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Abstract

We develop a framework for composite likelihood inference of parametric continuous-

time stationary Gaussian processes. We derive the asymptotic theory of the associated

maximum composite likelihood estimator. We implement our approach on a pair of

models that has been proposed to describe the random log-spot variance of financial

asset returns. A simulation study shows that it delivers good performance in these

settings and improves upon a method-of-moments estimation. In an application, we

inspect the dynamic of an intraday measure of spot variance computed with high-

frequency data from the cryptocurrency market. The empirical evidence supports a

mechanism, where the short- and long-term correlation structure of stochastic volatility

are decoupled in order to capture its properties at different time scales.
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1 Introduction

The search for the most accurate description of the dynamic of time-varying volatility contin-

ues to permeate financial economics. On the one hand, it has long been recognized that real-

ized variance is highly persistent and exhibits an autocorrelation function (acf) that perishes

so slowly that it can best be approximated by a stochastic process featuring long memory

(see, e.g., Andersen, Bollerslev, Diebold, and Labys, 2003; Comte and Renault, 1998; Corsi,

2009).

On the other hand, in recent years it has been suggested that the sample path of stochas-

tic volatility may be more vibrant than implied by a standard Brownian motion. This idea

was put forward by Gatheral, Jaisson, and Rosenbaum (2018), who observed that the cur-

vature of the implied volatility surface for short-term at-the-money options is consistent

with stochastic volatility being governed by a fractional Brownian motion (fBm) with a

Hurst exponent less than a half. Since then, a sequence of follow-up papers studied various

statistical procedures for gauging the roughness index of volatility, both under the physi-

cal and risk-neutral probability measure, largely confirming that “volatility is rough” (e.g.,

Bennedsen, 2020; Bolko, Christensen, Pakkanen, and Veliyev, 2023; Chong and Todorov,

2023; Wang, Xiao, and Yu, 2023).1

A workhorse in this literature is the fractional Ornstein-Uhlenbeck (fOU) process, where

the standard Brownian motion in the Gaussian Ornstein-Uhlenbeck process is replaced with

an fBM as impetus. This model is parametric, so in principle we can do full maximum

likelihood estimation (MLE) of it (Wang, Xiao, Yu, and Zhang, 2023).

In practice, MLE of the fOU process is challenging for several reasons. First, the model

is generally non-Markovian. Second, in the volatility literature the state variable in the

fOU represents the point-in-time log-variance of an asset price process. Previous work has

employed the daily log-realized variance as an observable surrogate. However, roughness is

a sample path property that concerns the behavior of a stochastic process at very short time

scales. This suggests that estimation of the fOU process should be based on much more

localized measure of log-variance. In this paper, we recover the log-spot variance at the

intraday horizon.

However, with a long sample of a discretely observed log-spot variance process even

Gaussian MLE can be prohibitive—except in special cases—because the calculation of the

determinant and inversion of the covariance matrix are computationally intensive, when the

number of observations is moderate-to-large, e.g. in excess of 1,000. To circumvent this issue,

we propose a composite likelihood estimator for parametric stationary Gaussian processes,

1A comprehensive overview of the literature is available at the Rough Volatility Network’s website:

https://sites.google.com/site/roughvol/home/rough-volatility-literature.
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which nests the fOU. The composite likelihood approach—introduced in Lindsay (1988)—

reduces the complexity of full MLE by only including lower-dimensional sub-models in the

objective function. This effectively allows it to operate on arbitrarily large samples with min-

imal extra computational cost. Furthermore, while it loses asymptotic efficiency compared

to MLE, in practice composite likelihood can be preferred when the full likelihood is imprac-

tical or difficult to evaluate. Moreover, in finite samples the loss of efficiency may not be

too severe, since the composite likelihood function can be smoother than the full likelihood

surface and, hence, much more convenient to navigate and optimize. The theoretical prop-

erties of the composite likelihood estimator have been examined in various settings, see, e.g.,

Cox and Reid (2004), Davis and Yau (2011) and Varin, Reid, and Firth (2011). It has also

been applied to many fields, including finance (Bennedsen, Lunde, Shephard, and Veraart,

2023; Pakel, Shephard, Sheppard, and Engle, 2020).

In previous work, the fOU process has been examined with a method-of-moments estima-

tor (MME), e.g. Bolko, Christensen, Pakkanen, and Veliyev (2023) and Wang, Xiao, and Yu

(2023).2 The advantages of the maximum composite likelihood estimator (MCLE) over the

MME are at least threefold. First, the MME for the Hurst parameter often relies on in-fill

asymptotic theory to derive consistency, while our composite likelihood theory is derived

within a long-span setting. The latter is appropriate, when the process is sampled discretely

on a fixed equidistant partition over an expanding horizon. Second, our simulation results

document that MCLE is more accurate than the MME. Thirdly, MCLE extracts the entire

parameter vector in a single step rather than via a two-stage approach.

A crucial weakness of the fOU process as a model for the random log-volatility of financial

asset returns is that controls both the short- and long-run persistence in a single parameter,

namely the Hurst exponent. However, roughness is a sample path property of a stochastic

process (leading to a rapid decline in the acf at short time scales), whereas long memory

is a property of the distribution function (leading to a slow decline in the acf at long time

scales). As these effects are interwined in the fOU process, it is only capable of featuring

either roughness or long memory. This shortcoming was in fact highlighted by Mandelbrot

(1982) in the context of the fBm. Set against this backdrop, we explore a stationary Gaus-

sian process from a so-called Cauchy class (Gneiting and Schlather, 2004). As for the fOU

process, the latter has three parameters to fit the dynamic dependence, but it reserves a

separate parameter to describe the short- and long-term decay. Hence, it allows to decouple

the behavior of the process at different time scales and is therefore able to account for both

roughness and long memory.

The most closely related paper within the composite likelihood literature is

2Notable exceptions are Fukasawa, Takabatake, and Westphal (2022) and Shi, Yu, and Zhang (2023),

who develop Whittle-type approximate likelihood estimation of the fOU model.
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Davis and Yau (2011). They study the theoretical properties of a pairwise likelihood es-

timator in a standard time series setting with discrete-time linear processes—not necessarily

Gaussian—where the dependence structure is determined by the decay of the coefficients in

the linear filter. By contrast, our processes evolve in continuous-time. Moreover, we develop

our theory in the general framework of q-wise composite likelihood. Even in the pairwise

setting, however, our asymptotic theory extends Davis and Yau (2011) by allowing for the

presence of a slowly varying function at infinity in the autocorrelation structure of the pro-

cess. This is relevant outside the fOU model, such as the Brownian semistationary process

with a power kernel (e.g., Barndorff-Nielsen and Schmiegel, 2009).

In our empirical application, we inspect a vast high-frequency dataset from the cryp-

tocurrency market. We compute a measure of spot variance based on an intraday realized

variance estimator. We implement the MCLE procedure on this series in order to estimate

both the fOU process and the Cauchy class. The results are striking in that the fOU, in

agreement with recent work, suggests that the log-spot variance is rough, i.e. it is described

by a Hurst parameter less than a half. Conversely, the Cauchy class strongly points toward a

dynamic, where both roughness and long memory are required to describe the time-varying

volatility. This confirm the findings from equity high-frequency data in related work of

Bennedsen, Lunde, and Pakkanen (2022).

The rest of the paper is structured as follows. In Section 2, we introduce the class

of stationary Gaussian processes and composite likelihood estimation. We also derive the

asymptotic behaviour of the MCLE. In Section 3, we introduce the fOU process and the

Cauchy class that are the concrete parametric models we investigate more in-depth. Section

4 presents a simulation study of our estimator within this framework and documents its

efficacy in small samples, also compared to a MME. Section 5 contains empirical work, where

we implement the technique on a high-frequency time series of log-spot variance estimates

from a number of cryptocurrency spot exchange rates. In Section 6, we conclude and point

to directions for further work. An appendix contains mathematical derivations.

2 Theoretical framework

In this section, we introduce the class of stationary Gaussian processes. We also present the

main idea behind composite likelihood estimation. At last, we derive an asymptotic theory

for parametric estimation of the former based on the latter.
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2.1 Stationary Gaussian processes

In this paper, we look at processes of the form

Yt = µ+ νXt, t ∈ R, (2.1)

where µ ∈ R, ν > 0, and X = (Xt)t∈R is a stationary Gaussian process with mean zero

and unit variance, i.e. the marginal distribution of Xt is standard normal. We denote the

autocovariance function (acf) of Y at lag h as γh = cov(Yt, Yt+h) = ν2E(XtXt+h) = ν2ρh,

where ρh is the acf of X .3

Assumption 2.1. The acf of X has the property

lim
h→∞

ρh = 0. (2.2)

A stationary Gaussian process is ergodic if and only Assumption 2.1 is fulfilled

(Maruyama, 1949). Since we need a law of large numbers to hold for the log-composite

likelihood function, the above can therefore be viewed as a minimal regularity condition.

2.2 Composite likelihood

We suppose ∆ > 0 is a fixed time gap and let y = (y1, y2, . . . , yn)
⊤ be a discrete realization

of n equidistant observations of the random vector (Y∆, Y2∆, . . . , Yn∆)
⊤, where Y is the sta-

tionary continuous-time process in (2.1). We assume θ ∈ Θ is a finite-dimensional parameter

vector that determines the distribution of Y , where Θ ⊂ R
p is a compact set. The data-

generating value of θ is denoted θ0. Moreover, we initially enforce that µ = 0 and this is

known to the econometrician. In Remark 1, we elaborate further on the effect of estimating

the mean.

As the model is now parametric, we can estimate θ by maximum likelihood:

θ̂MLE ≡ argmax
θ∈Θ

l(θ; y),

where l(θ; y) is the full Gaussian log-likelihood function of the sample y given θ, i.e.

l(θ; y) ∝ − log |Σn| − y⊤Σ−1
n y,

and Σn is the n× n covariance matrix of (Y∆, Y2∆, . . . , Yn∆)
⊤.

The maximum likelihood estimator, θ̂MLE, is consistent, asymptotically efficient, and

follows a limiting normal distribution under standard regularity conditions (e.g., Wooldridge,

1994).

3Throughout the paper, we loosely employ acf to represent both the autocovariance function and auto-

correlation function. These are identical for X and related through a scaling by ν2 for Y .
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However, even in the Gaussian setting, moderate values of n can render numerical opti-

mization of the log-likelihood function infeasible, because the complexity of computing the

determinant and inverting the covariance matrix grows very rapidly. For example, deploying

an algorithm such as the Cholesky factorization or LU decomposition results in a computa-

tional budget of O(n3). Less naive approaches exploit the fact that the covariance matrix

of a stationary process observed on an equidistant partition has a Toeplitz structure (e.g.,

Levinson, 1946; Durbin, 1960; Trench, 1964), yielding a faster calculation speed of O(n2).

An extra refinement has been achieved with so-called “superfast” algorithms that operate on

Toeplitz matrices using the fast Fourier transform (see Brent, Gustavson, and Yun, 1980).

The latter exhibit near-linear growth O(n log2(n)) but suffer from numerical instability in

practice (see Stewart, 2003). Moreover, the scaling of these algorithms are still inferior to

the linear rate O(n). This poses serious issues in a high-frequency setting, where n is often

prohibitively large.

Set against this backdrop, we exploit the composite likelihood framework of Lindsay

(1988), building on the earlier concept of pseudolikelihood from Besag (1974) in the spatial

setting, see also the survey by Varin, Reid, and Firth (2011). To describe the idea, assume

for the moment that y is a sample of length n of a continuous random variable Y defined

on a probability space (Ω,F ,P).4 In general, the composite likelihood estimator maximizes

a weighted product of likelihoods of marginal or conditional events. We let f denote the

density of Y and suppose that (A1, . . . ,AM) is a collection of events, Am ∈ F , with likelihood

Lm(θ; y) ∝ f(y ∈ Am; θ). The composite likelihood is then defined as

CL(θ; y) =
M
∏

m=1

Lm(θ; y)
wm, (2.3)

where w1, . . . , wM are nonnegative weights with
∑

mwm = 1. In the remainder of the paper,

we set wk = M−1 and omit it from (2.3).5

The information consists of any conditional or marginal events. Hence, many variants of

composite likelihood exist. Full likelihood is the special case CL(θ; y) = L(θ; y) = f(y; θ).

The independence likelihood is CL(θ; y) =
∏n

i=1 f(yi; θ). It permits inference on marginal

parameters only and is the full likelihood under actual independence. However, it is necessary

to add events formed from blocks of observations to estimate parameters that control the

dependence structure, such as the pairwise likelihood of Cox and Reid (2004), CL(θ; y) =

4In our setting, the observations are a discrete realization of a continuous-time process.
5Lindsay, Yi, and Sun (2011) analyze a more formal approach for designing an efficient weighting

scheme—called the Best Weighted Estimating Function (BWEF)—in order to maximize efficiency. It bears

resemblance to choosing an optimal weight matrix in GMM estimation. This is a formidable numerical

challenge in composite likelihood estimation, as it normally requires inversion of a large-dimensional matrix.

To the extend that unequal weights can improve inference, our results can be viewed as conservative.
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∏n
i=1

∏n
j=i+1 f(yi, yj; θ), or the restricted version named consecutive pairwise likelihood by

Davis and Yau (2011), CL(θ; y) =
∏n−K

i=1

∏i+K
j=i f(yi, yj; θ), which includes neighboring pairs

up to some order K ∈ N with K < n. Another candidate is the conditional likelihood

CL(θ; y) =
∏n

i=1 f(yi | y \ yi; θ).
The maximum composite likelihood estimator (MCLE) is the argmax of CL(θ; y)—or

the natural logarithm of it:

θ̂MCLE ≡ argmax
θ∈Θ

cl(θ; y),

where

cl(θ; y) = logCL(θ; y) =
M
∑

m=1

logLm(θ; y).

