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We consider a three-dimensional lattice Abelian Higgs gauge model for a charged N -component
scalar field ϕ, which is invariant under SO(N) global transformations for generic values of the
parameters. We focus on the strong-coupling regime, in which the kinetic Hamiltonian term for
the gauge field is a small perturbation, which is irrelevant for the critical behavior. The Hamil-
tonian depends on a parameter v which determines the global symmetry of the model and the
symmetry of the low-temperature phases. We present renormalization-group predictions, based on
a Landau-Ginzburg-Wilson effective description that relies on the identification of the appropriate
order parameter and on the symmetry-breaking patterns that occur at the strong-coupling phase
transitions. For v = 0, the global symmetry group of the model is SU(N); the corresponding model
may undergo continuous transitions only for N = 2. For v ̸= 0, i.e., in the SO(N) symmetric case,
continuous transitions (in the Heisenberg universality class) are possible also for N = 3 and 4. We
perform Monte Carlo simulations for N = 2, 3, 4, 6, to verify the renormalization-group predictions.
Finite-size scaling analyses of the numerical data are in full agreement.

I. INTRODUCTION

Lattice Abelian Higgs (AH) models, in which an
Abelian gauge field interacts with a charged N -
component degenerate scalar field ϕ, provide an effec-
tive description of many collective phenomena charac-
terized by the interplay of topological gauge excitations
and scalar fluctuations [1, 2]. In particular, they provide
examples of topological transitions that are not charac-
terized by the breaking of a global symmetry [3–7]. The
phase diagram of this class of systems has been exten-
sively studied, see, e.g., Refs. [8–55], characterizing the
different phases in terms of the topological properties
of the gauge correlations, and identifying the possible
symmetry-breaking patterns.

The global symmetry of the model and the symmetry
breaking that occurs at phase transitions depend on the
scalar self-interactions. Most of the investigations con-
sidered SU(N)-symmetric scalar potentials. The phase
diagram and critical behaviors that occur in this class of
models have been extensively investigated in the litera-
ture, see e.g., Refs. [8, 9, 31, 41, 43, 44, 46–48, 50, 52,
53, 55]. However, as discussed in Refs. [17, 54], one may
also consider more complex scalar self-interactions, which
are invariant under a smaller group of transformations,
which preserves some irreducible permutation of the field
components, to avoid transitions in which only some of
the components become critical (in this case the effective
theory would be of interest for the analysis of the mul-
ticritical behavior). By considering more general scalar
potentials and different global symmetry groups, one is
able to determine the variety of critical behaviors that
can be observed in the presence of an emergent Abelian
gauge symmetry in generic lattice systems.

In this work, we consider the two-parameter quartic

scalar potential

VO(ϕ) = r ϕ̄ · ϕ+ u (ϕ̄ · ϕ)2 + v |ϕ · ϕ|2. (1)

For v = 0 the potential is SU(N) symmetric, while for
v ̸= 0 it is only invariant under SO(N) transformations.
Results for this model were presented in Ref. [54]. Here
we extend, and verify numerically, the renormalization-
group (RG) predictions obtained by identifying the order
parameter and symmetry-breaking pattern at the phase
transitions.
We consider a three-dimensional (3D) lattice U(1)

gauge model, obtained by a straightforward discretiza-
tion of the AH field theory

L =
1

4g2

∑
µν

F 2
µν +

∑
µ

|Dµϕ|2 + VO(ϕ). (2)

We observe in passing that this gauge field theory can
also be derived starting from an O(2) ⊗ O(N) invariant
real scalar model, by gauging the O(2) global group [54].
To simplify the lattice model, we consider the limit r →
−∞ and u → ∞ of the potential (1), keeping r/u = −2
fixed, so that we can associate an N -component unit-
length complex vector zx (satisfying z̄x · zx = 1) with
each site of a cubic lattice. Concerning the gauge field,
one can consider compact formulations, in which the
fundamental field is a complex phase λx,µ, or noncom-
pact formulations, in which the basic gauge variable is
Ax,µ ∈ R and λx,µ is defined as λx,µ = eiAx,µ . In both
cases the Hamiltonian reads [54]

H = Hz + κKg, (3)

Hz = −2NJ
∑
x,µ

Re (λx,µz̄x · zx+µ̂) + v
∑
x

|zx · zx|2,

where κ ∼ g−2 is the inverse gauge coupling, and Kg is
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FIG. 1: The κ-J phase diagram of the SO(N) lattice AH
model with noncompact gauge fields, for N ≥ 2 and generic
values of v. Three phases are present: the small-J Coulomb
(C) phase, in which the scalar field is disordered and gauge
correlations are long ranged; the large-J molecular (M) and
Higgs (H) ordered phases, in which the global symmetry is
spontaneously broken. The results we present in this work
refer to the strong-coupling CM line that starts at κ = 0.

the gauge-field Hamiltonian term, which assumes differ-
ent forms in compact and noncompact formulations.

