mean uncertainty with respect to 

abnormal stock market fluctuations, we extracted data from January 1, 2008 to June 15, 

2023, and closely examined the precision and miss rate. Regarding the accuracy of the 

lower mean of the S&P500 index, there were 23 warning signals, 14 of which indicated 

abnormal fluctuations in the real financial market, resulting in a precision of 60.87%. 

Among the 20 abnormal financial fluctuations, six events were not warned, indicating 

a miss rate of 30.00%. With respect to the accuracy of the mean difference, the S&P500 

index has 68.97% precision and a 0.00% miss rate. By employing the same 

methodology, we can assess the accuracy of other stock indexes, resulting in an average 

precision of 63.48% for the lower mean and 67.84% for the mean difference, and an 

average miss rate of 48.92% for the lower mean and 32.23% for the mean difference. 

Both values of the F1 mean warning indicators are less than 0.7. Combined with the 

performance of mean uncertainty during the 2008 financial crisis and the past 15 years 

of abnormal financial fluctuations, mean uncertainty can serve as an early warning 

indicator of abnormal financial fluctuations. In contrast, mean uncertainty exhibits 

delayed responses and underreporting. Therefore, we consider a shift from relying 

solely on the first-order moment to incorporating the second-order moment–that is, 

volatility. 
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Figure 3 Lower mean and log return of the S&P500 index 

 

Figure 4 Mean uncertainty of the S&P500 index 

Table 2 Lower mean and mean difference of the stock indexes 

Signal Index Block Line Time Value Precision Miss 𝐅𝟏 

Lower 

mean 

S&P500 
n0: 20 

n1: 8 
<-0.01 

2008.01.23 -0.0153 
60.87% 30.00% 0.6512 

2008.09.19 -0.0114 

IXIC 
n0: 20 

n1: 9 
<-0.013 

2008.01.23 -0.0156 
62.96% 34.62% 0.6415 

2008.09.19 -0.0140 

FTSE 
n0: 20 

n1: 7 
<-0.015 

2008.01.23 -0.0209 

69.23% 55.00% 0.5455 2008.03.19 -0.0167 

2008.09.19 -0.0188 

GDAXI n0: 20 <-0.02 2008.01.23 -0.0246 58.82% 61.54% 0.4651 
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n1: 7 2008.10.13 -0.0338 

CSI300 
n0: 20 

n1: 5 
<-0.03 

2008.01.31 -0.0358 

65.52% 63.46% 0.4691 2008.06.16 -0.0351 

2008.08.13 -0.0373 

Mean 

difference 

S&P500 
n0: 20 

n1: 8 
>0.015 

2008.01.23 0.0195 

68.97 0.00% 0.8163 
2008.02.14 0.0175 

2008.04.04 0.0161 

2008.09.19 0.0159 

IXIC 
n0: 20 

n1: 9 
>0.02 

2008.01.23 0.0203 
65.71% 11.54% 0.7541 

2008.09.19 0.0209 

FTSE 
n0: 20 

n1: 7 
>0.02 

2008.01.21 0.0243 

70.59% 40.00% 0.6486 2008.03.19 0.0242 

2008.09.19 0.0234 

GDAXI 
n0: 20 

n1: 7 
>0.03 

2008.01.23 0.0337 

69.23% 30.77% 0.6923 2008.04.09 0.0315 

2008.10.13 0.0348 

CSI300 
n0: 20 

n1: 5 
>0.05 

2008.01.31 0.0590 

64.71% 78.85% 0.3188 

2008.03.20 0.0540 

2008.04.30 0.0538 

2008.07.16 0.0546 

2008.08.13 0.0501 

 

2.3 Volatility uncertainty 

Turning to the second-order moment volatility due to individual investment risk 

preferences, risk assets often exhibit a volatility aggregation phenomenon that cannot 

be properly described by the classical distribution model. Therefore, we employ the 

nonlinear expectation theory to demonstrate volatility uncertainty and devise the upper 

volatility and the ratio between the upper and lower volatility (volatility ratio) for crisis 

warning. The larger the two indicators, the greater the volatility uncertainty. Thus, we 

establish their upper bounds as warning lines, which vary for different financial markets. 

The moving block method was used to estimate volatility uncertainty. We selected 

suitable block lengths 
0n   and 

1n   for different financial markets by experimenting 

multiple times with different window sizes. The results and calculation methods are 

presented in Table 3 and Section 4.3, respectively.  