The composite log-likelihood function is, in general, not proportional to the full likelihood

(and therefore not always a genuine likelihood), so the model is misspecified (see, e.g., White,

1982). However, this is not an example, where the data-generating probability measure

is completely unrelated to the assumed parametric distribution. Here, the marginal (or

conditional) densities included in (2.4) are extracted from the true model and correctly

specified. Hence, the score of cl(θ; y) satisfies the first Bartlett identity and forms a collection

of unbiased estimating equations. As we show below, it follows by a law of large numbers

that θ̂MCLE is consistent for the true parameter value, θ0, rather than some pseudo-parameter

minimizing the Kullback-Leibler divergence between the true and assumed model. Moreover,

if the memory in the process is not too strong, θ̂MCLE is also asymptotically normal.

2.3 Asymptotic theory

In the present paper, we establish an asymptotic theory for a q-wise composite likelihood

estimator, where the composite likelihood function is formed as an equal weighted product

of marginal events defined via the selection of tuples of up to length q. It nests both the

independence likelihood and the pairwise likelihood as special cases. We take K ∈ N fixed

and let Q be a collection of K qj-tuples of natural numbers, where qj ∈ N, i.e. tuples of the

form kj = (0, kj
2, . . . , k

j
qj) ∈ {0} × N

qj−1 for j = 1, . . . , K, indexing which observations to

add. Here, we use the convention that N0 = ∅. To ease notation, we set q = maxj=1,...,K qj.

Moreover, we suppose without loss of generality that the indices are increasing and that

maxj=1,...,K kj
qj

< n. For kj ∈ Q, we let fkj(y
kj

i ; θ) = fkj (yi, yi+kj
2

, . . . , yi+kj
qj
; θ) denote the

density of Y kj

i = (Yi, Yi+kj
2

, . . . , Yi+kj
qj
), which by stationary is independent of i.
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The q-wise log-composite likelihood can be written

cl(θ; y) =
∑

kj∈Q

n−kj
qj

∑

i=1

log fkj(y
kj

i ; θ). (2.4)

To prove our asymptotic theory, we need a identification assumption to ensure that the

log-composite likelihood is uniquely maximized at θ0:

Assumption 2.2. We assume that for any θ ∈ Θ with θ 6= θ0 :
∑

kj∈Q fkj(y
kj , θ) 6=

∑

kj∈Q fkj(y
kj , θ0) for a set of vectors y ∈ R

q of non-zero measure.

Assumption 2.2, together with the moment condition E(| log f(y; θ)|) < ∞, are sufficient

to ensure a unique maximum at θ0 by the information inequality, see Newey and McFadden

(1994, Lemma 2.2). The existence of the moment holds trivially for the Gaussian distribution.

Moreover, in our setting the assumption can be verified if K and q are sufficiently large

relative to the dimension of θ, p. Of course, this assumes that all the parameters of the

model enter into the densities of the chosen events in Q, and that they do so in a way that

is linearly independent.

Our first result is a law of large numbers.

Theorem 2.1. Assume that the true model is the stationary Gaussian process defined in

(2.1) and that Assumptions 2.1 – 2.2 hold. Then, as n → ∞,

θ̂MCLE
P−→ θ0.

The proofs of our results are presented in Appendix A.

Next, we derive the asymptotic distribution of our estimator. The theorem consists of

several parts, because both the rate of convergence of θ̂MCLE and the shape of the limiting

distribution of the estimation error depends on the persistence of the process.

Theorem 2.2. Suppose the conditions from Theorem 2.1 hold and that θ0 is an interior

point, i.e. θ0 ∈ int(Θ). Let L∞ be a slowly varying function at infinity, i.e. limx→∞ L∞(tx)÷
L∞(x) = 1, for all t > 0. Then, as n → ∞, it holds that6

1. If
∫∞

0
γhdh < ∞ or if γh ∼ h−βL∞(h) as h → ∞ for β ∈ (1/2, 1), then

√
n
(

θ̂MCLE − θ0
) d−→ N

(

0, G(θ0)
−1
)

,

with

G(θ0)
−1 = H(θ0)

−1V (θ0)H(θ0)
−1,

6The notation f(h) ∼ g(h) means asymptotic equivalence, i.e. f(h)/g(h) → 1 as |h| → ∞.
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H(θ0) = −
∑

k∈Q

E

(

∂2

∂θ⊤∂θ
log (fk(Yk; θ)) |θ=θ0

)

,

and

V (θ0) = lim
n→∞

1

n
E
(

sn(θ)sn(θ)
⊤
)

=
1

4

∑

k1,k2∈Q

∞
∑

l=−∞

∑

j1,j2∈k1

∑

j3,j4∈k2

[

∂

∂θr

(

Σ−1
k1 (θ)

)

j1,j2

]p

r=1

×
([

∂

∂θr

(

Σ−1
k1 (θ)

)

j3,j4

]p

r=1

)⊤

× (γl+j1−j3γl+j2−j4 + γl+j1−j4γl+j2−j3) ,

where sn(θ) =
∂
∂θ
cl(θ; y). Furthermore, the infinite series defining V (θ0) is convergent.

2. If γh ∼ h−1/2L∞(h) as h → ∞, then

√
n

√

Lγ(n)

(

θ̂MCLE − θ0
) d−→ N

(

0, G(θ0)
−1
)

,

with G(θ0) and H(θ0) defined as above, but where the variability matrix is redefined as

V (θ0) = lim
n→∞

1

nLγ(n)
E
(

sn(θ)sn(θ)
⊤
)

= lim
n→∞

1

4

1

Lγ(n)

∑

k1,k2∈Q

n
∑

l=−n

∑

j1,j2∈k1

∑

j3,j4∈k2

[

∂

∂θr

(

Σ−1
k1 (θ)

)

j1,j2

]p

r=1

×
([

∂

∂θr

(

Σ−1
k2 (θ)

)

j3,j4

]p

r=1

)⊤

× (γl+j1−j3γl+j2−j4 + γl+j1−j4γl+j2−j3) ,

and Lγ is a slowly varying function, related to L∞, as defined in Appendix A.

3. If γh ∼ h−βL∞(h) as h → ∞ for β ∈ (0, 1/2), then

nβL
−1/2
2 (n)(θ̂MCLE − θ0)

d−→ H(θ0)
−1ΨZ2,H(1), (2.5)

where L2(n) = 2C2L
2
∞(n), C2 = [(1− 2β)(2− β)]−1, Ψ is a p× 1 vector with elements

Ψr =
1

2

∑

kj∈Q

∑

j1,j2∈kj

∂

∂θr

(

Σ−1
k (θ)

)

j1,j2
, (2.6)

for r = 1, . . . , p and Z2,H is a Rosenblatt process with parameter 1− β/2.

The first part covers the short memory setting with an integrable acf, but it also permits

long memory (as defined in (3.2)) with β ∈ (1/2, 1). Here, we get a standard central limit

theorem with a standard n−1/2 rate of convergence. However, because the composite like-

lihood misspecifies the true likelihood, the second Bartlett identity (or information matrix
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equality) is violated, so the Fisher information is replaced with the Godambe (1960) informa-

tion, which has a sandwich form. The ratio of these matrices determines the loss of efficiency

of θ̂MCLE relative to θ̂MLE, which achieves the Cramer-Rao lower bound asymptotically. This

is the price we pay for not doing full maximum likelihood.

The second part is the borderline case with β = 1/2, where the polynomial decay in the

long memory setting starts to impair the convergence toward the asymptotic distribution of

θ̂MCLE. Here, the variability matrix has to be scaled by an additional term, Lγ(n), whereby

the overall rate of convergence is reduced, but the limit remains Gaussian. An inspection

of the expression for Lγ(n) in Appendix A shows that, even if limh→∞ L∞(h) exists, the

convergence rate of θ̂MCLE deteriorates to log(n)n−1/2, as consistent with Davis and Yau

(2011).

In the last part, β ∈ (0, 1/2), so the acf subsides exceedingly slow. Here, we get a non-

central limit theorem with a non-standard convergence rate, which is nevertheless a classical

result in the realm of long memory processes.

In practice, the variance-covariance matrix of the composite score function in the limiting

distribution, V (θ0), of θ̂MCLE is challenging to compute, since the gradient vanishes at θ =

θ̂MCLE. Instead, we propose to estimate G−1(θ0) via a parametric bootstrap.

Our analysis extends Davis and Yau (2011) from pairwise likelihood to the q-wise setting.

However, even with q = 2 we allow for the presence of a slowly varying function in the acf,

which is important for some Gaussian processes, such as the Brownian semistationary process

with a power law kernel (e.g. Bennedsen, Lunde, and Pakkanen, 2022).

Remark 1. In the above, µ = 0 is known to hold. It is of course straightforward to transform

a problem with a known nonzero mean into the previous setting by appropriate centering.

What if the mean is unknown and, hence, estimated?

The composite likelihood estimator is derived from the score of the log-composite like-

lihood function, and since we work with Gaussian data, the stochastic terms in the score

relate to the autocovariance function of the process. Hence, the main difference between

these settings corresponds to the limit theory for autocovariances calculated with a known

mean or estimated mean. This was analyzed in the Gaussian setting by Hosking (1996),

who shows that if the memory is not too strong (i.e. short memory or long memory with

β > 1/2), there is no impact. That is, estimating the mean does not alter neither the rate

of convergence nor the limiting distribution.

On the other hand, with pervasive long memory (i.e. β < 1/2), estimation of the mean

makes a difference relative to our case 3. While the convergence rate is unchanged, the

limiting distribution is no longer a Rosenblatt distribution, but it has a more complicated

expression.7 It also instills an important finite sample downward bias in the sample acf,

7To get a better understanding of the difference, one can compare the cumulants of the limiting dis-
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which impairs the estimation in practice. We shed light on this in the simulation study.

3 A view toward stochastic volatility

In this section, we narrow down the estimation of continuous-time stationary Gaus-

sian processes to a particular pair of parametric models. The first is the frac-

tional Ornstein-Uhlenbeck process (fOU), which has attracted a lot of attention in

the recent literature on roughness in the stochastic volatility of financial asset returns

(e.g., Gatheral, Jaisson, and Rosenbaum, 2018; Fukasawa, Takabatake, and Westphal, 2022;

Bolko, Christensen, Pakkanen, and Veliyev, 2023; Wang, Xiao, and Yu, 2023). The second

is from a so-called Cauchy class, which was proposed in Gneiting and Schlather (2004). In fi-

nancial econometrics, it has—to the best of our knowledge—only been studied as a volatility

model by Bennedsen, Lunde, and Pakkanen (2022).8

We begin with a notion of roughness and memory.

Definition 1. A stationary stochastic process has roughness index α if its acf has the fol-

lowing behaviour around the origin:

(1− ρ(h)) ∼ L(h)|h|2α+1, |h| → 0, (3.1)

for a function L(h) that is slowly varying at zero and α ∈ (−1/2, 1/2).

A Brownian motion has α = 0. Moreover, because it is a continuous Gaussian process,

there is a one-to-one correspondence between the roughness index and the Hölder continuity

of its sample paths (Bennedsen, 2020). Thus, we refer to a process as being rough if it has

a negative roughness index, α < 0, as its sample paths are then more irregular—i.e. less

Hölder continuous—than those of a Brownian motion. Conversely, we call a process smooth

if it has a positive roughness index, α > 0.

Definition 2. A stationary stochastic process has long memory of degree β if its acf decays

at a polynomial rate as the lag length increases:

ρ(h) ∼ L∞(h)|h|−β, |h| → ∞, (3.2)

for some function, L∞(h), that is slowly varying at infinity, and β ∈ (0, 1].

tribution in Theorem 4.1 of Hosking (1996) with those of the Rosenblatt distribution, which are given by

κ1 = 0, κ2 = 1, and κk = 2k−1(k − 1)![σ(β)]kck, for k ≥ 2, where σ(β) = 2−1/2[(1 − 2β)(1 − β)]1/2 and

ck =
∫

1

0

∫

1

0
· · ·
∫

1

0
|x1 − x2|−β |x2 − x3|−β · · · |xk−1 − xk|−β |xk − x1|−βdx1dx2 · · · dxk.

8The Cauchy class has found widespread application in other fields, such as modeling infectious

disease spread (Meyer and Held, 2014), network traffic (Li and Lim, 2008), or forecasting wind speed

(Liu, Song, and Zio, 2021).
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The requirement on β implies that the acf is not integrable, which is another common

way to define long memory in a time series. Here, we stick to Definition 2, which suffices for

the purposes of this paper. If the acf is integrable, we say the process has short memory,

even if it is does not vanish at an exponential rate.

3.1 The fOU process

The first class of parametric stationary Gaussian processes that we entertain in this paper

is the fOU process:

dYt = −κ(Yt − µ)dt+ νdBH
t , (3.3)

where BH is a fractional Brownian motion (fBm).9

The unique stationary solution to this stochastic differential equation was derived in

Cheridito, Kawaguchi, and Maejima (2003):10

Yt = µ+ νXt, (3.4)

where Xt =

√

κ2H

HΓ(2H)

∫ t

−∞
e−κ(t−s)dBH

s and Γ is the Gamma function. The additional

scaling in front of the stochastic integral in (3.4) relative to (3.3) is a reparameterization of

the model to ensure ν can be interpreted as the standard deviation of Yt. It follows from

var
(

∫ t

−∞
e−κ(t−s)dBH

s

)

= κ−2HHΓ(2H).