We focus on the strong-coupling regime κ/J ≪ 1, in
which the gauge kinetic term κKg gives only rise to a
small irrelevant perturbation. Therefore, to study the
strong-coupling critical behavior, we do not need to spec-
ify the form of Kg. Actually, we can limit our analyses
to the model (3) with κ = 0, neglecting the gauge term
κKg, because the critical behavior for finite (sufficiently
small) values of κ is expected to be the same as along the
κ = 0 line, as discussed below. As a consequence of the
irrelevance of the gauge kinetic term, the critical behavior
in the strong-coupling regime can be determined by con-
sidering effective Landau-Ginzburg-Wilson (LGW) the-
ories in terms of gauge-invariant order-parameter scalar
fields only.

For N ≥ 2, the phase diagram of the noncompact AH
model (3) presents two different low-temperature (large-
J) phases, in which the global symmetry is spontaneously
broken and that differ in the topological properties of
the gauge correlations. The symmetry breaking pattern
depends on the number N of components and on the
Hamiltonian parameter v [54]. A sketch of the κ-J phase
diagram for the noncompact AH model is shown in Fig. 1,
forN ≥ 2 and generic values of v. The κ-J phase diagram
of the corresponding compact models differ substantially
for sufficiently large values of κ, see, e.g., Refs. [44, 47, 48,
52]. However, the phase diagrams are qualitatively the
same in the strong-coupling regime. Indeed, the behavior
for κ/J ≪ 1 is the same as for κ = 0 and the nature of
the gauge fields is irrelevant in the latter case. Thus,
to determine the critical behavior along the Coulomb-
Molecular transition line reported in Fig. 1 (noncompact
formulation) or along the analogous line that occurs in
compact models it is enough to consider the case κ = 0.

Beside the Abelian U(1) gauge invariance, the lat-
tice model (3) has a global SO(N) symmetry, ϕ → Sϕ
with S ∈ SO(N), which enlarges to SU(N) for v = 0.

The global symmetry is broken at a finite-temperature
disorder-order transition, whose nature depends on N
and on the sign of the Hamiltonian parameter v [54].

For κ = 0 and v = 0, the lattice model (3) reduces
to the SU(N) symmetric CPN−1 model. For N = 2, it
can be mapped onto an O(3)-vector model, and thus it
shows a continuous transition in the Heisenberg univer-
sality class. For any N ≥ 3 the transitions are of first or-
der [43]. The nature of the transitions changes for v ̸= 0,
as a consequence of the smaller global symmetry of the
model. As we shall see, in the presence of SO(N) invari-
ance, continuous transitions also occur for N = 3 and
N = 4, for positive values of the scalar self-interaction
parameter v.

In this paper we report a numerical study of the model
(3) with κ = 0. We perform Monte Carlo (MC) simula-
tions for several values of N and determine the nature
of the critical transitions using finite-size scaling (FSS)
methods. The results nicely support the predictions ob-
tained by using an effective LGW description of the sys-
tem in terms of properly defined gauge-invariant order
parameters. For N = 2, the O(3)-vector continuous tran-
sition at v = 0 turns into two continuous transition lines
for v ̸= 0. They belong to the Ising and XY universal-
ity class for v > 0 and v < 0, respectively. For v = 0
and any N ≥ 3 transitions are of first order. Only first-
order transitions are also expected for any N ≥ 5 in
the SO(N) invariant model. However, for N = 3 and
N = 4 it is possible to observe continuous transitions
for v > v∗ > 0, where v∗ is positive and corresponds to
a tricritical point. For v < v∗ transitions are of first or-
der. The continuous transitions belong to the O(3) vector
universality class for both values of N , but the underly-
ing mechanism is different. For N = 3 the Heisenberg
behavior is a consequence of the fact that the order pa-
rameter is equivalent to a three-component real vector.
For N = 4 the effective description involves two three-
component real vectors, and the O(3) behavior follows
from a nonperturbative RG analysis that shows that the
interaction between these two fields is irrelevant in the
critical limit.

The paper is organized as follows. In Sec. II we present
the theoretical analysis of the model. In Sec. II A we sum-
marize the general results obtained in Ref [54], while in
Sec. II B we present a field-theoretical analysis of the ef-
fective LGW model appropriate to describe the SO(N)
AH model for v > 0. In Sec. III we present our numerical
results that confirm the theoretical predictions. Conclu-
sions are presented in Sec. IV. The Appendix presents
some technical field-theory results that are relevant for
N ≥ 4.
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II. EFFECTIVE LGW DESCRIPTION OF THE
TRANSITIONS

A. General arguments

Let us now review the main results on the critical be-
havior of the model in the strong-coupling regime ob-
tained in Ref. [54]. The critical behavior along the
strong-coupling transition line that starts at κ = 0 de-
pends on the sign of the parameter v, which determines
the symmetry breaking pattern. The symmetry of the
low-temperature phases can be determined by analyzing
the minima of the scalar potential (1). For v > 0, the
fields corresponding to the minimum configurations can
be parametrized as [54]

ϕ =
1√
2
(s1 + is2) , s1 · s2 = 0, (4)

where s1 and s2 are orthogonal real vectors satisfying
|s1| = |s2|. In this case the global SO(N) symmetry of
the model is broken to SO(2)⊕O(N − 2).