As shown in Table 3, the upper volatility and volatility ratio of the S&P500, IXIC, 
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and FTSE indexes broke the warning lines and sent warning signals on September 23. 

This indicates that volatility uncertainty can send early warning signals, and the 

warning signals of the upper volatility and volatility ratio mutually support each other. 

As Germany and China were less affected by the 2008 financial crisis, the volatility 

uncertainty of the GDAXI and CSI300 indexes did not trigger warning signals for the 

2008 financial crisis. Overall, the volatility uncertainty serves as an early warning 

indicator. Similar to the accuracy assessment conducted for mean uncertainty, we 

analyze forecasting effectiveness pertaining to volatility uncertainty. By utilizing a 

dataset spanning 15 years, we determined that the average precision of volatility 

uncertainty was 69.54% for the upper volatility and 62.62% for the volatility ratio. In 

addition, the average miss rate was 26.69% for upper volatility and 72.08% for the 

volatility ratio. The F1 values of both volatility warning indicators were less than 0.7. 

This finding suggests a significant presence of false signals within the warnings 

generated by volatility uncertainty. Furthermore, certain warning signals exhibit a lag, 

meaning that they are issued only once a crisis has already occurred, which leads to a 

high miss rate. Therefore, a precise and accurate warning model is required. 

Table 3 Upper volatility and volatility ratio of the stock indexes 

Signal Index Block Line Time Value Precision Miss 𝐅𝟏 

Upper 

volatility 

S&P500 
n0: 20 

n1: 8 
>0.03 2008.09.23 0.0397 69.23% 10.00% 0.7826 

IXIC 
n0: 20 

n1: 9 
>0.03 2008.09.23 0.0375 64.86% 7.69% 0.7619 

FTSE 
n0: 20 

n1: 7 
>0.04 2008.09.23 0.0476 72.22% 35.00% 0.6842 

GDAXI 
n0: 20 

n1: 7 
>0.04 

2008.01.29 0.0447 
72.41% 19.23% 0.7636 

2008.10.09 0.0470 

CSI300 
n0: 20 

n1: 5 
>0.05 

2008.02.13 0.0525 
68.97% 61.54% 0.4938 

2008.07.10 0.0519 

Volatility 

ratio 

S&P500 
n0: 20 

n1: 8 
>3 2008.09.23 3.0675 62.50% 75.00% 0.3571 

IXIC 
n0: 20 

n1: 9 
>2.5 2008.09.23 2.5612 62.50% 42.31% 0.6000 

FTSE 
n0: 20 

n1: 7 
>3 

2008.02.08 3.0033 

66.67% 70.00% 0.4138 2008.05.01 3.0523 

2008.07.02 3.2299 
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2008.09.23 3.3076 

GDAXI 
n0: 20 

n1: 7 
>4.5 

2008.01.29 4.5591 
71.43% 80.77% 0.3030 

2008.10.09 4.9146 

CSI300 
n0: 20 

n1: 5 
>5 2008.01.11 6.4155 50.00% 92.31% 0.1333 

By combining mean and volatility uncertainties, although they breach the warning 

lines multiple times and send warning signals before the financial crisis, there are some 

limitations to the crisis warning. The selection of window length is subjective. We 

manually adjusted the window length through multiple experiments without a 

reasonable rule system. In addition, the establishment of warning lines lags and is 

subjective, depending on the specific financial crisis. They are diverse across different 

financial markets; thus, it is difficult to establish a uniform standard for different 

financial crises and markets. Furthermore, these indicators cannot provide specific 

timing for a crisis. Some of the warning signals, like mean uncertainty, are sent two 

days before the crisis, and some like volatility uncertainty are on the day of the crisis. 

Therefore, it is difficult to investigate the beginning of the crisis. Finally, the accuracy 

of the crisis alerts was deficient. Numerous erroneous indicators are present in the 

warning signals, and many abnormal fluctuations remain unwarned. To overcome these 

limitations, we propose an accurate and comprehensive predictor of financial crises. 