The acf of the fOU is available from Garnier and Sølna (2018):

ρh =
1

2κ2H

(

1

2

∫ ∞

−∞

e−|y||κh+ y|2Hdy − |κh|2H
)

. (3.5)

The acf of the fBm decays hyperbolically with ρh = O(h2(H−1)) for H 6= 1/2,

whereas for H = 1/2 it is geometrically bounded. Moreover, it follows from

Cheridito, Kawaguchi, and Maejima (2003) that the acf of the fOU process inherits the order

of decay of the background driving fBm.

By the Kolmogorov-Chentsov theorem (Chentsov, 1956), fBm has a modification, where

the sample paths are Hölder continuous with exponent γ ∈ (0, H). So the Hurst parameter

9A fBm is a centered (mean zero) stationary Gaussian process, which is uniquely characterized by the

covariance function E
[

BH
t BH

s

]

= 1

2

(

t2H + s2H − |t − s|2H
)

. The single parameter H ∈ (0, 1) is called the

Hurst exponent.
10The fBm is not a semimartingale, except for H = 1/2 where it collapses to a standard Brownian motion

(Rogers, 1997). Therefore, the solution in (3.4) cannot be defined as a standard Itô integral, but it should

be interpreted in a stricter sense as a pathwise Riemann-Stieltjes integral. Although this is more restrictive,

it is meaningful here, since the fBm is continuous and the exponential function is of bounded variation.
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determine how regular the paths are and it is linked to the roughness index in (3.1) through

the relation α = H−1/2. Hence, forH < 1/2 the fBm process is rough, whereas for H > 1/2

it is smooth. Furthermore, it readily follows that it has long memory for H > 1/2, whereas

it is possesses short memory for H ≤ 1/2. As before, these properties are passed down to

the fOU process.

This bottom line is that the Hurst exponent controls both the roughness and memory

properties of the fOU process. This renders it capable of exhibiting either roughness or long

memory, but not both. This is also rather intuitive, since an examination of the acf of the

time-changed process BH
ct , for some c > 0, reveals that the fBm is self-similar.

3.2 The Cauchy class

There is, to the best of our knowledge, no known representation of these processes in the

form of a stochastic differential equation describing their dynamic. Hence, the Cauchy class

is solely defined via the correlation structure:

ρh = (1 + |h|2α+1)−β/(2α+1) (3.6)

for α ∈ (−1/2, 1/2) and β > 0. It follows that ρh behaves as (3.1) for h → 0 and as (3.2) for

h → ∞.

The Cauchy class can also exhibit roughness and long memory. However, whereas these

properties are forged together by the Hurst exponent for the fOU process, here the features

are decoupled and controlled by separate parameters, α and β, such that it can exhibit both

roughness (α < 0) and long memory (β < 1).

Motivated by its ability to decouple the short- and long-term persistence, this process

was studied as a empirical model for log-spot variance in Bennedsen, Lunde, and Pakkanen

(2022). They fitted it with method of moments to high-frequency data from the E-mini S&P

500 futures contract and indeed found evidence of both roughness and long memory.

4 Monte Carlo simulation

To inspect the small sample properties of our CLE procedure, we simulate the stationary

Gaussian processes from Section 3, i.e. the fOU process and Cauchy class. The parameter

vector is four-dimensional, i.e. θOU = (µ, κ, ν, α)⊤ and θCC = (µ, β, ν, α)⊤. To shed light on

the importance of Remark 1, we fix µ = 0 and examine the impact of knowing this a priori,

so µ is not estimated, and the setup where µ is inferred alongside the covariance-related

parameters.

The fOU model was studied in Bolko, Christensen, Pakkanen, and Veliyev (2023) and

Wang, Xiao, and Yu (2023) to describe the stochastic log-variance of financial asset returns,
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Yt = log σ2
t . We follow this analogue here and adopt the Monte Carlo design of the former

article by examining five different settings for θOU (listed in Table 1) ranging from very

rough and short memory (α = −0.45 or H = 0.05) to smooth and long memory (α = 0.20

or H = 0.70). We include an equal number of distinct parameter values for θCC (listed in

Table 3), keeping the roughness index fixed at the values of the Hurst exponent from the

fOU process, i.e. α = −0.45,−0.40, . . . , 0.20, while moving the long-run persistence in the

opposite direction, i.e. β = 0.25, 0.50, . . . , 1.25. This design ensures that the latter features

multiple settings with both roughness and long memory.

We simulate over the interval [0, T ], where T can be interpreted as the number of days,

setting T = 1095, 1825, 2555. This amounts to three, five, and seven years worth of data.

The intermediate value roughly matches the sample size in our empirical application. We

assume the process is observed discretely on an equispaced partition of N points per day, so

the n = N × T + 1 data vector is (Yt−1+i∆)t=1,...,T and i=0,1,...,N , where ∆ = 1/N . We follow

Christensen, Thyrsgaard, and Veliyev (2019) and Li, Todorov, and Tauchen (2013) and base

the analysis on N = 12 observations per unit interval, yielding a new observation of the log-

spot variance every second hour.

We simulate the Cauchy class via circulant embedding (e.g., Asmussen and Glynn, 2007),

which is an exact discretization that runs in O(n logn) time. However, since the acf of the

fOU needs to be evaluated with the help of numerical integration we opt for a slightly

different approach for that model. In particular, at a generic time t, the solution of the fOU

process in (3.4) implies that:

Yt = µ+ (Yt−∆ − µ)e−κ∆ + ν

√

κ2H

HΓ(2H)

∫ t

t−∆

e−κ(t−s)dBH
s .

We approximate the stochastic integral as
∫ t

t−∆
e−κ(t−s)dBH

s ≃ e−κ∆/2(BH
t −BH

t−∆) and sim-

ulate increments of the fBm with circulant embedding.

To implement CL, we need to decide the terms to include in (2.4) through the set Q. We

experiment with triwise (i.e. qj = q = 3) CLE with K = 18, where the elements of kj are

separated by a fixed amount, i.e. kj = (0, ℓ, 2ℓ) for ℓ = 1, . . . , 10, 50, 100, 200, 500, 1000,

2000, 5000, 10000. This setup means that cl(θ; y) is a summation of densities of the form

f(yi, yi+ℓ, yi+2ℓ; θ). The reported results are rather robust to the exact configuration of the

CL procedure.

We benchmark MCLE against a method-of-moments estimator (MME). We fol-

low the implementation of Wang, Xiao, and Yu (2023) for the fOU process and

Bennedsen, Lunde, and Pakkanen (2022) for the Cauchy class. The details are reviewed

in Appendix B. It is worth pointing out that the first-step MME estimator of α (or H) relies

on change-of-frequency approach based on first-differenced data. Hence, it does not depend
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on whether the mean is known or estimated. We should also emphasize that we start the

MCLE routine with the MME as initial value.

In the left-hand side of Table 1 – 2, we report the Monte Carlo average (standard error

in parenthesis) of each parameter estimate for the fOU process, while Table 3 – 4 presents

the corresponding results for the Cauchy class. The MME is shown in the right-hand side

of each table. The number of Monte Carlo replications is 10,000.

Looking at Table 1 – 2 first, we observe that both MCLE and MME perform well. The

parameters are estimated with an immaterial bias, even with a limited sample. The sole

exception is the mean-reversion parameter, κ, which is estimated with an upward bias, but

it vanishes as the sample grows and is negligible for T = 2,555. The standard errors are

small and MCLE is generally more efficient than MME.

Turning next to Table 3 – 4 for the Cauchy class, the conclusion is two-fold. With a

known mean, the distribution of the covariance-related parameter estimators is again cen-

tered around the true value with minimal sampling variation for MCLE. The main difference

is that we observe a slight upward bias in the β parameter, although it is within a Monte

Carlo standard error. By contrast, the MME of β is severely downward biased and appears

to move in the wrong direction in the presence of strong persistence (β ≪ 1). Although this

observation is present for all the rough settings, it is most pronounced for α = −0.45 and

α = −0.40. The cause of this is a too low estimate of α, which is input into the calculation

of β. The first-stage MME of the roughness parameter relies on infill asymptotic theory, and

it turns out to be severely biased for a fixed sample size. In turn, this distorts the estimates

of the remaining parameters. This highlights a significant drawback of the two-step MME

procedure.11

However, when the mean is estimated, even more than before the MCLE exhibits a

pronounced upward bias for β in the long memory configurations, although it again dissipates

as the sample size is increased. The estimator of the mean—the sample average—is unbiased

across replica, but it exhibits a great deal of sampling variation and is typically way off

target in each individual simulation, as evident from the magnitude of the standard error.

In essence, the sample average is a noisy estimator of the mean for persistent processes. As

explained in Remark 1, although mean estimation does not affect the convergence rate of our

MCLE, Hosking (1996) shows that in the long memory setting it induces a negative O(n−β)

bias in the acf. The intuition is that since process is persistent, it oscillates around the

11To investigate this issue further, in Appendix C we report simulation results from a Monte Carlo

study, where the volatility process is sampled once per day, i.e. N = 1. This shows that the bias prob-

lems in α with MME are intensified, indicating that it may be more imprecise with infrequently sam-

pled data. This is especially troublesome, since the MME is often applied to daily realized variance (e.g.

Gatheral, Jaisson, and Rosenbaum, 2018; Bennedsen, Lunde, and Pakkanen, 2022; Wang, Xiao, and Yu,

2023).
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sample average, even if it far away from the mean. This is interpreted as shorter memory.

The lower is β, the stronger is this effect. We should note that while the bias is in principle

also present for the fOU process, it is not visible. This is probably because the autoregressive

parameter is increased in parallel with the Hurst index, forcing the process back toward its

mean despite the increased dependence. In the Cauchy class, we do not exert direct control

over the degree of mean reversion.

In the close, we should point out that if one is concerned about the slow convergence

rate of the mean estimator under long memory it is possible to transform the problem by

first-differencing the data. While this drops information about the mean, it should reduce

the bias in the estimation of the autocovariance-related parameters at the expense of an

increased variance. However, as the simulation results suggest that the MCLE estimator

performs adequately even with the original data in levels, also when the mean is estimated,

we do not pursue this option here.

Overall, the results suggest that our MCLE framework works as intended, and it is at

least on par with or even outperforms the MME approach.
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Table 1: Parameter estimation of the fOU process (µ known).

Parameter Value MCLE MME

T = 1,095 T = 1,825 T = 2,555 T = 1,095 T = 1,825 T = 2,555

Panel A:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

κ 0.005 0.0057 (0.0066) 0.0052 (0.0048) 0.0052 (0.0039) 0.0106 (0.0199) 0.0085 (0.0132) 0.0075 (0.0102)

ν 1.250 1.2339 (0.4392) 1.2515 (0.0089) 1.2499 (0.0064) 1.2500 (0.0406) 1.2500 (0.0318) 1.2500 (0.0270)

α -0.450 -0.4514 (0.0069) -0.4489 (0.0056) -0.4491 (0.0045) -0.4502 (0.0133) -0.4501 (0.0104) -0.4501 (0.0088)

Panel B:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

κ 0.010 0.0121 (0.0063) 0.0109 (0.0045) 0.0107 (0.0037) 0.0140 (0.0141) 0.0124 (0.0100) 0.0118 (0.0080)

ν 0.750 0.7405 (0.0069) 0.7505 (0.0053) 0.7502 (0.0045) 0.7500 (0.0244) 0.7500 (0.0191) 0.7500 (0.0162)

α -0.400 -0.4039 (0.0083) -0.3993 (0.0067) -0.3995 (0.0056) -0.4002 (0.0131) -0.4001 (0.0103) -0.4001 (0.0087)

Panel C:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

κ 0.015 0.0185 (0.0072) 0.0162 (0.0049) 0.0159 (0.0041) 0.0171 (0.0080) 0.0162 (0.0060) 0.0159 (0.0049)

ν 0.500 0.4980 (0.0083) 0.5004 (0.0065) 0.5003 (0.0055) 0.5000 (0.0164) 0.5000 (0.0128) 0.5000 (0.0108)

α -0.200 -0.2034 (0.0155) -0.1994 (0.0121) -0.1995 (0.0102) -0.2002 (0.0125) -0.2002 (0.0097) -0.2001 (0.0082)

Panel D:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

κ 0.035 0.0408 (0.0114) 0.0364 (0.0080) 0.0361 (0.0067) 0.0371 (0.0102) 0.0362 (0.0078) 0.0359 (0.0065)

ν 0.300 0.2999 (0.0076) 0.3003 (0.0059) 0.3002 (0.0049) 0.3000 (0.0103) 0.3000 (0.0080) 0.3000 (0.0068)

α 0.000 -0.0014 (0.0171) 0.0001 (0.0132) 0.0002 (0.0110) -0.0001 (0.0117) -0.0002 (0.0091) -0.0001 (0.0077)

Panel E:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

κ 0.070 0.0823 (0.0319) 0.0726 (0.0180) 0.0718 (0.0138) 0.0732 (0.0157) 0.0720 (0.0122) 0.0715 (0.0103)

ν 0.200 0.2032 (0.0245) 0.2008 (0.0129) 0.2004 (0.0096) 0.2000 (0.0079) 0.2000 (0.0061) 0.2000 (0.0052)

α 0.200 0.2015 (0.0276) 0.1995 (0.0187) 0.1995 (0.0146) 0.1998 (0.0109) 0.1998 (0.0085) 0.1999 (0.0071)

Note. We simulate the process in the caption of the table 10,000 times on the interval [0, T ], where T is interpreted as the number of days. There are N = 12 observations

per unit interval, corresponding to an observation every second hour. The true value of the parameter vector appear to the left in Panel A – E. We estimate θ with the

maximum composite likelihod estimation (MCLE) procedure developed in the main text, and benchmark it against a method-of-moments estimator (MME). The table

reports the Monte Carlo average value of each parameter estimate across simulations (standard deviation in parenthesis).
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Table 2: Parameter estimation of the fOU process (µ estimated).