For v < 0, the minimum configurations can be
parametrized as

ϕ = eiαs, (5)

where s is a real N -component vector, and α an arbitrary
phase. The SO(N) symmetry is broken to O(N − 1).

To characterize the spontaneous breaking of the
SO(N) symmetry, two different order parameters were
introduced,

Rab
L,x =

1

2
(z̄axz

b
x + z̄bxz

a
x)−

1

N
δab, (6)

T ab
L,x =

1

2i
(z̄axz

b
x − z̄bxz

a
x), (7)

which transform under two different representations of
the SO(N) group. Their behavior depends on the sign of
v. For v < 0, Rab

L,x condenses in the ordered phase, while

T ab
L,x vanishes. For v > 0 and N = 2, T ab

L,x condenses,

while Rab
L,x vanishes. Finally, for v > 0 and N ≥ 3, both

order parameters condense in the ordered phase.
For sufficiently small values of κ along the CM tran-

sition line (or along the corresponding line in compact
models), gauge fluctuations are not expected to play an
active role at the transition. Indeed, the gauge properties
of the two small-κ phases are the same: gauge modes are
long ranged and charged excitations are confined in both
of them. Therefore, the transition should be uniquely
driven by the breaking of the global symmetry. Thus, an
effective description of the critical universal behavior can
be obtained by considering a LGW theory for an appro-
priate gauge-invariant scalar order parameter that con-
denses at the transition, without considering the gauge
fields [43, 44, 48].

For v < 0 the relevant order parameter [54] is Rab
L,x.

The antisymmetric operator T ab
L,x is expected to be dis-

ordered on both sides of the transition. Since Rab
L,x is

a real symmetric operator, we expect the small-κ tran-
sitions to be described by a LGW for a real symmetric
traceless N × N matrix field Φab(x), that represents a
coarse-grained average of Rab

L,x over a large, but finite,
lattice domain. The corresponding LGW Lagrangian is
obtained by considering all monomials in Φab(x) that are
allowed by the global SO(N) symmetry up to fourth or-
der. We obtain

LΦ = Tr(∂µΦ)
2 + rTrΦ2 + s tr Φ3 (8)

+ u (TrΦ2)2 + vTrΦ4.

For N = 2, we can parametrize the field as

Φ =

(
ϕ1 ϕ2

ϕ2 −ϕ1

)
. (9)

It follows that (Φ2)ab = (ϕ2
1 + ϕ2

2)δ
ab, the cubic term

vanishes, and the two quartic terms are equivalent. The
resulting LGW theory is equivalent to that of the O(2)-
symmetric vector model. Thus, we predict continuous
transitions to belong to the XY universality class. On
the other hand, for N ≥ 3 the cubic Φ3 term is generally
present. This is usually considered as the indication that
phase transitions are of first order, as one can easily infer
using mean-field arguments. We expect this behavior
to hold for any v < 0, up to v = 0, where we recover
the SU(N)-invariant CPN−1 model, whose transition is
continuous for N = 2, in the O(3) vector universality
class, and of first order for any N ≥ 3 [43, 46].
As discussed in Ref. [54], for v > 0 the relevant order

parameter is the antisymmetric tensor field T ab
L,x. We

shall therefore consider the LGW model for an antisym-
metric N × N real field Ψab(x), which represents the
coarse-grained average of T ab

L,x. The corresponding LGW
Lagrangian reads

LΨ = Tr ∂µΨ
t∂µΨ+ rTrΨtΨ

+ u (TrΨtΨ)2 + wTr (ΨtΨ)2, (10)

where Ψt = −Ψ is the transpose of Ψ. Note that the
cubic term is absent because TrΨn = 0 for any odd n. As
discussed in Ref. [54], also the operator Rab

L,x is expected
to be critical at transitions with v > 0 for any N ≥ 3.
The analysis of the behavior for v → ∞ shows that in
this limit we have the relation

Rab
L = −a

[
(T 2

L)
ab − δab

N
Tr T 2

L

]
, (11)

where a is a positive constant. In the LGW formalism,
this implies that Rab

L has the same critical behavior as

Rab = (Ψ2)ab − δab

N
TrΨ2. (12)

This relation should hold for any continuous transition
with v > 0.
For N = 2 and N = 3 the LGW Lagrangian (10)

can be simplified [54, 56]. For N = 2 we can write Ψab in
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terms of a single real scalar field ϕ defined by Ψab = ϵabϕ.
The two quartic terms are equivalent, and we obtain the
LGWmodel for a real scalar field. Continuous transitions
are therefore expected to belong to the Ising universality
class. Note that Rab = 0 in this case, which implies that
Rab

L is not critical for N = 2.
For N = 3 we can write Ψab(x) in terms of a single

three-component vector as Ψab = ϵabcϕc, where ϵabc is
the completely antisymmetric tensor. Again, the quartic
terms are equivalent and we obtain the O(3) vector LGW
Hamiltonian. Thus, continuous transitions should belong
to the O(3) vector universality class. As for the operator
Rab, we obtain

Rab = ϕaϕb − 1

3
δabϕ2. (13)

This relation implies that Rab
L should have the same crit-

ical behavior as the spin-two operator in the Heisenberg
model.