2.4 ALM-G-VaR 

VaR models are widely used to measure financial market risks. However, classical 

VaR models cannot measure uncertainty in the financial market, predict the exact crisis 

timing (Nocetti, 2006), and be applied during storm periods (Berger and Missong, 

2014). Recently, Peng et al. (2023) developed a new VaR model based on volatility 

uncertainty. To overcome the restrictions on window length selection in the G-VaR 

model, we develop an adaptive learning method to automatically adjust the window 

length, the ALM-G-VaR model. For further details, see Section 4.4. Based on daily data, 

we compute the ALM-G-VaR value for a given risk level of 0.05. The results of the 

S&P500 index are presented in Figure 5, and those of the other indexes are summarized 

in Table 4.  

Figure 5 shows the excellent performance of the ALM-G-VaR model, indicating 
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that the worst-case distribution can capture local and global changes in the log return 

of the S&P500 index. We establish a threshold of -0.05 as the initial indication of 

abnormal stock market volatility. By assessing the performance of the G-VaR, we can 

extract warning signals that signify an impending crisis. From September 19 to 

September 23, the ALM-G-VaR value of the S&P500 index decreased from -0.0376 to 

-0.0839, indicating that the return (every two days) of the S&P500 index decreased by 

approximately 0.0463. The last warning point -0.0839 is close to the level of -0.10. 

Similarly, the ALM-G-VaR of the IXIC and FTSE indexes also fell off a cliff between 

September 17 and September 19, with a decrease of 0.0477 and 0.0393, respectively, 

and the last warning lines were close to -0.10. Hence, we extract two warning signs of 

the financial crisis as the downward trend is below or near -0.04 and the last warning 

point is at or near -0.10. Owing to the limited damage suffered by Germany and China’s 

financial systems during the 2008 financial crisis, the ALM-G-VaR of the GDAXI and 

CSI300 indexes are far from the warning lines in September 2008. Therefore, we can 

initially issue early warning of abnormal stock price fluctuations using the -0.05 

threshold. Subsequently, by examining the significant downward trend of -0.04 and the 

ALM-G-VaR value of -0.10, we forecast a financial crisis two days in advance. 

Furthermore, by using the data for the period of January 1, 2008 to June 15, 2023, 

we obtained the accuracy of the ALM-G-VaR early warning. Concerning the warning 

of abnormal stock price fluctuations in the S&P500 index, there were 24 instances in 

where the -0.05 ALM-G-VaR threshold was surpassed. Among these, 17 cases exhibited 

abnormal fluctuations and early warnings with a precision rate of 70.83%. Additionally, 

of the 20 abnormal fluctuations in the stock market, the predictive power of the ALM-

G-VaR was limited to 17, implying a false report rate of 15%. Hence, the average 

precision and miss rate of abnormal stock price movement warnings across the five 

stock indexes are 66.45% and 12.15%, respectively, and the average value of F1 is 

0.7560.  

Shifting our focus to financial crisis warnings, the S&P500, IXIC, and FTSE 

indexes generated warning signals on September 23, 2008 and March 16, 2020, aligned 

with the events of the financial crisis and the COVID-19 outbreak, respectively. As the 
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German financial market experienced a delayed impact from both events, the GDAXI 

stock index issued crisis warnings on October 16, 2008 and March 26, 2020. Similarly, 

the CSI300 index issued a warning on July 15, 2015, corresponding to China’s 2015 

stock market crisis. Generally, the ALM-G-VaR warning system is more impartial and 

enhances the precision of early warning systems. 

 