Parameter Value MCLE MME

T = 1,095 T = 1,825 T = 2,555 T = 1,095 T = 1,825 T = 2,555

Panel A:

µ 0.000 -0.0007 (0.3250) 0.0013 (0.2053) 0.0005 (0.1461) -0.0005 (0.2582) 0.0005 (0.1647) 0.0001 (0.1208)

κ 0.005 0.0077 (0.0075) 0.0059 (0.0047) 0.0057 (0.0039) 0.0132 (0.0232) 0.0094 (0.0143) 0.0080 (0.0107)

ν 1.250 1.2326 (0.2323) 1.2515 (0.0281) 1.2503 (0.0168) 1.2500 (0.0406) 1.2500 (0.0318) 1.2500 (0.0270)

α -0.450 -0.4506 (0.0065) -0.4488 (0.0054) -0.4491 (0.0045) -0.4502 (0.0133) -0.4501 (0.0104) -0.4501 (0.0088)

Panel B:

µ 0.000 -0.0003 (0.0933) 0.0002 (0.0632) 0.0000 (0.0452) -0.0004 (0.0936) 0.0001 (0.0622) -0.0001 (0.0467)

κ 0.010 0.0133 (0.0067) 0.0114 (0.0047) 0.0110 (0.0038) 0.0150 (0.0150) 0.0128 (0.0103) 0.0120 (0.0082)

ν 0.750 0.7405 (0.0069) 0.7505 (0.0054) 0.7502 (0.0045) 0.7500 (0.0244) 0.7500 (0.0191) 0.7500 (0.0162)

α -0.400 -0.4034 (0.0080) -0.3992 (0.0066) -0.3994 (0.0055) -0.4002 (0.0131) -0.4001 (0.0103) -0.4001 (0.0087)

Panel C:

µ 0.000 -0.0004 (0.0978) 0.0002 (0.0708) -0.0000 (0.0556) -0.0004 (0.0972) 0.0001 (0.0699) -0.0001 (0.0556)

κ 0.015 0.0203 (0.0076) 0.0170 (0.0051) 0.0164 (0.0042) 0.0182 (0.0086) 0.0168 (0.0062) 0.0163 (0.0050)

ν 0.500 0.4986 (0.0082) 0.5007 (0.0065) 0.5005 (0.0054) 0.5000 (0.0164) 0.5000 (0.0128) 0.5000 (0.0108)

α -0.200 -0.2018 (0.0149) -0.1987 (0.0119) -0.1990 (0.0101) -0.2002 (0.0125) -0.2002 (0.0097) -0.2001 (0.0082)

Panel D:

µ 0.000 -0.0001 (0.0682) 0.0002 (0.0533) 0.0000 (0.0450) -0.0001 (0.0677) 0.0002 (0.0528) -0.0000 (0.0447)

κ 0.035 0.0438 (0.0117) 0.0381 (0.0082) 0.0372 (0.0068) 0.0390 (0.0107) 0.0374 (0.0080) 0.0367 (0.0066)

ν 0.300 0.3009 (0.0075) 0.3009 (0.0058) 0.3006 (0.0049) 0.3000 (0.0103) 0.3000 (0.0080) 0.3000 (0.0068)

α 0.000 0.0005 (0.0163) 0.0012 (0.0129) 0.0010 (0.0108) -0.0001 (0.0117) -0.0002 (0.0091) -0.0001 (0.0077)

Panel E:

µ 0.000 0.0003 (0.0691) 0.0002 (0.0591) 0.0001 (0.0538) 0.0003 (0.0688) 0.0002 (0.0589) 0.0001 (0.0534)

κ 0.070 0.0837 (0.0177) 0.0745 (0.0130) 0.0735 (0.0109) 0.0795 (0.0158) 0.0765 (0.0120) 0.0752 (0.0101)

ν 0.200 0.2007 (0.0073) 0.1999 (0.0058) 0.1999 (0.0049) 0.2000 (0.0079) 0.2000 (0.0061) 0.2000 (0.0052)

α 0.200 0.1937 (0.0146) 0.1945 (0.0123) 0.1955 (0.0101) 0.1998 (0.0109) 0.1998 (0.0085) 0.1999 (0.0071)

Note. We simulate the process in the caption of the table 10,000 times on the interval [0, T ], where T is interpreted as the number of days. There are N = 12 observations

per unit interval, corresponding to an observation every second hour. The true value of the parameter vector appear to the left in Panel A – E. We estimate θ with the

maximum composite likelihod estimation (MCLE) procedure developed in the main text, and benchmark it against a method-of-moments estimator (MME). The table

reports the Monte Carlo average value of each parameter estimate across simulations (standard deviation in parenthesis).
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Table 3: Parameter estimation of the Cauchy class (µ known).

Parameter Value MCLE MME

T = 1,095 T = 1,825 T = 2,555 T = 1,095 T = 1,825 T = 2,555

Panel A:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

β 0.250 0.3256 (0.2026) 0.3469 (0.1611) 0.3387 (0.1508) 0.1718 (0.0980) 0.1537 (0.0814) 0.1446 (0.0714)

ν 1.250 1.2129 (0.0701) 1.2492 (0.0666) 1.2491 (0.0629) 1.2489 (0.0720) 1.2491 (0.0666) 1.2491 (0.0628)

α -0.450 -0.4478 (0.0270) -0.4395 (0.0188) -0.4403 (0.0176) -0.4807 (0.0100) -0.4817 (0.0081) -0.4822 (0.0072)

Panel B:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

β 0.500 0.5437 (0.1704) 0.5398 (0.1397) 0.5336 (0.1271) 0.3521 (0.1207) 0.3392 (0.1020) 0.3317 (0.0904)

ν 0.750 0.7278 (0.0202) 0.7501 (0.0179) 0.7500 (0.0158) 0.7500 (0.0211) 0.7501 (0.0178) 0.7500 (0.0157)

α -0.400 -0.4000 (0.0220) -0.3960 (0.0174) -0.3966 (0.0159) -0.4594 (0.0134) -0.4594 (0.0104) -0.4593 (0.0088)

Panel C:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

β 0.750 0.7958 (0.1196) 0.7583 (0.0928) 0.7562 (0.0799) 0.7719 (0.1382) 0.7534 (0.1232) 0.7447 (0.1113)

ν 0.500 0.4822 (0.0154) 0.4999 (0.0130) 0.4999 (0.0111) 0.4998 (0.0162) 0.4999 (0.0129) 0.4999 (0.0110)

α -0.200 -0.2041 (0.0174) -0.1997 (0.0137) -0.1997 (0.0116) -0.2599 (0.0129) -0.2598 (0.0099) -0.2597 (0.0084)

Panel D:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

β 1.000 1.0706 (0.1052) 1.0049 (0.0785) 1.0035 (0.0669) 1.0239 (0.1587) 1.0102 (0.1326) 1.0051 (0.1158)

ν 0.300 0.2886 (0.0085) 0.2999 (0.0071) 0.2999 (0.0060) 0.2998 (0.0090) 0.2999 (0.0070) 0.2999 (0.0060)

α 0.000 -0.0028 (0.0113) 0.0001 (0.0087) 0.0001 (0.0074) -0.0186 (0.0120) -0.0185 (0.0092) -0.0184 (0.0078)

Panel E:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

β 1.250 1.3442 (0.1070) 1.2542 (0.0788) 1.2529 (0.0672) 1.2885 (0.1847) 1.2788 (0.1471) 1.2757 (0.1257)

ν 0.200 0.1921 (0.0056) 0.1999 (0.0046) 0.1999 (0.0039) 0.1999 (0.0058) 0.1999 (0.0045) 0.2000 (0.0039)

α 0.200 0.1984 (0.0085) 0.2000 (0.0065) 0.2000 (0.0055) 0.2406 (0.0109) 0.2407 (0.0085) 0.2408 (0.0072)

Note. We simulate the process in the caption of the table 10,000 times on the interval [0, T ], where T is interpreted as the number of days. There are N = 12 observations

per unit interval, corresponding to an observation every second hour. The true value of the parameter vector appear to the left in Panel A – E. We estimate θ with the

maximum composite likelihod estimation (MCLE) procedure developed in the main text, and benchmark it against a method-of-moments estimator (MME). The table

reports the Monte Carlo average value of each parameter estimate across simulations (standard deviation in parenthesis).
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Table 4: Parameter estimation of the Cauchy class (µ estimated).

Parameter Value MCLE MME

T = 1,095 T = 1,825 T = 2,555 T = 1,095 T = 1,825 T = 2,555

Panel A:

µ 0.000 0.0009 (0.3620) 0.0005 (0.3469) 0.0002 (0.3374) 0.0009 (0.3615) 0.0005 (0.3467) 0.0002 (0.3368)

β 0.250 0.5830 (0.1002) 0.5521 (0.0833) 0.5258 (0.0770) 0.2878 (0.1094) 0.2448 (0.0932) 0.2195 (0.0811)

ν 1.250 1.1631 (0.0156) 1.2018 (0.0149) 1.2042 (0.0139) 1.1975 (0.0163) 1.2018 (0.0149) 1.2044 (0.0140)

α -0.450 -0.4169 (0.0086) -0.4168 (0.0073) -0.4192 (0.0067) -0.4807 (0.0100) -0.4817 (0.0081) -0.4822 (0.0072)

Panel B:

µ 0.000 0.0007 (0.1403) 0.0005 (0.1273) 0.0003 (0.1194) 0.0007 (0.1399) 0.0005 (0.1271) 0.0003 (0.1189)

β 0.500 0.6945 (0.1022) 0.6602 (0.0863) 0.6393 (0.0788) 0.4657 (0.1077) 0.4325 (0.0904) 0.4109 (0.0807)

ν 0.750 0.7155 (0.0106) 0.7393 (0.0096) 0.7405 (0.0086) 0.7370 (0.0111) 0.7394 (0.0096) 0.7406 (0.0086)

α -0.400 -0.3817 (0.0097) -0.3814 (0.0085) -0.3836 (0.0079) -0.4594 (0.0134) -0.4594 (0.0104) -0.4593 (0.0088)

Panel C:

µ 0.000 0.0005 (0.0779) 0.0004 (0.0655) 0.0003 (0.0585) 0.0005 (0.0775) 0.0004 (0.0653) 0.0003 (0.0581)

β 0.750 0.8573 (0.1003) 0.8014 (0.0792) 0.7906 (0.0694) 0.8892 (0.0847) 0.8454 (0.0850) 0.8204 (0.0830)

ν 0.500 0.4765 (0.0133) 0.4956 (0.0115) 0.4965 (0.0100) 0.4938 (0.0141) 0.4957 (0.0114) 0.4966 (0.0099)

α -0.200 -0.1953 (0.0121) -0.1932 (0.0101) -0.1946 (0.0090) -0.2599 (0.0129) -0.2598 (0.0099) -0.2597 (0.0084)

Panel D:

µ 0.000 0.0002 (0.0321) 0.0001 (0.0258) 0.0001 (0.0223) 0.0002 (0.0319) 0.0002 (0.0257) 0.0001 (0.0221)

β 1.000 1.0986 (0.1017) 1.0223 (0.0763) 1.0165 (0.0655) 1.1162 (0.1202) 1.0767 (0.1063) 1.0567 (0.0973)

ν 0.300 0.2869 (0.0083) 0.2988 (0.0069) 0.2991 (0.0059) 0.2981 (0.0087) 0.2988 (0.0069) 0.2991 (0.0059)

α 0.000 0.0000 (0.0104) 0.0020 (0.0082) 0.0015 (0.0071) -0.0186 (0.0120) -0.0185 (0.0092) -0.0184 (0.0078)

Panel E:

µ 0.000 0.0001 (0.0162) 0.0001 (0.0128) 0.0001 (0.0108) 0.0001 (0.0161) 0.0001 (0.0127) 0.0001 (0.0107)

β 1.250 1.3601 (0.1066) 1.2635 (0.0784) 1.2596 (0.0670) 1.3588 (0.1571) 1.3252 (0.1303) 1.3097 (0.1148)

ν 0.200 0.1915 (0.0055) 0.1995 (0.0046) 0.1997 (0.0039) 0.1992 (0.0058) 0.1995 (0.0045) 0.1997 (0.0039)

α 0.200 0.1994 (0.0083) 0.2007 (0.0064) 0.2005 (0.0055) 0.2406 (0.0109) 0.2407 (0.0085) 0.2408 (0.0072)

Note. We simulate the process in the caption of the table 10,000 times on the interval [0, T ], where T is interpreted as the number of days. There are N = 12 observations

per unit interval, corresponding to an observation every second hour. The true value of the parameter vector appear to the left in Panel A – E. We estimate θ with the

maximum composite likelihod estimation (MCLE) procedure developed in the main text, and benchmark it against a method-of-moments estimator (MME). The table

reports the Monte Carlo average value of each parameter estimate across simulations (standard deviation in parenthesis).
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5 Empirical application

We implement our composite likelihood procedure on high-frequency data from the cryp-

tocurrency market.12 We look at the five largest free-floating coins in terms of market

value at the end of 2023 (see, e.g., coingecko.com): Bitcoin (BTC), Ethereum (ETH), Bi-

nance (BNB), Solana (SOL), and Ripple (XRP). We examine the evolution of their spot

exchange rate against Tether (USDT). The latter is a so-called “stablecoin”, whose value

is pegged at parity against the US dollar, i.e. 1USDT = 1USD.13 We downloaded millisec-

ond time-stamped tick-by-tick data free of charge from the Binance archive.14 Following

Hansen, Kim, and Kimbrough (2022), we restrict attention to the period after January 1,

2019, where trading volume on the Binance platform was adequate. We collect data until

December 31, 2023, so the sample consists of T = 1,826 days. The exception is SOLUDST

that is only available from August 11, 2020 and therefore has a slightly shorter span of

T = 1,238 days.