No simplifications occur for N ≥ 4. To determine the
critical behavior one should therefore study the RG flow
of the model (10) in the space of the quartic couplings
u and w. As discussed in the Appendix, two different
types of symmetry breakings are possible in model (10),
depending on the sign of w. An ordered phase with
SO(2)⊕O(N−2) symmetry is obtained for w < 0. There-
fore, continuous transitions for v > 0 are only possible
if the LGW field theory admits a stable fixed point with
w < 0.

B. Field-theory analysis of the effective LGW
model for v < 0

In this Section we perform a field-theory analysis of the
RG flow in the model with Lagrangian (10) for N ≥ 4,
with the purpose of studying the possible existence of
stable RG fixed points with w < 0. For this purpose we
consider the ϵ-expansion approach and we compute the
β-functions at two-loop order. We obtain

βu(u,w) = −ϵu+ 1
12 (N

2 −N + 16)u2 + 1
4w

2

+ 1
6 (2N − 1)uw − 1

24 (3N
2 − 3N + 28)u3

− 11
36 (2N − 1)u2w − 1

288 (5N
2 − 5N + 164)uw2

− 1
48 (2N − 1)w3, (14)

βw(u,w) = −ϵw + 2uw + 1
12 (2N − 1)w2

− 1
72 (5N

2 − 5N + 164)u2w − 11
36 (2N − 1)uw2

− 1
96 (N

2 −N + 20)w3. (15)

The one-loop terms of these series agree with the one-
loop series computed in Ref. [56]. At one loop, beside
the trivial fixed point u = w = 0, the β functions always
have a zero on the w = 0 axis. This fixed point corre-
sponds to an O(K) invariant [where K = N(N − 1)/2]
theory and is always unstable. Indeed, the w term is a

spin-four perturbation of the fixed point, which is always
relevant for N ≥ 4 [57–59]. Two additional fixed points
are present, but only for relatively small values of N ;
more precisely, for

N < N∗(ϵ) ≈ 1

4
(2 + 3

√
22)− 9ϵ

16
√
22

≈ 4.018− 0.120ϵ,

(16)
with corrections of order ϵ2. Given the small negative
correction term, it seems plausible to assume thatN∗ < 5
in three dimensions (ϵ = 1), which implies that no stable
fixed points exist for N ≥ 5. We thus predict transitions
to be of first order for any N ≥ 5.
Let us now discuss the model with N = 4. In this

case the antisymmetric tensor Ψab transforms under a
reducible representation of the SO(4) group. It is there-
fore convenient to parametrize Ψab in terms of two three-
component vectors ϕe

1 and ϕe
2 (e = 1, 2, 3) that transform

irreducibly:

Ψef =
1

2

∑
g

ϵefg(ϕg
1 − ϕg

2), Ψ4f =
1

2
(ϕf

1 + ϕf
2 ), (17)

for e, f, g = 1, 2, 3. In terms of these two fields we obtain
the Lagrangian

Lϕ =
1

2

2∑
i=1

[(∂µϕi)
2 + rϕ2

i ]

+
(
u+

3

4
w
)
(ϕ2

1 + ϕ2
2)

2 − w

2
(ϕ4

1 + ϕ4
2). (18)

This model is known in the literature as MN model [60–
65] and represents the most general model in which M
N -component real vector fields (M = 2 and N = 3 in
our case) interact symmetrically.
Beside the unstable fixed point with w = 0, the model

admits a second simple fixed point that corresponds to
two noninteracting O(3) vector fields. Indeed, since for
u + 3w/4 = 0 the two vector fields decouple, there is a
fixed point with

u =
3

2
U∗
O(3) w = −2U∗

O(3), (19)

where U∗
O(3) > 0 is the fixed point of the O(3) Lagrangian

LO(3) =
1

2
(∂µφ)

2 +
r

2
φ2 + U(φ2)2. (20)

It is easy to prove nonperturbatively that this fixed point
is stable. Indeed, the RG dimension of the perturbation
is yp = 2/νO(3)−d = αO(3)/νO(3), as it corresponds to an
energy-energy interaction between the two scalar fields.
Since αO(3) < 0 in the O(3) model, the interaction is
irrelevant and thus the fixed point is stable. The fixed
point lies in the region w < 0 and is therefore relevant for
the model with v > 0. Thus, we predict that continuous
transitions for N = 4 belong to the O(3) universality
class. Note, however, that yp is very small, yp ≈ −0.19,
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and thus we expect slowly decaying scaling corrections
to the critical behavior.