Figure 5 ALM-G-VaR for the S&P500 index from 2007 to 2009 

Table 4 ALM-G-VaR warning signal of the stock indexes 

Indexes Warning signal 
Warning 

time 
Value 

Precision 

rate 
Miss rate 𝐅𝟏 

S&P500 

①Value < -0.05 
2008.01.25 -0.0531 

70.83% 15.00% 0.7727 
2008.02.12 -0.0510 

②Down Trend < -0.04 

③ Second Value < -

0.10 

2008.09.19 -0.0376 

-0.0463 100% - - 
2008.09.23 -0.0839 

IXIC 

①Value < -0.05 2008.09.23 -0.0874 64.86% 7.69% 0.7619 

②Down Trend < -0.04 

③ Second Value < -

0.10 

2008.09.19 -0.0397 

-0.0477 100% - - 
2008.09.23 -0.0874 

FTSE 

①Value < -0.05 
2008.01.29 -0.0631 

65.38% 15.00% 0.7391 
2008.09.11 -0.0547 

②Down Trend < -0.04 

③ Second Value < -

0.10 

2008.09.19 -0.0570 

-0.0393 100% - - 
2008.09.23 -0.0963 

GDAXI 
①Value < -0.05 2008.01.23 -0.0585 69.44% 3.85% 0.8065 

②Down Trend < -0.04 2008.09.19 -0.0478 -0.0240 100% - - 



16 

③ Second Value < -

0.10 
2008.09.23 -0.0718 

CSI300 

①Value < -0.05 2008.01.23 -0.0513 61.76% 19.23% 0.7000 

②Down Trend < -0.04 

③ Second Value < -

0.10 

2008.09.19 -0.0871 

-0.0049 100% - - 
2008.09.23 -0.0920 

By comparing the early warning effects of the three indicators, we can observe that 

the precision of all three indicators exceeds 60%; however, the miss rate differs among 

the three indicators. The ALM-G-VaR controls it at approximately 12%, which is 

significantly lower than that of the mean and variance. Considering the F1 value, the 

average F1 value of ALM-G-VaR is higher than 0.75, whereas the average F1 values of 

the mean value and variance are lower than 0.7, which indicates that ALM-G-VaR has 

a better prediction performance. Moreover, the ALM-G-VaR indicator can distinguish 

between general and large abnormal fluctuations such as financial crises by establishing 

different early warning signals. By comparison, it can be concluded that ALM-G-VaR 

has a lower false reporting rate and a better prediction effect. 

A comprehensive analysis of the mean uncertainty, volatility uncertainty, and 

ALM-G-VaR warning indicators can provide reliable and comprehensive warning 

signals for financial crises. Based on appropriate early warning lines, a financial crisis 

may occur when the mean and volatility uncertainty indicators send warning signals. 

The timing of the crisis can be estimated using the ALM-G-VaR model, which can 

accurately forecast a financial crisis two days in advance. In conclusion, these warning 

signals confirm each other and provide valuable insights into financial crises. In 

addition, the adapted learning method can be used to calculate the mean and volatility 

uncertainties accurately and timely. 

3. Discussion 

The integration of finance and technology have increased financial allocation 

efficiency. However, it has also increased financial market uncertainty and risk, which 

can potentially cause financial crises. Therefore, it is important to establish effective 

financial crisis warning systems. Most warning systems focus on analyzing the causes 

of financial crises to extract warning indicators, which oversimplify the complex, non-
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quantifiable aspects of financial markets (Hinsen, 2010). To address this issue, it is 

essential to build an early warning system by analyzing the time series of stock indexes. 

Classical time-series models assume a deterministic data distribution, which is 

unsuitable for real financial markets that are nonlinear and uncertain. Therefore, a 

sophisticated approach is required. 

Peng (1997, 2004, 2006, 2008, 2019, 2020) originally developed a new rigorous 

mathematical theory, nonlinear expectation, and integrated it into risk measurement, for 

example, G-VaR model. By comparing the results of the G-VaR model and conventional 

risk measurement, the G-VaR model can capture the longtime average loss of risky 

assets. However, the restriction on the choice of the window makes it difficult to apply 

the G-VaR model to complex risk characteristics. Hence, we establish an adaptive 

learning method for estimating the parameter of the G-VaR (ALM-G-VaR) model. In 

theory, violation rate ( ), t  converges to   with a probability of 1, as →t ; 

however, ( ), t  is far from  in practice. Therefore, we adjust the estimation of 

parameters ( )ˆ ˆˆ ˆ, , ,   s s s s
  by adjusting the data window ( )0 1,n n  . Based on the 

sublinear expectation    and mild conditions, we prove the accuracy of the model; 

that is, the sublinear expectation of the violation rate converges to   when the amount 

of financial data tends to infinity, as ( ), ,   → →
 

t t . 

Therefore, adaptive learning methods can be applied to provide crisis warnings. 

By considering the return rate of the data and setting a warning line -0.05, it was 

observed that the stock indexes issued a warning signal on September 23, 2008, which 

provided early warning information about the arrival of the 2008 global financial crisis. 