Table 5: Descriptive statistics of cryptocurrency high-frequency data.

fOU Cauchy

Ticker N ∆ms
N RV 100× κ ν α β ν α

BTCUSDT 1,781,576 48.5 15.8 0.323
(0.296)

1.265
(0.010)

−0.384
(0.009)

0.337
(0.074)

1.256
(0.060)

−0.218
(0.012)

ETHUSDT 663,552 130.2 19.8 0.243
(0.281)

1.225
(0.010)

−0.383
(0.010)

0.306
(0.072)

1.216
(0.062)

−0.220
(0.011)

BNBUSDT 372,319 232.1 21.6 0.204
(0.282)

1.095
(0.009)

−0.385
(0.010)

0.287
(0.069)

1.088
(0.051)

−0.226
(0.012)

SOLUSDT 348,259 248.1 29.7 0.092
(0.252)

1.300
(0.011)

−0.366
(0.011)

0.187
(0.070)

1.294
(0.077)

−0.209
(0.013)

XRPUSDT 309,173 279.5 24.6 0.459
(0.322)

1.167
(0.009)

−0.378
(0.009)

0.368
(0.075)

1.156
(0.054)

−0.205
(0.012)

Note. In the left-hand side of this table, we show descriptive statistics of the cryptocurrency high-frequency data. “Ticker” is

the short name of the exchange rate (e.g., BTC = Bitcoin and USDT = Tether). N is the average daily number of transactions,

while ∆ms

N in the associated intertrade duration (in milliseconds). RV is average the two-hour realized variance, converted to

an annualized standard deviation. In the right-hand side of the table, we report parameter estimates of the fOU process and

the Cauchy class (standard errors computed via a parametric bootstrap are placed underneath in parenthesis).

12These markets are ideal to investigate the pathwise properties of spot volatility, since trading is more

or less never interrupted. In contrast, other asset classes feature periodic market closure. This can distort

estimation of the persistence, since intermittent data are missing, potentially leading to incorrect matching

of observations for the calculation of the sample acf.
13According to Tether Limited, the token is backed one-to-one against fiat currency or cash equivalents

(e.g., short-dated US Treasury bonds), although the alleged reserves were never audited. This is cause of

much controversy and has lead to occasional sell-offs in USDT over time, where its price temporarily dropped

far below parity against the USD. By and large, however, Tether maintains a fairly constant price at the

official peg with limited volatility.
14https://data.binance.vision/?prefix=.
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In the left-hand side of Table 5, we provide a summary of the amount of transaction data

available. The selected pairs are vastly liquid. For example, BTCUSDT averages 1,781,576

transactions per day (median of 1,045,734), equivalent to an intertrade duration of 48.5

milliseconds (median of 82.6). Meanwhile, the least liquid pair XRPUSDT still has about

four trades per second.15

Even though the bid-ask spread in the selected coins is routinely less than a basis point,

sampling the spot exchange rate process at the tick-by-tick level is evidently going to instill

a nontrivial amount of microstructure noise in the derived realized variance measure (see,

e.g., Hansen and Lunde, 2006). To avoid this, we create a 15-second equidistant transaction

price series, corresponding to n = 5,760 daily log-price increments, by pre-averaging observa-

tions that are nearest to each time point (Jacod, Li, Mykland, Podolskij, and Vetter, 2009;

Mykland and Zhang, 2016; Podolskij and Vetter, 2009a,b).

Figure 1: Properties of BTCUSDT spot variance.

Panel A: Diurnal variation. Panel B: Log-daily realized variance.
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Note. In Panel A, we plot a nonparametric estimator of the intraday periodicity in the spot variance of BTCUSDT. We sample

the price process every 15th second from January 1, 2019 to December 31, 2023. Time 0 is midnight in Coordinated Universal

Time (UTC). The line is a 5-minute moving average. In Panel B, we plot the daily realized variance (expressed in annualized

standard deviation terms) computed after removal of the estimated diurnal pattern. The latter has been log-transformed.

In the Panel A of Figure 1, we plot an estimate of the intraday periodicity in the spot

15As a comparison, from January 1, 2019 to October 14, 2021 the average daily number of transactions

in the front contract of the E-mini S&P 500 futures (ES) was 318,157 (median of 267,100 and maximum of

1,604,309). Meanwhile, the dollar volume in the ES was about 2.5 times larger than in the BTCUSDT.
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variance of the cryptocurrency market. Here, BTCSUDT serves as a illustration, but in

general the volatility of the various exchange rates exhibit near-identical behavior, indicative

of a strong commonality. We employ the nonparametric estimator of Taylor and Xu (1997),

which averages the time-of-the-day squared 15-second log-returns (a proxy for the average

point-in-time intraday variance) and normalizes the sum of these numbers to one to form

a seasonality estimate. As readily seen, there is a discernible nonstationary component in

the intraday evolution of the volatility of BTCUSDT, which features a complex intraday

seasonality pattern. This clashes with our assumed stationarity in (2.1), which can distort

the estimation of the stationary Gaussian processes. To avoid this, we pre-filter the 15-

second log-return series with the estimated diurnal coefficient to ensure that the rescaled

time series is closer to stationary.

We next construct a non-overlapping 2-hour realized variance, which is input into the

numerical optimization procedure. To ensure that price jumps do not interfere with our

estimation results, we zero out too large absolute log-returns with the truncation approach

of Mancini (2009). In Panel B of Figure 1, we plot the resulting log-daily realized variance

series, adding up the local diurnal-corrected realized variance estimates to the daily horizon.

As expected, it displays a lot of persistence. The typical value of realized variance across

currencies is shown in Table 5. The estimates imply that the diffusive variance is rather

high, on average, and somewhat in line with the overall level of the total quadratic return

variation often seen in individual stocks.

The two stationary Gaussian processes from Section 3 are estimated following the design

from Section 4. To get a gauge at the magnitude of the standard errors inherent in the

parameter estimates, we employ a parametric bootstrap with 1,000 repetitions. The results

are presented in the right-hand side of Table 5. We only include the parameters relating to

the acf, since the mean is always estimated in line with the sample average of log-realized

variance.

We observe that the roughness index of log-spot variance is located around -0.40 for the

fOU process, which we recall is related to the Hurst exponent via the relation α = H − 1/2.

Hence, as consistent with the recent literature on rough volatility, we uncover that there is

overwhelming evidence in support of the variance process being more erratic than a standard

Brownian motion at short time scales (see, e.g. Bolko, Christensen, Pakkanen, and Veliyev,

2023; Fukasawa, Takabatake, and Westphal, 2022; Gatheral, Jaisson, and Rosenbaum, 2018;

Wang, Xiao, and Yu, 2023). The κ parameter is very close to zero, so the process exhibits

near-unit root behavior.

Turning next to the Cauchy class, the results are striking. On the one hand, α is now

estimated around -0.20. While the values are much higher than for the fOU process, they are

still located far in roughness space. On the other hand, β is estimated far in the long memory
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range around 0.30 – 0.35. Noting that the link between β and the fractional differencing pa-

rameter d in a discrete-time ARFIMA(p,d,q) process is β = 1−2d (see Brockwell and Davis,

1991, equation 13.2.1), this corresponds to a d of about 0.30 – 0.40, on average. This agrees

with early evidence from the literature on modeling and forecasting realized variance as a

fractionally integrated process, see, e.g., Andersen, Bollerslev, Diebold, and Labys (2000),

who report that d ≃ 0.40 for foreign exchange rates.

Figure 2: Heatmap of composite likelihood function for BTCUSDT.

Panel A: fOU. Panel B: Cauchy.
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Note. We create a heatmap of the composite likelihoood function for the fOU process (in Panel A) and Cauchy class (in

Panel B). A cooler/warmer temperature (blue/red) indicates that the likelihood is lower/higher. We fix the mean and standard

deviation (µ and ν) at the sample average and sample standard deviation of the log-realized variance and vary the remaining

free parameters over a broad range of the parameter space. The MCLE is reported with a black cross.

In Figure 2, we construct a heatmap of the composite likelihood function for the BT-

CUSDT spot exchange rate. Panel A is for the fOU process, while Panel B is for the Cauchy

class. To reduce the plot to a two-dimensional plane, we fix µ and ν at the sample av-

erage and sample standard deviation of the log-realized variance, while varying κ and β

over a broad range of the parameter space and α through the permissible area. The color

code indicates the height of the likelihood function with higher (lower) contour values being

indicated as a warmer (cooler) temperature.16

As consistent with the parameter estimates of BTCUSDT from Table 5, Panel A of

Figure 2 indicates that the CL of the fOU process prefers a rough dynamic with a Hurst

16We should emphasize that this piece of analysis is not readily available for the MME approach.
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exponent less than a half. The optimal value of the mean reversion hovers close to the

boundary of the parameter space at zero, where the fOU process becomes a scaled version of

the non-stationary fBm. Shi and Yu (2022) look at the discrete-time ARFIMA(1,d,0) model:

(1 − φL)(Yt − µ) = σǫ(1 − L)−dǫt, where L is the lag operator and ǫt ∼ D(0, 1) is a white

noise. They note that φ = 0 and d = 0.5 is observationally equivalent to φ = 1 and d = −0.5,

leading to identification failure, see also Liu, Shi, and Yu (2020) and Li, Phillips, Shi, and Yu

(2023). This can be interpreted as either fast mean reversion and long memory or no mean

reversion and anti-persistence. This agrees with a first impression of the likelihood function:

the fOU model is prepared to trade roughness for additional mean reversion with only a

minimal drop in likelihood and the surface appears to exhibit a plateau over an extended

region in that direction. This is a symptom that the model is scrambling to fit both ends of

the acf.

However, to get a better gauge at the exact curvature, in Figure 3 we include the profile

composite likelihood function of the fOU process in Panel A, CLα(κ) = maxαCL(α, κ) and

the Cauchy class in Panel B, CLα(β) = maxαCL(α, β). We again set µ and ν equal to

the sample average and sample standard deviation of the log-realized variance and suppress

their influence on the composite likelihood. We then plot this as a function of κ or β after

maximizing with respect to α, where the optimal value of the latter is shown on the right-

hand y-axis. To make the graphs comparable, we normalize the profile likelihood to reach

a maximum of one. Overall, the evolution of the fOU profile likelihood in Panel A shows

that it is, in fact, monotonically increasing toward the boundary of the parameter space,

whereas the Cauchy class has a maximum in the interior. It is interesting to observe that

as κ increases for the fOU, the optimal value of α does not venture into the long memory

region but levels out around zero.

At the end of the day, the fOU process has to make a decision: roughness or long

memory. It selects roughness to capture the initial decline in the acf and to fit the subsequent

slow decay it forces the mean reversion parameter near zero to approximate long-range

dependence. However, the Cauchy class does not suffer from this shortcoming and is able to

separate these effects to demonstrate that both are required to describe the data. The (α, β)

estimate is within the interior of the parameter space and appears to be identified with a

high degree of accuracy, gauging from the heatmap, profile likelihood, and the magnitude of

the standard errors.

In sum, our empirical results from the Cauchy class of stationary Gaussian processes

translate to a non-integrable acf with a sharp initial decline, i.e. roughness, followed by a

slow decay toward zero, i.e. long memory. Our results thus provide compelling evidence that

spot variance exhibits both roughness and long memory.
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Figure 3: Profile composite likelihood function for BTCUSDT.

Panel A: fOU. Panel B: Cauchy.
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Note. We show the profile composite likelihood function of the fOU process in Panel A, CLα(κ) = maxα CL(α, κ) and the

Cauchy class in Panel B, CLα(β) = maxα CL(α, β). We fix µ and ν at the sample average and sample standard deviation of

the log-realized variance. We then plot the composite likelihood as a function of κ or β after maximizing with respect to α,

where the optimal value of the latter is shown on the right-hand y-axis.

6 Conclusion

In this paper, we develop a framework for doing composite likelihood inference of a para-

metric class of stationary Gaussian processes. We derive the consistency and asymptotic

distribution of the maximum composite likelihood estimator (MCLE) under various degrees

of persistence.

As an adaptation, we back out the parameters of a fractional Ornstein-Uhlenbeck

(fOU) process. In comparison to the method-of-moments estimator (MME) from

Wang, Xiao, and Yu (2023), the composite likelihood estimator has the advantage that the

full parameter vector is estimated in a single loop rather than via a two-step approach. More-

over, in a simulation study we demonstrate superior finite sample properties of the MCLE

over the MME. This is possibly because the MME requires in-fill asymptotic theory, which

may not kick in fast enough with realistic choices of sampling frequency.

In our empirical implementation of the fOU process, we discover that the log-variance

of the large-cap segment of the cryptocurrency spot exchange rate market exhibits rough-

ness. On the one hand, this agrees with Gatheral, Jaisson, and Rosenbaum (2018) and the

universality of the volatility formation process, see Rosenbaum and Zhang (2022). On the
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other hand, it stands in contrast to the long memory version of the fOU process, proposed

as a model for stochastic volatility in Comte and Renault (1998), and the abundant lit-

erature on modeling and forecasting realized variance as a long-range dependent variable,

e.g. Andersen, Bollerslev, Diebold, and Labys (2003) and Corsi (2009). This “volatility puz-

zle” is scrutinized further in Shi and Yu (2022), who note that the likelihood function of a

discrete-time version of the fOU is bimodal, leading to near-observational equivalence be-

tween these two opposing regimes. Li, Phillips, Shi, and Yu (2023) explore the issue in terms

of weak identification and the empirical evidence of their identification robust inference is

rooting for long memory.