To determine the critical behavior of Rab defined in
Eq. (12), we express it in terms of ϕ1 and ϕ2. We obtain

Ref = −1

2
(ϕe

1ϕ
f
2 + ϕf

1ϕ
e
2) +

1

2
δefϕ1 · ϕ2, (21)

R44 = −1

2
ϕ1 · ϕ2, R4e = −1

2

∑
fg

ϵefgϕf
1ϕ

g
2,

where e, f , g run from 1 to 3. These relations show
that Rab

L behaves as the product of two independent O(3)
vector fields.

C. Summary

The previous analysis and the results of Ref. [54] allow
us to predict the behavior of the model in the strong
coupling regime κ ≪ 1. For N = 2 we expect Ising
transitions for v > 0 and XY transitions for v < 0. The
line with v = 0 is a multicritical line where the symmetry
group enlarges to O(3) and we observe the same critical
behavior as in the CP 1 model.

For N = 3 and N = 4, we expect first-order transi-
tions for v < 0 (no stable fixed points exist in the LGW
effective theory) and also for v = 0, as in the CPN−1

model [43]. For v > 0 continuous transitions are possi-
ble, belonging to the O(3) universality class in both cases
(but with slowly decaying scaling corrections for N = 4).
Since for v = 0 transitions are expected to be of first or-
der as in the CPN−1 model [43], it is natural to expect
first-order transitions also for small positive values of v.
As a consequence, we predict the existence of a tricrit-
ical positive value v∗, such that the transition is in the
Heisenberg universality class for v > v∗ and of first order
for v < v∗.

Finally, for N ≥ 5 no stable fixed points occur in the
LGW RG flow and thus we expect transitions to be of
first order in all cases.

III. NUMERICAL RESULTS

In this section we present numerical Monte Carlo (MC)
results, with the purpose of verifying the predictions of
the previous Section. We consider the model with κ = 0
and partition function

Z =
∑
{z,λ}

e−Hz(z,λ), (22)

(we set β = 1/T = 1) and perform several runs by vary-
ing J around the critical point for N = 2, 3, 4, and 6. We
consider cubic lattices of size L3 with periodic boundary
conditions and use a combination of Metropolis and, for

the gauge field λ, microcanonical updates.1

A. Observables and finite-size scaling relations

To characterize the critical behavior we consider cor-
relations of the order parameters. We consider the two-
point correlation function of the operator Rab

L ,

GR(x− y) =
∑
ab

⟨Rab
L,xR

ba
L,y⟩, (23)

and the analogous quantity GT (x−y) for T ab
L . Then, we

define the Fourier transform

G̃#(p) =
1

V

∑
x−y

eip·(x−y)G#(x,y) (24)

(V is the volume) of the two correlation functions. The
corresponding susceptibilities and correlation lengths are
defined as

χ# = G̃#(0), (25)

ξ2# ≡ 1

4 sin2(π/L)

G̃#(0)− G̃#(pm)

G̃#(pm)
, (26)

where pm = (2π/L, 0, 0).
In our FSS analysis we use RG invariant quantities.

We consider

Rξ,# = ξ#/L (27)

and the Binder parameters. We define BR as

BR =
⟨µ2

2,R⟩
⟨µ2,R⟩2

, µ2,R =
∑
xy

∑
ab

Rab
L,xR

ba
L,y. (28)

The definition of BT is analogous.
For N = 4, we also consider the operators

ϕA
± = TA4

L ± 1

2

∑
BC

ϵABCTBC
L , (29)

where all indices run from 1 to 3. As already discussed,
these two quantities transform irreducibly under SO(4)
rotations. The correlation functions

Gϕ,±(x− y) =
∑
A

⟨ϕA
±,xϕ

A
±,y⟩ (30)

1 For z we use Metropolis updates with two different proposals:
a) we select two components i, j and perform a real rotation,
z′i = zi cosα + zj sinα, z′i = −zi sinα + zj cosα; b) we select
a single component and propose z′i = eiαzi. For λµ, we con-
sider a Metropolis update with λ′

µ = eiαλµ. In all cases α is
chosen in an interval [−θ, θ], where θ guarantees an acceptance
of approximately 40% (different values of θ are used in the three
cases above). For λ we also use a microcanonical update. If
F = zx · z̄x+µ, we perform the update λ′

x,µ = λ̄x,µF/F .
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satisfy Gϕ,+(x) = Gϕ,−(x) and GT (x) = −Gϕ,+(x) −
Gϕ,−(x). In particular, the correlation length computed
using Gϕ,±(x) is the same as ξT . The Binder parameter
is instead different. We define

Bϕ =
1

2

⟨µ2
2,+⟩

⟨µ2,+⟩2
+
1

2

⟨µ2
2,−⟩

⟨µ2,−⟩2
µ2,± =

∑
xy

∑
A

ϕA
±,xϕ

A
±,y.