We synthesized three warning signals—mean uncertainty, volatility uncertainty, and 

ALM-G-VaR—to provide comprehensive and accurate early warning information for 

the arrival of abnormal financial fluctuations. The results indicate that by setting 

appropriate warning lines and window lengths, the mean and volatility uncertainties 

emitted warning signals multiple times before and during the 2008 global financial 

crisis. Although mean and volatility uncertainties can serve as warning indicators, the 
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lag in issuing warning signals, lack of specificity regarding the timing of crises, and 

high miss rate pose challenges. To address these issues, we further develop the ALM-

G-VaR model for providing early warning of abnormal financial fluctuations, which 

can effectively forecast an abnormal fluctuation when its value is below -0.05. For an 

even larger anomaly, when there is a substantial decline in the ALM-G-VaR of stock 

indexes, such as when the downward trend is below or near -0.04 and the last warning 

point is at or near -0.10, financial crises can be predicted two days in advance. By 

combining the three early warning indicators, the warning signals of mean and volatility 

uncertainties illustrate that abnormal financial fluctuations may occur in the future, and 

the specific time of the abnormal fluctuations can be determined via the warning signals 

of the ALM-G-VaR indicators. 

The VaR model is widely used for risk measurement and served as the foundation 

for the ALM-G-VaR warning indicators. However, it has limitations in measuring 

extreme risk because it only considers a single level of loss probability and lacks a 

description of tail loss. Additionally, this violates the sub-additivity property proposed 

by Artzner et al. (1999), indicating that the VaR model is not a consistent risk measure. 

To address these issues, Acebi and Tasche (2002) developed an accurate risk 

measurement model, the expected shortfall (ES) model, which describes the average 

tail loss and is a consistent risk measure. Given the excellent properties of the ES model, 

the Basel Committee on Banking Supervision released a new, lower capital requirement 

for market risk, replacing the VaR model with the ES model. As the classical ES model 

also assumes that financial data follow a deterministic distribution, our future work will 

incorporate nonlinear expectations with the ES model and utilize the newly developed 

G-ES model to construct a financial crisis warning system. 

 

4. Methods 

According to the results given in Section 2, we show the calculation methods in 

details. 

4.1 Time series 
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We perform preprocessing on the stock index data. Let { }sX  be the time series 

of the stock index. The log return of stock index is denoted by 
sZ ,  

 1

1

log( ) log( ) log .−

−

= − = s
s s s

s

X
Z X X

X
 (1) 

In the following, we consider the log return of the stock index and construct mean 

uncertainty, volatility uncertainty and ALM-G-VaR warning indicators. 

4.2 Mean uncertainty 

To measure the mean uncertainty of the data, we assume that the mean of 1{ }T

s sZ =  

satisfy the maximal distribution ,s sM      , and are . .i i d   under sublinear 

expectation (see Peng et al. (2019)), where s  and 
s  represents the lower and upper 

means, respectively. Based on the   -max-mean parameter estimation method 

developed in Jin and Peng (2016, 2021), we use a moving block method to estimate the 

parameters ( ),s s  . With the initially length of historical data 
0n , considering the 

data 
0 1{ }r s n r sZ − +   , we divide them into 

0 1 1n n s− +  blocks, 

     
0 11 00 0 11 2 11, , , , , , , , , ，− + −− + + ++ + −−s ns n ns sn n s n snZ Z Z Z Z Z  

where each block has 
1n  elements, the sample mean for each moving block is 

 

1

0 11
, 0 1

1

,1 1.ˆ

n

s n i ji
s j

Z
j n n

n


− + + −==   − +


 (2) 

The lower and upper means of 
0 1{ }r s n r sZ − +    satisfy 

   : : . = − − =s s s sandZ Z  

Applying the  -max-mean method in Jin and Peng (2016, 2021), the estimations of 

lower and upper mean are given by: 

 
0 1 0 1

, ,
1 1 1 1

ˆˆ .ˆ ˆmin and max   
  − +   − +

= =s s j s s j
j n n j n n

 (3) 

4.3 Volatility uncertainty 

In this part, we assume the log return of stock index 
sZ  without mean uncertainty, 
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that is     = − − =s s sZ Z  . Similar with the subsection 4.2, we set the initially 

window lengths 
0n   and 

1n  , where 
1 0n n  . Dividing the data 

0 1{ }r s n r sZ − +     into 

0 1 1n n s− +  blocks, 

     
0 0 10 1 0 11 2 11, , , , , , , , , .s n n s n ns nn ss n sZ Z Z Z Z Z− + − + −− + − + ++

 

The sample mean for each moving block is 

                 

1

0 11
, 0 1

1

,1 1.ˆ

n

s n i ji
s j

Z
j n n

n


− + + −==   − +


                  (4) 

The estimation of volatility for each moving block is 

 
( )

0

1
2

1 ,12

,

1

ˆ
ˆ .