In our opinion, the source of the dispute is that the fOU specification is not flexible

enough. It has to control both the short- and long-term persistence in a single parameter—

the Hurst exponent. As it cannot accommodate both, it therefore needs to make a stance:

roughness or long memory.

Set against this backdrop, a logical step is to divert more attention toward models

that decouple the short- and long-run persistence. There are numerous ways one can do

that. A standard approach in the SV literature is to superposition independent driving fac-

tors (see, e.g., Alizadeh, Brandt, and Diebold, 2002; Barndorff-Nielsen and Shephard, 2002;

Christoffersen, Jacobs, and Mimouni, 2010). However, such multi-factor models usually ex-

hibit exponentially decaying acf and, hence, at best approximate roughness and long memory.

An intriguing avenue for further research is to superposition two independent fOU processes

and check whether the empirical estimates of the Hurst indexes are located on either side of

the memory spectrum.

Gneiting and Schlather (2004) proposed a so-called Cauchy class of Gaussian processes.

As the fOU, it has three parameters to fit the acf, but—opposite the fOU—it reserves

one to fit the short-run persistence and another one to fit the long-run persistence.

Bennedsen, Lunde, and Pakkanen (2022) implement this model with MME on a vast cross-

sectional set of empirical high-frequency equity data and find that both roughness and long

memory are embedded in the log-variance process. In the present paper, we also adopt this

strategy to explore the issue based on transaction price data from the cryptocurrency mar-

ket. Interestingly, our empirical MCLE of the Cauchy class also point toward roughness and

long memory being present in the log-spot variance. Thus, our results can help to reconcile

the conflicting evidence in the previous literature.

At the moment, our procedure suffers from the fact that spot volatility is la-

tent. The sampling variation inherent in estimators, such as realized variance,

impairs the MCLE and causes a potentially severe degree of spurious roughness.

Bolko, Christensen, Pakkanen, and Veliyev (2023) account for this in their GMM estima-

tion of the fOU model. In future research, we should attempt to do this as well.
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A Mathematical proofs

Proof of Theorem 2.1. We observe that a stationary Gaussian process for which limh→∞ ρh =

0 is strongly mixing and, hence, ergodic (see, e.g., Maruyama, 1949, Theorem 9(ii)). Com-

bined with the stationarity assumption, the ergodic theorem implies that the sample average

log-composite likelihood converges in probability to its population counterpart:

Cn(θ) ≡
1

n
cl(θ; Y ) =

1

n

∑

kj∈Q

n−kj
qj

∑

i=1

log fkj
(

Y kj

i ; θ
)

P−→ E

(

∑

kj∈Q

log fkj
(

Y kj

1 ; θ
)

)

≡ C(θ),

as n → ∞.

If we let θ0 denote the true data-generating value of θ, the information inequality implies

that C(θ) is uniquely maximized at θ0 (e.g., Newey and McFadden, 1994, Lemma 2.2). This

requires θ0 is identified from the density function, which holds by Assumption 2.2. Theorem

4.1 and 4.3 in Wooldridge (1994) then establishes the uniform weak law of large numbers for

the sequence of q-wise likelihood functions. From this, the consistency of θ̂MCLE follows. �

Proof of Theorem 2.2. We recall that

cl(θ; y) =
∑

kj∈Q

n−kj
qj

∑

i=1

log fkj(y
kj

i ; θ),

where

fkj(y
kj

i ; θ) =
1

√

(2π)qj det
(

Σkj (θ)
)

exp

(

−1

2
(yk

j

i )⊤Σ−1
kj
(θ)yk

j

i

)

,

and Σkj = cov(Y kj

i ), which is independent of i by stationarity. Here, we emphasize that the

dependence on θ is solely through Σ.

The idea is now to compute the score of cl(θ; y) and expand it around θ0. We next

derive an expression for the variance of the score to determine the rate of convergence. The

limiting distribution is then found with the help of Breuer and Major (1983), Arcones (1994),

Hosking (1996), and Beran, Feng, Ghosh, and Kulik (2013) for the various settings covered

in the theorem.

To calculate the score, we write

cl(θ; y) =
∑

kj∈Q

n−kj
qj

∑

i=1

(

C − 1

2
log det

(

Σkj (θ)
)

− 1

2
(yk

j

i )⊤Σ−1
kj
(θ)yk

j

i

)

,

where C is a constant.
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Now, define

sn(θ) =
∂

∂θ
cl(θ; y)

=







∑

kj∈Q

n−kj
qj

∑

i=1

(

−1

2

∂

∂θr
log det

(

Σkj (θ)
)

− 1

2
(yk

j

i )⊤
∂

∂θr
Σ−1

kj
(θ)yk

j

i

)







p

r=1

(A.1)

By definition sn(θ̂MCLE) = 0, so from the mean value theorem there exists an interior point,

θ̄, on the line segment in R
p connecting θ0 and θ̂MCLE, such that

0 = sn(θ̂MCLE) = sn(θ0) +
∂

∂θ⊤
sn(θ̄)(θ̂MCLE − θ0).

After rearranging this expression and multiplying by
√
n, we get:

√
n(θ̂MCLE − θ0) = −

(

1

n

∂

∂θ⊤
sn(θ̄)

)−1
1√
n
sn(θ0).

Since θ̂MCLE is consistent by Theorem 2.1, we know from the squeeze theorem for convergence

in probability that θ̄
P−→ θ0, as n → ∞, so by stationarity and ergodicity

−1

n

∂

∂θ⊤
sn(θ̄)

P−→ H(θ0),

as n → ∞, where

H(θ0) = −E





∑

kj∈Q

∂2

∂θ⊤∂θ
log fkj(Y

kj

1 ; θ) |θ=θ0





is the negative value of the expected Hessian matrix of cl(θ; y).

Hence, the main challenge is to derive an expression for the covariance structure of

1√
n
sn(θ) =

1√
n







∑

kj∈Q

n−kj
qj

∑

i=1

(

−1

2

∂

∂θr
log det

(

Σkj (θ)
)

− 1

2

∂

∂θr
(Y kj

i )⊤Σ−1
kj (θ)Y

kj

i

)







p

r=1

.

Now,

(yk
j

i )⊤
∂

∂θr
Σ−1

kj (θ)y
kj

i =
∑

j1,j2∈kj

yi+j1yi+j2

∂

∂θr
(Σ−1

kj (θ))j1,j2,

where
(

Σ−1
kj (θ)

)

j1,j2
is shorthand notation for the entry in Σ−1

kj (θ) corresponding to the co-

variance between Yj1 and Yj2.
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This means we can write

1√
n
sn(θ) =

1√
n

∑

kj∈Q

n−kj
qj

∑

i=1

(

− 1

2

[

∂

∂θr
log det

(

Σkj (θ)
)

]p

r=1

− 1

2

∑

j1,j2∈kj

Yi+j1Yi+j2

[

∂

∂θr

(

Σ−1
kj (θ)

)

j1,j2

]p

r=1

)

,

so we need to calculate

var





1√
n

∑

kj∈Q

n−k
qj

∑

i=1

∑

j1,j2∈kj

Yi+j1Yi+j2



 ,

as the rest are additive or multiplicative constants.

Expanding the variance operator, and ignoring the
√
n for the time being, yields the

following calculation:

var





∑

kj∈Q

n−k
qj

∑

i=1

∑

j1,j2∈kj

Yi+j1Yi+j2





=
∑

kj1 ,kj2∈Q

n−k
j1

qj1
∑

i1=1

n−k
j2

qj2
∑

i2=1

∑

ι1,ι2∈kj1

∑

ι3,ι4∈kj2

E[Yi1+ι1Yi1+ι2Yi2+ι3Yi2+ι4 ]− E[Yi1+ι1Yi1+ι2 ]E[Yi2+ι3Yi2+ι4 ]

=
∑

kj1 ,kj2∈Q

n−k
j1

qj1
∑

i1=1

n−k
j2

qj2
∑

i2=1

∑

ι1,ι2∈kj1

∑

ι3,ι4∈kj2

(

E[Yi1+ι1Yi1+ι2 ]E[Yi2+ι3Yi2+ι4 ]

+ E[Yi1+ι1Yi2+ι3 ]E[Yi1+ι2Yi2+ι4] + E[Yi1+ι1Yi2+ι4 ]E[Yi1+ι2Yi2+ι3 ]
)

− E[Yi1+ι1Yi1+ι2 ]E[Yi2+ι3Yi2+ι4 ]

=
∑

kj1 ,kj2∈Q

n−k
j1

qj1
∑

i1=1

n−k
j2

qj2
∑

i2=1

∑

ι1,ι2∈kj1

∑

ι3,ι4∈kj2

γi1+ι1−(i2+ι3)γi1+ι2−(i2+ι4) + γi1+ι1−(i2+ι4)γi1+ι2−(i2+ι3)

∼
∑

kj1 ,kj2∈Q

n
∑

l=−n

∑

ι1,ι2∈kj1

∑

ι3,ι4∈kj2

(n− l) (γl+ι1−ι3γl+ι2−ι4 + γl+ι1−ι4γl+ι2−ι3) .

(A.2)

where γℓ is the autocovariance of Y at lag ℓ, and Isserlis’ theorem helps to express higher-

order moments of the multivariate normal distribution in terms of its covariance matrix.

Thus, convergence of the variance amounts to studying the limiting behavior of the sum of

products of autocovariances in (A.2).

In the first part of Theorem 2.2, i.e. the short memory setting and long memory

setting with β > 1/2, the sum converges. Here, we can derive the asymptotic distribu-

tion using a Breuer-Major theorem, which was introduced in the one-dimensional case in
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Breuer and Major (1983) and extended to the multivariate setting in Arcones (1994). From

(A.1), we see that the score is a quadratic form of Y and, hence, consists of functionals that

are either sums of squares or sums of products that are kj periods apart. Since ρ(h) = O(h−β)

for some β > 1/2, the autocovariance function is square-integrable, so we are done if we can

prove that the functions from R
2 → R given by

f : (x, y) 7→ x2 + y2 and g : (x, y) 7→ xy

are of Hermite rank 2.

We recall that a function h is of Hermite rank q with respect to a Gaussian process X if

(a) E
(

[h(X) − E(h(X))]pm(X)
)

= 0 for every polynomial pm of degree m ≤ q − 1 and (b)

there exists a polynomial pq of degree q such that E
(

[h(X)−E(h(X))]pq(X)
)

6= 0. One can

always transform the problem to the multivariate standard normal distribution, because the

Hermite rank is invariant under linear mappings. To prove (a), note that

E

[

h(Z)
1
∏

i=0

Hαi
(Zi)

]

= 0, (A.3)

where h ∈ {f, g}, α = (α0, α1) ∈ {(1, 0), (0, 1)}, Hi is the ith Hermite polynomial, and

Z = (Z1, Z2)
⊤ ∼ N(0, I2). (A.3) follows from independence and the zero skewness of the

normal distribution, since H0(x) = 1 and H1(x) = x. The claim in (b) follows, because the

expectation is nonzero with a second-degree Hermite polynomial, H2(x) = x2 − 1. So the

score converges to a Gaussian distribution, and by Slutsky’s theorem so does θ̂MCLE:

1√
n
sn(θ0)

d−→ N(0, V0),

where

V0 =
1

4

∑

kj1 ,kj2∈Q

∞
∑

l=−∞

∑

ι1,ι2∈kj1

∑

ι3,ι4∈kj2

[

∂

∂θr

(

Σ−1
kj1

(θ)
)

ι1,ι2
|θ=θ0

]p

r=1

([

∂

∂θr

(

Σ−1
kj2

(θ)
)

ι3,ι4
|θ=θ0

]p

r=1

)⊤

× (γl+ι1−ι3γl+ι2−ι4 + γl+ι1−ι4γl+ι2−ι3) ,

see Lemma A.1 below.

Next, take β = 1/2. Here, we know from the derivations in (A.2) that the variance of
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the score, for n large, essentially behaves as

var





∑

kj∈Q

n−k
qj

∑

i=1

∑

j1,j2∈kj

Yi+j1Yi+j2





∼
∑

kj1 ,kj2∈Q

n
∑

l=−n

∑

ι1,ι2∈kj1

∑

ι3,ι4∈kj2

(n− l) (γl+ι1−ι3γl+ι2−ι4 + γl+ι1−ι4γl+ι2−ι3)

∼ nvar(Y ) +
∑

kj1 ,kj2∈Q

n
∑

l=−n

∑

ι1,ι2∈kj1

∑

ι3,ι4∈kj2

1S(l, ι1, ι2, ι3, ι4)(n− l)

×
(

L∞(l + ι1 − ι3)
√

|l + ι1 − ι3|
L∞(l + ι2 − ι4)
√

|l + ι2 − ι4|
+

L∞(l + ι1 − ι4)
√

|l + ι1 − ι4|
L∞(l + ι2 − ι3)
√

|l + ι2 − ι3|

)

∼ nvar(Y ) +

n
∑

l=1

(n− l)L2
∞(l)l−1,

where S = {l + ι1 − ι3 6= 0, l + ι2 − ι4 6= 0, l + ι1 − ι4 6= 0, l + ι2 − ι3 6= 0}.
We conclude from this and Lemma A.1 that var(n−1/2sn(θ)) = O(Lγ(n)), where Lγ(n) =

∑n
l=1 L

2
∞(l)l−1. By formula 1.5.8 and Proposition 1.5.9a in Bingham, Goldie, and Teugels

(1989), Lγ is slowly varying and growing faster than L2
∞, so the correct scaling of sn(θ) is

n−1/2L
−1/2
γ (n).