(31)
At continuous transitions, in the FSS limit, the Binder
parameter as well as any renormalization-group invariant
quantity R scales as

R(J, L) ≈ fR(X) + L−ωfc,R(X), X = (J − Jc)L
1/ν ,
(32)

where ω is the leading correction-to-scaling exponent,
and Jc gives the position of the critical point. Relation
(32) can also be written as

R(β, L) = FR(Rξ) + L−ωFc,R(Rξ) + . . . (33)

where FR(x) is universal—it only depends on the uni-
versality class, the boundary conditions, and the lattice
shape—and Fc,R(x) is universal apart from a multiplica-
tive constant. Relation (33) will play an important role
to identify the universality class: To verify that the mod-
els belong to the Ising, XY, and Heisenberg universality
classes, as predicted above, we will compare the curves
FR(Rξ) computed in the present model with those com-
puted in the corresponding N -vector model with the
same boundary conditions. If the identification is cor-
rect, the data we obtain here should converge towards
the corresponding N -vector curves as L increases.
Critical exponents can also be obtained from the FSS

analysis. The exponent ν can be obtained by fitting the
data to Eq. (32). The exponent η instead can be obtained
by fitting the susceptibility data to

χ = L2−η[Gχ(X) +O(L−ω)], (34)

where X is defined in Eq. (32). Numerically, however, it
is more convenient to fit the data to

χ = L2−η[G̃χ(Rξ) +O(L−ω)], (35)

since these fits do not require any knowledge of ν and Jc.

B. Strong-coupling critical behavior for N = 2

To determine the critical behavior for N = 2, we have
performed MC simulations at κ = 0, varying J . We
have only considered relatively small lattice sizes (L ≤
16), as their results are already sufficient to confirm quite
precisely the predictions of the previous Section.

First, we set v = 10. We observe a critical transition
for J ≈ 0.37, which we expect to be an Ising transition.
To verify it, in the upper panel of Fig. 2 we report the
Binder parameter BT versus Rξ,T and compare the data
with the curve computed in the Ising model. We observe

0 0.25 0.5 0.75

R
ξ ,T

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

B
T

L=8
L=12
L=16
Ising

0 0.25 0.5 0.75 1

R
ξ ,R

1

1.25

1.5

1.75

2

B
R

L=8
L=12
L=16
XY

FIG. 2: Top: Plot of BT versus Rξ,T for v = 10; Bottom:
Plot of BR versus Rξ,R for v = −10. In both cases N = 2
and κ = 0. The continuous curves have been computed in
the Ising model (upper panel) and in the XY model (lower
panel). The relative error on the curves is approximately of
0.5%.

good scaling, in spite of the fact that lattices are quite
small. To further confirm the predictions, we fit BT and
Rξ,T to Eq. (32). Parametrizing the universal curve with
a polynomial, we obtain ν = 0.61(3) and ν = 0.64(2)
from the analysis of BT and Rξ,T , respectively, in good
agreement with the Ising result [66] νI = 0.629971(4).
Finally, to determine Jc precisely, we repeat the fits fixing
ν to the Ising value, obtaining Jc = 0.3741(5).

An analogous analysis has been performed for v =
−10. In the lower panel of Fig. 2 we report the Binder
parameter BR versus Rξ,R and compare the data with
the curve computed in the XY model. Again, we ob-
serve good agreement confirming the LGW prediction.
To estimate Jc we have fitted the two RG invariant ra-
tios to Eq. (32), fixing ν = νXY = 0.6717(1) [67–69]. We
obtain Jc = 0.5633(3).
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FIG. 3: Top: plot of BT versus Rξ,T for different values of
L; Bottom: plot of BR versus Rξ,R. Data for κ = 0, v = 10,
and N = 3. The continuous curves have been computed in
the Heisenberg O(3) vector model. In the top panel we report
the curve for vector (spin-1) observables; in the lower panel we
report the curve for tensor (spin-2) observables (the relative
error on these curves is approximately 0.5%).

C. Strong-coupling critical behavior for N = 3

For N = 3 we have performed a numerical analysis
for v = 10 and κ = 0 to verify the predicted behav-
ior. A priori, the transition is expected to be either of
first order (this occurs if v < v∗, where v∗ is the tri-
critical point), or continuous in the Heisenberg univer-
sality class. The numerical results are consistent with
an O(3) continuous transition. Indeed, if we plot the
Binder parameter BT versus Rξ,T , the results fall quite
precisely on the corresponding universal curve for vec-
tor correlations in the Heisenberg model, see the upper
panel of Fig. 3. As an additional check, we have fit-
ted the estimates of BT and Rξ,T to Eq. (32), obtaining
ν = 0.73(2), which is consistent with the accurate esti-
mate [70] ν = 0.71164(10) for the Heisenberg universality
class, see also Refs. [66, 71, 72]. To determine Jc, we have
repeated the fits fixing ν to the O(3) value, obtaining
Jc = 0.4479(3).