1

n

s n i j s ji

s j

Z

n




− + + −=
−

=
−


 (5) 

Then, the estimations of lower and upper volatility are given by: 

 
0 1 0 1

2 2 2 2

, ,
1 1 1 1

ˆˆ .ˆ ˆmin max   
  − +   − +

= =s s j s s j
j n n j n n

and  (6) 

4.4 ALM-G-VaR model 

To formulate the model of ALM-G-VaR, we first give a basic assumption for the 

log return of stock index  
1=

T

s s
Z . 

Assumption 4.1. Let 
sZ   satisfy a G-normal distribution ( )2 2, ,    s ssN   under 

sublinear expectation   , and 
sZ  be independent from 

1 2 1, , , , 2− sZ Z Z s , where 

( ), ,  s s s  are deterministic parameters of G-normal distribution. There exist positive 

constants ,l l  such that  

1 1

inf , sup , 
 

 s s
s s

l l  

where 
2 2 2 2[ ( ) ] [( ) ].   = − − − = −s s s s s sZ and Z  

Based on sublinear expectation, Peng et al. (2023) introduced a new risk 

measurement VaR model G-VaR for the time series  
1=

T

s s
Z , where G-VaR is defined 

by the sublinear expectation ( )  sI Z x   from a family of distribution   
F  , 

where ( )I  is the indicator function, 
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 ( ) ( ) G VaR : inf : . − = −     s sZ x I Z x  (7) 

The advantage of the model G-VaR (7) is that we can find a distribution such that 

( )( , ) .=   sF s x I Z x  

When 0x , an explicit solution of ( ),  F s x  is 

 
2

( , ) ,
 

  

 −
=  

+  

s s

s s s

x
F s x  (8) 

where ( )   is the cumulative distribution function of the standard normal distribution. 

Based on distribution F , the explicit formula of G-VaR model (7) is given as follows,  

 ( ) 1G VaR ,
2





 
  



−  +
− = − −   

 

s s s
s s s

s

Z  (9) 

where ( ), ,   =s s s s  . In formula (9), we use ( ), s s   to present the volatility 

uncertainty of 
sZ   at time s  , and if  =s s

  it is the classical VaR model under 

classical normal distribution. The parameters are computed via the moving block 

method. As there are constraints on the window selection, we have devised an adaptive 

learning method to automatically modify the window length, namely ALM-G-VaR 

model.  

For a given risk level  , and parameter ( )ˆ ˆˆ,ˆ ,  =s ss s
, the counting function 

 
( )( )ˆ

1
G VaR

( , ) ,






=

 −
 =

 s
t

s ss
I Z Z

t
t

 (10) 

converges to   in probability 1 as →t . In practice, we need that ( , ) t  is near 

the risk level  . Therefore, we consider to adjust the estimations ( )ˆˆ , s s
 based on 

the value of ( , 1) −s  . Note that, if ( , 1)  − s  , to improve the accuracy of 

( , ) s  , we need to add the value of ̂ s
  and reduce the value of ̂ s  . If 

( , 1)  − s , we need to reduce the value of ̂ s
 and add the value of ̂ s . That is, 
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ˆ , ( , 1) ,

ˆ , ( , 1) ,

ˆ , ( , 1) ,

   

   

   

+  − 


=  − =
 −  − 

s s

s s

s s

s

s

s

 (11) 

and 

 

ˆ , ( , 1) ,

ˆ , ( , 1) ,

ˆ , ( , 1) .

   

   

   

 −  − 


=  − =


+  − 

s s

s s

s s

s

s

s

 (12) 

In practical analysis, when ( , 1)  − s  , we consider to reduce 
0n   and add 

1n  , 

when ( , 1)  − s , we consider to add 
0n  and reduce 

1n ,  

0 0

0 0

0 0

, ( , 1) ,

, ( , 1) ,

, ( , 1) ,

 

 

 

−  − 


=  − =
 +  − 

n w s

n n s

n w s

 

and  

1 1

1 1

1 1

, ( , 1) ,

, ( , 1) ,

, ( , 1) .