Next, we deduce the limiting distribution of n−1/2L
−1/2
γ (n)sn(θ). Following Hosking

(1996) and Rosenblatt (1979), the rth order cross-cumulant of

Ck =
√
nL−1/2

γ (n)

(

1

n

n−k
∑

t=1

YtYt+k

)

,

for k = 0, . . . , l, is given by

ur =
1

2

∑

(r − 1)!(nLγ(n))
−r/2

n
∑

j1=1

· · ·
n
∑

jr=1

γj1±α1−j2γj2±α2−j3 · · · γjr−1±αr−1−jrγjr±αr−j1,

where αi ∈ {0, 1, . . . , l}, and the outer sum goes over all possible 2r combinations of + and

− signs in the equation above.

We shall show that for r ≥ 3, Cr → 0 as n → ∞. As in Hosking (1996), we set αi = 0

for convenience. Then, by Cauchy-Schwarz’s inequality

|ur| ≤ 2r−1(r − 1)!(nLγ(n))
−r/2

n
∑

j1=1

· · ·
n
∑

jr=1

γ2
j1−j2|γj2−j3 · · · |γjr−1−jr |.
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Now, for j = 1, . . . , n,

n
∑

i=1

|γi−j| = γ0 +

j−1
∑

i=1

|γi|+
n−j
∑

i=1

|γi|

≤ C
(

1 + L∞(j)j1/2 + L∞(n− j)(n− j)1/2
)

= O(L∞(n)n1/2),

where Karamata’s integral inequality is used in the first passage. Moreover,

n
∑

i=1

γ2
i−j = γ2

0 +

j−1
∑

i=1

γ2
i +

n−j
∑

i=1

γ2
i

≤ C
(

1 + Lγ(j) + Lγ(n− j)
)

= O(Lγ(n)).

Holding these results together,

ur = (nLγ(n))
−r/2O(Lγ(n))O(nr/2−1[L2

∞(n)]r/2−1)n

= O
(

L1−r/2
γ (n)[L2

∞(n)]r/2−1
)

,

following the remark above where Lγ was introduced. So for r ≥ 3, ur → 0 as n → ∞. This

implies a Gaussian limit, as claimed.

At last, we handle the very long memory setting with β ∈ (0, 1/2). First, we write

nβL
−1/2
2 (n)(θ̂MCLE − θ0) = −

(

1

n

∂

∂θ⊤
sn(θ̄)

)−1

nβ−1L
−1/2
2 (n)sn(θ0).

By a weak law of large numbers, as n → ∞,

−1

n

∂

∂θ⊤
sn(θ̄)

P−→ H(θ0).

Looking at the last factor in the above expression, we note that the rate normalization is

exactly as required for sample covariances of totally dependent Hermite-Rosenblatt processes

to converge in law, see, e.g., Section 4.4.1.3 of Beran, Feng, Ghosh, and Kulik (2013) (in their

notation, β = 1− 2d):

nβ−1L
−1/2
2 (n)sn(θ0)

d−→ 1

2

∑

kj∈Q

∑

j1,j2∈kj

[

∂

∂θr

(

Σ−1
k (θ)

)

j1,j2
|θ=θ0

]p

r=1

Z2,H(1).

�

Lemma A.1. Let {xk}∞k=1 be a sequence of positive numbers. Then, it holds that

Xn =

n
∑

k=1

xk converges ⇔ X̃n =

n
∑

k=1

n− k

n
xk converges.

Furthermore, if they converge, the limit is identical.
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Proof. As the terms in the sequence are positive, bothXn and X̃n are increasing. Hence, con-

vergence is equivalent to boundedness by monotone convergence theorem. The implication

⇒ follows immediately, since X̃n ≤ Xn.

To show the ⇐ part, assume that X̃n converges. Then it is bounded by some number C.

Suppose that Xn does not converge, which means that it is unbounded, so there is an N1

such that XN1
> 2C. Moreover, for any N2 > 2N1, the first N1 terms in X̃N2

are at least

half as large as the corresponding ones in XN2
, since 1 − N1/N2 > 1/2. This implies that

X̃N1
> 1

2
XN1

> C, which is a contradiction.

To show the limit is identical, suppose that Xn → x0 as n → ∞. Then, by definition, for

any ǫ > 0 there exists N1 ∈ N such that for n ≥ N1:

x0 −Xn < ǫ,

Pick some N2 > N1 such that N2−N1

N2
> 1− ǫ. Then, we observe that

0 ≤ x0 − X̃N2
= x0 −

N2
∑

k=1

N2 − k

N2
xk

≤ x0 −
N1
∑

k=1

N2 − k

N2
xk

≤ x0 −
N2 −N1

N2

N1
∑

k=1

xk

= x0 −
N2 −N1

N2
XN1

≤ x0 −
N2 −N1

N2
(x0 − ǫ)

≤ x0 − (1− ǫ)(x0 − ǫ) = ǫ(1 + x0 − ǫ).

As ǫ(1 + x0 − ǫ) can be made arbitrarily small, X̃n → x0. �
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B Method of moments-based estimator

In this appendix, we review the method of moments-based estimator of the parameters of the

fOU process and the Cauchy class, which serve as a benchmark for our MCLE approach. Our

description is based on Wang, Xiao, and Yu (2023) and Bennedsen, Lunde, and Pakkanen

(2022). It is not too detailed, but the reader can find further information and references in

their papers.

As in the composite likelihood framework, the estimator of the mean, µ, is the sample

average, µ̂ = n−1
∑n

i=1 Yi∆.

The roughness index, α, is estimated by a change-of-frequency (COF) approach (see, e.g.

Lang and Roueff, 2001; Barndorff-Nielsen, Corcuera, and Podolskij, 2013). To write this

down succinctly, we need a notion of the kth-order difference, for any k ∈ N, of a time series

observed with time gap ∆ and sampled at frequency η, where η ∈ N. At stage i ≥ ηk, this

can be defined as

(1− Lη)kYi∆ ≡
k
∑

j=0

(−1)j
(

k

j

)

Y(i−ηj)∆,

where L is the lag operator.

We now introduce the pth-order realized power variation:

V (Y, p, k, η; ∆)t =

[t/∆]
∑

i=ηk

|(1− Lη)kYi∆|p,

for p > 0.

The COF estimator of α is then

α̂ =
log2(COF(Y, p,∆)t)

p
− 1

2
, where COF(Y, p,∆)t =

V (Y, p, 2, 2;∆)t
V (Y, p, 2, 1;∆)t

, for t > 0.

α̂ is a consistent estimator of α in the infill limit as ∆ → 0. We follow Wang, Xiao, and Yu

(2023) and implement α̂ with p = 2. We remark that this estimator is a special case of the

one from Bennedsen, Lunde, and Pakkanen (2022).

In the fOU, the standard deviation, ν, and mean reversion, κ, are estimated as:

ν̂ =

√

∑n
i=3(Yi∆ − 2Y(i−1)∆ + Y(i−2)∆)2

n
(

4− 22Ĥ
)

∆2Ĥ
and κ̂ =

(

n
∑n

i=1 Y
2
i∆ − (

∑n
i=1 Yi∆)

2

n2ν̂2ĤΓ(2Ĥ)

)−1/(2Ĥ)

,

where Ĥ = α̂+ 1/2.

In the Cauchy class, ν is recovered directly as the sample standard deviation, ν̂ =

n−1
∑n

i=1(Yi∆−µ̂)2. β is estimated by matching the theoretical acf from (3.6) to the empirical

one with the first-stage estimator of α plugged in, leaving it as a function of β.
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C Monte Carlo analysis with N = 1

Presented without comment.
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Table 6: Parameter estimation of the fOU process (µ known).

Parameter Value MCLE MME

T = 1,095 T = 1,825 T = 2,555 T = 1,095 T = 1,825 T = 2,555

Panel A:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

κ 0.005 0.0058 (0.0099) 0.0055 (0.0075) 0.0060 (0.0070) 0.0193 (0.0338) 0.0150 (0.0243) 0.0131 (0.0202)

ν 1.250 1.2526 (0.0392) 1.2975 (1.8482) 1.2174 (0.0244) 1.2497 (0.0323) 1.2495 (0.0249) 1.2494 (0.0210)

α -0.450 -0.4651 (0.0215) -0.4640 (0.0182) -0.4564 (0.0111) -0.4461 (0.0384) -0.4483 (0.0317) -0.4488 (0.0281)

Panel B:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

κ 0.010 0.0116 (0.0082) 0.0113 (0.0062) 0.0111 (0.0050) 0.0190 (0.0246) 0.0158 (0.0179) 0.0145 (0.0149)

ν 0.750 0.7238 (0.0189) 0.7191 (0.0144) 0.7265 (0.0144) 0.7490 (0.0187) 0.7493 (0.0145) 0.7494 (0.0123)

α -0.400 -0.4221 (0.0227) -0.4203 (0.0159) -0.4151 (0.0128) -0.4010 (0.0448) -0.4008 (0.0355) -0.4002 (0.0302)

Panel C:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

κ 0.015 0.0203 (0.0092) 0.0192 (0.0068) 0.0183 (0.0055) 0.0181 (0.0125) 0.0168 (0.0093) 0.0164 (0.0077)

ν 0.500 0.5049 (0.0240) 0.5049 (0.0178) 0.5040 (0.0145) 0.4993 (0.0121) 0.4995 (0.0094) 0.4996 (0.0080)

α -0.200 -0.2312 (0.0350) -0.2319 (0.0266) -0.2215 (0.0222) -0.2016 (0.0436) -0.2009 (0.0338) -0.2003 (0.0286)

Panel D:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

κ 0.035 0.0521 (0.0347) 0.0481 (0.0183) 0.0445 (0.0114) 0.0374 (0.0152) 0.0363 (0.0115) 0.0359 (0.0096)

ν 0.300 0.3028 (0.0166) 0.3009 (0.0091) 0.3006 (0.0067) 0.2995 (0.0086) 0.2996 (0.0066) 0.2996 (0.0056)

α 0.000 -0.0116 (0.0611) -0.0142 (0.0397) -0.0082 (0.0294) -0.0023 (0.0411) -0.0015 (0.0318) -0.0011 (0.0268)

Panel E:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

κ 0.070 0.1051 (0.0502) 0.1002 (0.0375) 0.0912 (0.0290) 0.0716 (0.0217) 0.0702 (0.0167) 0.0696 (0.0139)

ν 0.200 0.2142 (0.0265) 0.2099 (0.0181) 0.2077 (0.0268) 0.1987 (0.0095) 0.1987 (0.0073) 0.1986 (0.0061)

α 0.200 0.1925 (0.0840) 0.1945 (0.0695) 0.1967 (0.0606) 0.1939 (0.0382) 0.1947 (0.0297) 0.1951 (0.0249)

Note. We simulate the process in the caption of the table 10,000 times on the interval [0, T ], where T is interpreted as the number of days. There is N = 1 observation per

unit interval, corresponding to a single observation every day. The true value of the parameter vector appear to the left in Panel A – E. We estimate θ with the maximum

composite likelihod estimation (MCLE) procedure developed in the main text, and benchmark it against a method-of-moments estimator (MME). The table reports the

Monte Carlo average value of each parameter estimate across simulations (standard deviation in parenthesis).
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Table 7: Parameter estimation of the fOU process (µ estimated).

Parameter Value MCLE MME

T = 1,095 T = 1,825 T = 2,555 T = 1,095 T = 1,825 T = 2,555

Panel A:

µ 0.000 0.0002 (0.2953) -0.0020 (0.1925) -0.0007 (0.2097) -0.0005 (0.2574) -0.0022 (0.1634) -0.0013 (0.1197)

κ 0.005 0.0081 (0.0117) 0.0066 (0.0082) 0.0064 (0.0068) 0.0223 (0.0372) 0.0162 (0.0257) 0.0137 (0.0210)

ν 1.250 1.2493 (0.0626) 1.2533 (0.0678) 1.2178 (0.0225) 1.2497 (0.0323) 1.2495 (0.0249) 1.2494 (0.0210)

α -0.450 -0.4604 (0.0189) -0.4620 (0.0171) -0.4563 (0.0113) -0.4461 (0.0384) -0.4483 (0.0317) -0.4488 (0.0281)

Panel B:

µ 0.000 0.0007 (0.1406) -0.0001 (0.1062) -0.0005 (0.0721) 0.0007 (0.0936) -0.0006 (0.0619) -0.0002 (0.0464)

κ 0.010 0.0129 (0.0088) 0.0119 (0.0063) 0.0114 (0.0049) 0.0200 (0.0256) 0.0162 (0.0183) 0.0147 (0.0151)

ν 0.750 0.7224 (0.0180) 0.7184 (0.0142) 0.7260 (0.0143) 0.7490 (0.0187) 0.7493 (0.0145) 0.7494 (0.0123)

α -0.400 -0.4205 (0.0211) -0.4196 (0.0154) -0.4148 (0.0126) -0.4010 (0.0448) -0.4008 (0.0355) -0.4002 (0.0302)

Panel C:

µ 0.000 0.0012 (0.0977) -0.0004 (0.0695) -0.0003 (0.0554) 0.0011 (0.0968) -0.0004 (0.0694) -0.0001 (0.0551)

κ 0.015 0.0221 (0.0095) 0.0201 (0.0070) 0.0189 (0.0056) 0.0192 (0.0132) 0.0174 (0.0095) 0.0167 (0.0078)

ν 0.500 0.5024 (0.0213) 0.5037 (0.0171) 0.5034 (0.0143) 0.4993 (0.0121) 0.4995 (0.0094) 0.4996 (0.0080)