0 0.2 0.4 0.6 0.8

R
ξ ,T

1

1.25

1.5

1.75

B
φ

L=12
L=16
L=24
O(3)

0 0.2 0.4 0.6

R
ξ ,R

1

1.2

1.4

1.6

B
R

L=16
L=24
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L=48

FIG. 4: Plot of Bϕ versus Rξ,T (top) and of BR versus Rξ,R

(bottom). Data for κ = 0, v = 10, and N = 4. The continu-
ous curve in the upper panel has been computed in the Heisen-
berg O(3) model, using vector (spin-1) correlations. The rel-
ative error on the curve is approximately 0.5%.

As we discussed in Sec. IIA, the correlations of the field
RL,x should behave as the correlations of the spin-two
operator (it is defined as Σab = σaσb − δab/3, where σa

is the 3-component Heisenberg spin) in the O(3) model.
To verify this prediction, in the lower panel of Fig. 3
we report BR versus ξR/L, together with the Heisen-
berg scaling curve for BΣ versus ξΣ/L, where the latter
quantities are computed from correlations of the spin-two
operator Σab. We observe a reasonable agreement. Tiny
deviations are observed for intermediate values of Rξ,R,
presumably the result of corrections to scaling.

D. Strong-coupling critical behavior for N = 4

For N = 4 we have investigated the critical behavior
for v = 10 and κ = 0. If we plot the Binder parameters
BR, BT , and Bϕ versus the Rξ,R and Rξ,T we observe
good scaling, indicating that the transition is continu-
ous, see Fig. 4. To verify the arguments of Sec. II B and,
in particular, whether the critical behavior belongs to
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FIG. 5: Plot of L−2+ηT χT versus Rξ,T (top) and of L−2+ηRχR

versus Rξ,R (bottom). Data for κ = 0, v = 10, and N = 4.
We set ηT = ηH and ηR = 1 + 2ηH , where ηH is the vector
susceptibility exponent in the Heisenberg O(3) model: ηH =
0.0362.

the Heisenberg universality class, we compare the plot of
Bϕ versus Rξ,T with the corresponding curve computed
in the Heisenberg model, see the upper panel of Fig. 4.
The numerical data are close to the Heisenberg curve,
although some systematic deviations are clearly visible,
especially for intermediate values of Rξ,T , i.e., close to
the critical point. These small deviations can be easily
explained by the presence of slowly decaying scaling cor-
rections due to the ϕ2

1ϕ
2
2 in the LGW approach. They

decay very slowly, as L−0.19, making it very difficult to
observe the asymptotic behavior. For instance, to reduce
scaling corrections by a factor of two, one should increase
the lattice size be a factor of 38, which is is clearly not
feasible.

To provide additional evidence for the correctness of
the LGW predictions, we consider the susceptibilities
χR and χT . The susceptibility χT should scale as the
magnetic susceptibility in the Heisenberg model. There-
fore, data should scale as in Eq. (35) with [66, 70–72]
ηT = ηH = 0.0362(1). This prediction is verified in
Fig. 5. Data scale very well, as predicted. A second
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FIG. 6: Top: Distribution of the energy E for v = 10, J =
0.453, L = 12. Bottom: Distribution of the energy E for
v = −10, J = 0.3606, L = 6. Results for N = 6 and κ = 0.

important consistency check is provided by the analy-
sis of χR. The arguments of Sec. II B indicate that RL

behaves as the product of two independent O(3) vector
fields. This implies that GT (x) has the same critical be-
havior as GH(x)2, where GH(x) = ⟨σ0 ·σx⟩ is the vector
correlation function in the Heisenberg model (σ is the
fundamental variable in the Heisenberg model). At the
critical point, GH(x) scales as |x|−1−ηH . Therefore, we
have

χT ∼
∫

d3xGH(x)2 ∼
∫ L

r2dr r−2−2ηH ∼ L1−2ηH .

(36)
It follows that χR scales as in Eq. (35) with ηR =
1 + 2ηH = 1.0724(1). This prediction is tested in Fig. 5.
Again, data scale quite well, confirming the LGW pre-
dictions.

E. Strong-coupling critical behavior for N = 6

For N = 6 we expect first-order transitions for all val-
ues of v, For κ = 0 and N = 7, Ref. [46] observed a very
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strong metastability already on lattices of size L = 12.
Thus, we have performed simulations on small lattices to
be able to identify metastability effects. We have consid-
ered two values of v, v = 10 and v = −10. In both cases
we observe a bimodal distribution of the energy in some
interval of values of J . In Fig. 6 we show the probability
distribution of

E =
1

3L3

∑
xµ

z̄x · zx+µ̂λx,µ, (37)

for two specific values of J . Data show a clear two-peak
structure with a large latent heat, confirming the first-
order nature of the transitions.