 

 

 

+  − 


=  − =
 −  − 

n w s

n n s

n w s

 

Here, we use 
0w  and 

1w  to adjust 
0n  and 

1n  of the previous step, which should 

satisfy 
1 01 n n . In general, we set 

0 1 1= =w w . 

Now, we recalculate ( , ) s   with new parameters ( ), s s  , and replace 

( , ) s  with 

 
( )( )1

G VaR
( , ) ,

r
s

r r rI Z Z
s

s






=
 −

 =


 (13) 

where ( ), ,  =s s ss .  

Proposition 4.1. Let the log return of stock pricing 
sZ  satisfy 

 , ( 1) , 1 ,s jZ Y j m s jm j n= + −      (14) 

where   is a constant, and jY  satisfy a normal distribution ( )20, jN . The number 

of the element of each group m  is not given and the total number of data is =T nm . 
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Then, for a given time s  , when    0 1 0 0 1 1, ,= + −n n n w n w   ,

2 2 2 2ˆˆ ,                 s s s s
 , when    0 1 0 0 1 1, ,= − +n n n w n w  , 

2 2 2 2ˆˆ ,                 s s s s
. 

Proof: For a given risk level   and initial lengths of moving block 0n  and 1n , we 

can obtain the estimators for the upper and lower volatility ˆˆ( , ) s s
 and subsequently 

calculate ( ), 1 −s  . If ( ), 1  − s  , then we need to adjust ̂ s   and ̂ s
 

according to 0n  and 1n . 

We first consider the case ( ), 1  − s , and need to add 0n  to 0n  and reduce 

1n  to 1n , where    0 1 0 0 1 1, ,= + −n n n w n w . The adjustment estimators of volatility 

are: 

0 1 0 1

2 2 2 2

, ,
1 1 1 1

,min max   
  − +   − +

= =s s j s s j
j n n j n n

and  

where  

( )
0

1
2

1 ,12

,

1

,
1

n

s n i j s ji

s j

Z

n




− + + −=
−

=
−


 

and 

0

1

11
,

1

.

n

s n i ji
s j

Z

n


− + + −==


 

Note that    0 1 0 0 1 1, ,= + −n n n w n w , the estimators ( , ) s s  can be expressed 

as: 

0 1 0 1 0 1 0 1

2 2 2 2

, ,
1 1 1 1

m .in max   
  − + + +   − + + +

= =s s j s s j
j n n w w j n n w w

and  

Based on  0 1,n n , the estimators ( )ˆˆ , s s
 can be expressed as: 

0 1 0 1

2 2 2 2

, ,
1 1 1 1

ˆˆ .ˆ ˆmin max   
  − +   − +

= =s s j s s j
j n n j n n

and  

Without loss of generality, we assume 
0

2 2

,
ˆ ˆ =s j s  , where 

0

2

,̂ s j   is calculated by 

 
1

00 1
1

n

s n i j
i

Z −− + +
=

. Note that the sequence   10

0

2

,

wj

s j j j


=

+

 is also calculated by  
1

00 1
1

n

s n i j
i

Z −− + +
=

, 



24 

and 
0 2n m , it follows that 

0
0 0 1

2 2

, ,
ˆ ,min  

  +
      s j s j

j j j w
 

which deduces that  

2 2ˆ .       s s
 

In a similar manner, we can show that 

2 2ˆ .       s s
 

This completes the proof.                                               

Assumption 2.2. Let the parameter ( )ˆˆ , s s  satisfy  

1 1

ˆˆinf , sup . 
 

 s s
s s

l l  

Combining with Assumption 2.1, we have that the parameters ( )ˆˆ , s s  and the 

adjustment parameters ( ), s s   take value in the interval [ , ]l l  . To evaluate the 

predictive performance of the ALM-G-VaR model, we first establish the convergence 

result for ( , ) s . 

Theorem 4.1. Let Assumptions 2.1 and 2.2 hold. We have that 

lim | [ ( , )] | 0 
→

 − =
t

t . 

Proof: For a given risk level  , by the formula of ( , ) t , it follows that, 

( )( )
1

1
[ ( , )] G VaR .s

t

s s

s

t I Z Z
t




=

  =  −
   

Note that, ( )( , ) =   tF t x I Z x , and 

2
( , ) .