α -0.200 -0.2284 (0.0325) -0.2305 (0.0259) -0.2207 (0.0219) -0.2016 (0.0436) -0.2009 (0.0338) -0.2003 (0.0286)

Panel D:

µ 0.000 0.0006 (0.0677) -0.0003 (0.0528) -0.0002 (0.0445) 0.0005 (0.0671) -0.0003 (0.0523) -0.0002 (0.0441)

κ 0.035 0.0511 (0.0193) 0.0487 (0.0139) 0.0452 (0.0106) 0.0393 (0.0157) 0.0375 (0.0117) 0.0367 (0.0097)

ν 0.300 0.3033 (0.0104) 0.3018 (0.0078) 0.3013 (0.0064) 0.2995 (0.0086) 0.2996 (0.0066) 0.2996 (0.0056)

α 0.000 -0.0185 (0.0440) -0.0172 (0.0339) -0.0097 (0.0276) -0.0023 (0.0411) -0.0015 (0.0318) -0.0011 (0.0268)

Panel E:

µ 0.000 0.0004 (0.0684) -0.0004 (0.0591) -0.0003 (0.0532) 0.0003 (0.0681) -0.0003 (0.0586) -0.0002 (0.0528)

κ 0.070 0.0841 (0.0228) 0.0846 (0.0181) 0.0790 (0.0147) 0.0776 (0.0224) 0.0745 (0.0169) 0.0730 (0.0140)

ν 0.200 0.2083 (0.0090) 0.2063 (0.0072) 0.2053 (0.0062) 0.1987 (0.0095) 0.1987 (0.0073) 0.1986 (0.0061)

α 0.200 0.1385 (0.0415) 0.1518 (0.0365) 0.1601 (0.0315) 0.1939 (0.0382) 0.1947 (0.0297) 0.1951 (0.0249)

Note. We simulate the process in the caption of the table 10,000 times on the interval [0, T ], where T is interpreted as the number of days. There is N = 1 observation per

unit interval, corresponding to a single observation every day. The true value of the parameter vector appear to the left in Panel A – E. We estimate θ with the maximum

composite likelihod estimation (MCLE) procedure developed in the main text, and benchmark it against a method-of-moments estimator (MME). The table reports the

Monte Carlo average value of each parameter estimate across simulations (standard deviation in parenthesis).
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Table 8: Parameter estimation of the Cauchy class (µ known).

Parameter Value MCLE MME

T = 1,095 T = 1,825 T = 2,555 T = 1,095 T = 1,825 T = 2,555

Panel A:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

β 0.250 0.2324 (0.3645) 0.1916 (0.3063) 0.2510 (0.2842) 0.3005 (0.1830) 0.2651 (0.1546) 0.2444 (0.1404)

ν 1.250 1.1008 (0.0658) 1.1010 (0.0600) 1.1398 (0.0585) 1.2486 (0.0744) 1.2487 (0.0677) 1.2490 (0.0638)

α -0.450 -0.4647 (0.0549) -0.4711 (0.0460) -0.4604 (0.0445) -0.4703 (0.0277) -0.4743 (0.0217) -0.4763 (0.0189)

Panel B:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

β 0.500 0.4489 (0.4067) 0.4331 (0.3559) 0.5009 (0.2766) 0.3767 (0.2034) 0.3516 (0.1777) 0.3377 (0.1645)

ν 0.750 0.6608 (0.0225) 0.6608 (0.0185) 0.6840 (0.0167) 0.7498 (0.0255) 0.7498 (0.0208) 0.7499 (0.0182)

α -0.400 -0.4221 (0.0700) -0.4252 (0.0612) -0.4104 (0.0489) -0.4630 (0.0319) -0.4666 (0.0258) -0.4682 (0.0229)

Panel C:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

β 0.750 0.8201 (0.2204) 0.8154 (0.1594) 0.8019 (0.1305) 0.6934 (0.1227) 0.6881 (0.0977) 0.6833 (0.0881)

ν 0.500 0.4388 (0.0155) 0.4388 (0.0120) 0.4547 (0.0106) 0.4999 (0.0182) 0.4999 (0.0141) 0.4999 (0.0120)

α -0.200 -0.2302 (0.0698) -0.2315 (0.0502) -0.2240 (0.0426) -0.3694 (0.0453) -0.3687 (0.0351) -0.3682 (0.0298)

Panel D:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

β 1.000 1.1073 (0.1954) 1.0978 (0.1497) 1.0770 (0.1243) 0.8829 (0.1044) 0.8743 (0.0876) 0.8696 (0.0789)

ν 0.300 0.2633 (0.0084) 0.2634 (0.0065) 0.2729 (0.0057) 0.2999 (0.0098) 0.2999 (0.0075) 0.2999 (0.0064)

α 0.000 -0.0501 (0.0778) -0.0533 (0.0600) -0.0398 (0.0517) -0.2591 (0.0439) -0.2583 (0.0339) -0.2577 (0.0287)

Panel E:

µ 0.000 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)

β 1.250 1.3878 (0.2226) 1.3783 (0.1696) 1.3506 (0.1410) 1.0545 (0.1144) 1.0484 (0.0922) 1.0455 (0.0804)

ν 0.200 0.1757 (0.0054) 0.1757 (0.0041) 0.1820 (0.0036) 0.1999 (0.0062) 0.1999 (0.0048) 0.2000 (0.0040)

α 0.200 0.1323 (0.0977) 0.1295 (0.0754) 0.1485 (0.0648) -0.1490 (0.0421) -0.1481 (0.0326) -0.1475 (0.0275)

Note. We simulate the process in the caption of the table 10,000 times on the interval [0, T ], where T is interpreted as the number of days. There is N = 1 observation per

unit interval, corresponding to a single observation every day. The true value of the parameter vector appear to the left in Panel A – E. We estimate θ with the maximum

composite likelihod estimation (MCLE) procedure developed in the main text, and benchmark it against a method-of-moments estimator (MME). The table reports the

Monte Carlo average value of each parameter estimate across simulations (standard deviation in parenthesis).
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Table 9: Parameter estimation of the Cauchy class (µ estimated).

Parameter Value MCLE MME

T = 1,095 T = 1,825 T = 2,555 T = 1,095 T = 1,825 T = 2,555

Panel A:

µ 0.000 0.0060 (0.3614) 0.0064 (0.3466) 0.0064 (0.3375) 0.0061 (0.3613) 0.0064 (0.3460) 0.0064 (0.3372)

β 0.250 0.6365 (0.4285) 0.5861 (0.2933) 0.6150 (0.1713) 0.4550 (0.1967) 0.4032 (0.1648) 0.3755 (0.1506)

ν 1.250 1.0552 (0.0257) 1.0589 (0.0210) 1.0985 (0.0191) 1.1971 (0.0293) 1.2015 (0.0240) 1.2041 (0.0212)

α -0.450 -0.4091 (0.0637) -0.4141 (0.0435) -0.4058 (0.0254) -0.4703 (0.0277) -0.4743 (0.0217) -0.4763 (0.0189)

Panel B:

µ 0.000 0.0017 (0.1399) 0.0020 (0.1272) 0.0020 (0.1194) 0.0017 (0.1398) 0.0020 (0.1267) 0.0020 (0.1191)

β 0.500 0.7635 (0.3343) 0.7261 (0.2302) 0.7154 (0.1509) 0.4892 (0.2040) 0.4542 (0.1760) 0.4349 (0.1626)

ν 0.750 0.6493 (0.0162) 0.6513 (0.0130) 0.6754 (0.0117) 0.7369 (0.0185) 0.7392 (0.0149) 0.7405 (0.0129)

α -0.400 -0.3718 (0.0570) -0.3770 (0.0386) -0.3744 (0.0254) -0.4630 (0.0319) -0.4666 (0.0258) -0.4682 (0.0229)

Panel C:

µ 0.000 0.0008 (0.0772) 0.0011 (0.0654) 0.0011 (0.0584) 0.0009 (0.0771) 0.0011 (0.0650) 0.0011 (0.0582)

β 0.750 0.9248 (0.1780) 0.8846 (0.1372) 0.8567 (0.1148) 0.7756 (0.1085) 0.7615 (0.0774) 0.7519 (0.0639)

ν 0.500 0.4339 (0.0139) 0.4353 (0.0110) 0.4518 (0.0098) 0.4940 (0.0163) 0.4957 (0.0129) 0.4965 (0.0111)

α -0.200 -0.1999 (0.0530) -0.2112 (0.0411) -0.2071 (0.0358) -0.3694 (0.0453) -0.3687 (0.0351) -0.3682 (0.0298)

Panel D:

µ 0.000 0.0001 (0.0317) 0.0002 (0.0256) 0.0002 (0.0222) 0.0001 (0.0316) 0.0002 (0.0254) 0.0002 (0.0221)

β 1.000 1.1584 (0.1955) 1.1302 (0.1488) 1.1010 (0.1238) 0.9489 (0.0840) 0.9274 (0.0680) 0.9159 (0.0601)

ν 0.300 0.2619 (0.0082) 0.2625 (0.0064) 0.2722 (0.0056) 0.2982 (0.0095) 0.2988 (0.0074) 0.2991 (0.0063)

α 0.000 -0.0330 (0.0759) -0.0424 (0.0588) -0.0314 (0.0510) -0.2591 (0.0439) -0.2583 (0.0339) -0.2577 (0.0287)

Panel E:

µ 0.000 0.0000 (0.0161) 0.0001 (0.0126) 0.0001 (0.0108) 0.0000 (0.0160) 0.0001 (0.0126) 0.0001 (0.0107)

β 1.250 1.4251 (0.2259) 1.4011 (0.1709) 1.3668 (0.1419) 1.1073 (0.0965) 1.0872 (0.0779) 1.0772 (0.0683)

ν 0.200 0.1751 (0.0053) 0.1754 (0.0041) 0.1818 (0.0036) 0.1993 (0.0061) 0.1995 (0.0047) 0.1997 (0.0040)

α 0.200 0.1457 (0.0973) 0.1377 (0.0751) 0.1545 (0.0646) -0.1490 (0.0421) -0.1481 (0.0326) -0.1475 (0.0275)

Note. We simulate the process in the caption of the table 10,000 times on the interval [0, T ], where T is interpreted as the number of days. There is N = 1 observation per

unit interval, corresponding to a single observation every day. The true value of the parameter vector appear to the left in Panel A – E. We estimate θ with the maximum

composite likelihod estimation (MCLE) procedure developed in the main text, and benchmark it against a method-of-moments estimator (MME). The table reports the

Monte Carlo average value of each parameter estimate across simulations (standard deviation in parenthesis).

39



References

Alizadeh, S., M. W. Brandt, and F. X. Diebold, 2002, “Range-based estimation of stochastic

volatility models,” Journal of Finance, 57(3), 1047–1092.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys, 2000, “Great realizations,” Risk, 13(3),

105–108.

, 2003, “Modeling and forecasting realized volatility,” Econometrica, 71(2), 579–625.

Arcones, M. A., 1994, “Limit theorems for nonlinear functionals of a stationary Gaussian sequence

of vectors,” Annals of Probability, 22(4), 2242–2274.

Asmussen, S., and P. W. Glynn, 2007, Stochastic Simulation: Algorithms and Analysis. Springer,

Berlin, 1st edn.

Barndorff-Nielsen, O., J. M. Corcuera, and M. Podolskij, 2013, “Limit theorems for functionals of

higher order differences of Brownian semi-stationary processes,” in Prokhorov and Contemporary

Probability Theory, ed. by A. N. Shiryaev, S. R. S. Varadhan, and E. L. Presman. Springer,

Heidelberg, pp. 69–96.

Barndorff-Nielsen, O. E., and J. Schmiegel, 2009, “Brownian semistationary processes and volatil-

ity/intermittency,” in Radon Series on Computational and Applied Mathematics: Advanced Fi-

nancial Modelling, ed. by H. Albrecher, W. J. Runggaldier, and W. Schachermayer. De Gruyter,

Berlin, pp. 1–25.

Barndorff-Nielsen, O. E., and N. Shephard, 2002, “Econometric analysis of realized volatility and

its use in estimating stochastic volatility models,” Journal of the Royal Statistical Society: Series

B, 64(2), 253–280.

Bennedsen, M., 2020, “Semiparametric inference on the fractal index of Gaussian and conditionally

Gaussian time series data,” Econometric Reviews, 39(9), 875–903.

Bennedsen, M., A. Lunde, and M. S. Pakkanen, 2022, “Decoupling the short- and long-term be-

havior of stochastic volatility,” Journal of Financial Econometrics, 20(5), 961–1006.

Bennedsen, M., A. Lunde, N. Shephard, and A. E. D. Veraart, 2023, “Inference and forecasting for

continuous-time integer-valued trawl processes,” Journal of Econometrics, 236(2), 105476.

Beran, J., Y. Feng, S. Ghosh, and R. Kulik, 2013, Long-Memory Processes: Probabilistic Properties

and Statistical Methods. Springer, Berlin, 1st edn.

Besag, J., 1974, “Spatial interaction and the statistical analysis of lattice systems,” Journal of the

Royal Statistical Society: Series B, 36(2), 192–236.

40



Bingham, N. H., C. M. Goldie, and J. L. Teugels, 1989, Regular Variation. Cambridge University

Press, Cambridge, 1st edn.

Bolko, A. E., K. Christensen, M. Pakkanen, and B. Veliyev, 2023, “A GMM approach to estimate

the roughness of stochastic volatility,” Journal of Econometrics, 235(2), 745–778.

Brent, R. P., F. G. Gustavson, and D. Y. Y. Yun, 1980, “Fast solution of Toeplitz systems of
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