 

  

 −
=  

+  

t t

t t t

x
F t x  

Then, we have 

( )( )
1

1
[ ( , )] ,G VaR ,s

t

s

s

t F s Z
t




=

 = −  

where 
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( ) 1G VaR .
2

s ss
s s s

s

Z




 
  



−  +
− = − −   

 
 

Note that, 1( )−   is uniformly continuous in an any given bounded interval. For 

a given sufficiently small 0  , from the definition of sequence ( )
1

, 
s s s

 in (11) 

and (12), and Assumption 2.2, there exist sequence ( )
1

, 
s s s

 , and 
1 2( ), ( ) 0      

such that 

( ) ( )
ˆ

1 2( ) G VaR G VaR ( ),
 

     − − − s s

s sZ Z  

and thus 

( )( ) ( )( )ˆ
,G VaR ,G VaR .

2

 

 


 − − − s s

s sF s Z F s Z  

Let us first consider the time 
1 1t . If ( )1,    t , we reduce the value of 

1 1̂ +t  
and add the value of 

1 1̂ +t , and obtain adjustment parameter ( )
1 11 1, + +t t . By 

the inequality above, it follows that 

( )( ) ( )( )1 11 1

1 1

ˆ

1 1 1 11,G VaR 1,G VaR .
2

 

 


+ +

+ + + − − + − t t

t tF t Z F t Z  

Then, there exists 
2 1t t

 
such that ( )( )2

22 ,G VaR t

tF t Z


 − 
 
and 

( )2

2

1
, .t

t
   −      

Similarly, we can find 
3 2t t

 
such that ( )( ))3

3

3,G VaR t

tF t Z


 −  , and 

( )2

3

1
, .t

t
      +   

Therefore, there exists 
0 0N

 
such that when 

0t N , and thus 

1
| [ ( , )] | .t

t
  −   

Using a similar manner with ( )1,    t  , there exists 
1 0N   such that 

when 
1t N ,  

1
| [ ( , )] | .t

t
  −   

This completes the proof.                                               
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In the following, we show the convergence results of the violation rate in empirical 

analysis. Figure 6 shows the violation of S&P500 Index during January 1, 2007 to 

December 31, 2009 under the risk level 0.05 = , which should converge to   in 

probability 1 according to Theorem 4.1. Note that, after short-term adjustment, the 

violation rate is stable, which shows that the ALM-G-VaR model has high accuracy in 

risk measurement. 

 

Figure 6 The violations of S&P500 Index under the risk level 0.05 =  

We use the test of a likelihood ratio for a Bernoulli trial and the test of a 

Christofferson independent to evaluate the predictive performance of the ALM-G-VaR 

model. We conclude the testing results of stock indexes in Table 5 with 0.05 = . In 

Table 5, we calculate five indicators: Theo-Viol, Fact-Viol, ̂  , 
ucLR   and 

indLR  , 

where Theo-Viol and Fact-Viol respectively represent the value of violation in theory 

and ̂  is the sample violations rate, 
ucLR  denotes the likelihood ratio test statistics, 

indLR  denotes the Christofferson independent test statistics. In the performance of the 

indicators, Fact-Viol is close to Theo-Viol and ̂  is close to the risk level 0.05 = , 

which indicates that ALM-G-VaR model can excellently capture the risk of the log 

return of the stock index. As for the test results, if the test statistic larger than the risk 

level α, that is 0.05ucLR  , 0.05indLR  , then it implies the likelihood ratio test 
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statistics and the Christofferson independent test statistics are passed under the 

confidential level 95%. According to the values of 
ucLR  and 

indLR , we can conclude 

that almost all of stock indexes pass the two tests under the confidential level 95%. 

Therefore, the new ALM-G-VaR model has perfect predictive performance. 

Table 5 Testing of S&P 500 Index with 𝛼 = 0.05 

Index Theo-Viol Fact-Viol ̂  ucLR  
indLR  

S&P500 18.75 19 0.0507 0.9529 0.3250 

IXIC 18.75 19 0.0507 0.9529 0.0726 

FTSE 18.75 18 0.0480 0.8581 0.0527 

CSI300 18.75 21 0.0560 0.6006 0.4246 

GDAXI 18.75 18 0.0480 0.8581 0.8826 
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