IV. CONCLUSIONS

In this work we discuss the critical behavior of lat-
tice Abelian gauge models in which the fundamental
field is an N -component complex vector, and which are
symmetric under SO(N) transformations, focusing on
the behavior in the strong gauge-coupling regime. A
detailed analysis of the low-temperature configurations,
combined with general LGW arguments allowed Ref. [54]
to make precise conjectures on the nature of the low-κ
transitions in this class of models. In particular, while
SU(N) symmetric models may undergo continuous tran-
sitions only for N = 2 in the strong-coupling regime,
in SO(N) symmetric models continuous transitions (in
the Heisenberg universality class) are also possible for
N = 3, provided that the Hamiltonian parameters are
such that the symmetry breaking pattern at the transi-
tion is SO(3) → SO(2)⊕ Z2. For models with Hamilto-
nian (3) this occurs for v > 0.
In this work we extend the theoretical analysis to val-

ues N satisfying N ≥ 4, focusing on the case v > 0,
that was not considered in Ref. [54]. We perform a field-
theoretical analysis of the model, determining the RG
flow of the renormalized parameters close to four dimen-
sions, using the ϵ expansion approach. For N ≥ 5 no
stable fixed points are present, indicating that the tran-
sitions in the strong-coupling regime must be always of
first order. For N = 4, we can perform a nonperturba-
tive analysis of the RG flow, that allows us to prove the
existence of a stable fixed point, corresponding to two de-
coupled Heisenberg critical behaviors. Thus, for N = 4
continuous transitions are possible for v > 0, again in the
Heisenberg universality class.

The theoretical predictions of Ref. [54] and those pre-
sented here rely on several crucial assumptions. In partic-
ular, they assume that an effective description can be ob-
tained by considering the two order parameters reported
in Eq. (6) and (7) (T ab

L for v > 0 and Rab
L for v < 0), and

the corresponding LGW theory. To verify the correct-
ness of these assumptions, we have performed numerical
simulations. For N = 2 we observe an Ising transition
and an XY transition for v = 10 and v = −10. Heisen-
berg transitions are observed for v = 10 both for N = 3

and N = 4—in the latter case with significant scaling
corrections, in agreement with theory, that predicts cor-
rections decaying as L−0.19 with the size L of the system.
For N = 6 transitions are of first order for v = 10 and
v = −10. The FSS analysis of the MC data therefore
fully confirms the general scenario.
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Appendix A: Mean-field analysis of the
Landau-Ginzburg-Wilson model for an

antisymmetric tensor

We now determine the symmetry breaking patterns for
the LGW theory with Lagrangian (10). For this purpose
it is enough to consider the model in the mean-field ap-
proximation, i.e., to determine the minima of the mean-
field Hamiltonian

HMF = rTrΨtΨ+ u (TrΨtΨ)2 + wTr (ΨtΨ)2. (A1)

As the Hamiltonian is SO(N) invariant, we can use this
symmetry to simplify the analysis. We will now show
that every real antisymmetric matrix A of rank N can
be written as A = V ABV

t, where V ∈ SO(N) and AB

is a block-diagonal antisymmetric matrix. If N is even,
we can write (M = N/2)

AB = diag(A1, . . . , AM ), (A2)

where the matrices Ai are antisymmetric and two-
dimensional. If N is odd, we have instead (M = (N −
1)/2)

AB = diag(A1, . . . , AM , 0). (A3)

To prove this result, note that the nonvanishing eigen-
values of an antisymmetric matrix are purely imagi-
nary. Since A is also real, they must appear in complex-
conjugate pairs. Therefore, if N is even the eigenvalues
are {ia1,−ia1, ia2,−ia2, . . .}. If N is odd one eigenvalue
is necessarily zero. Since the matrix AtA = −A2 is sym-
metric, it can be diagonalized by using an orthogonal
matrix. Therefore, there exists an orthogonal matrix V
such that

diag(−a21,−a11,−a22,−a22, . . .) =

= V A2V t = (V AV t)(V AV t). (A4)

Now consider an eigenvector v of A2. It is trivial to show
that Av is also an eigenvector of A2 with the same eigen-
value. If all eigenvalues ai are distinct, this relation im-
plies that V AV t has necessarily the block-diagonal struc-
ture (A2) or (A3). If not all eigenvalues are distinct, we
can still choose V so that the block structure holds.
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It is interesting to note that a two-dimensional anti-
symmetric matrix has the form(

0 a
−a 0

)
(A5)

and thus it is determined by its eigenvalues ±ia, up to a
sign.

We are now in position to discuss the minima of the
mean-field Hamiltonian. If M = ⌊N/2⌋, modulo SO(N)
transformations we can take Ψ in block-diagonal form so
that

ΨtΨ = diag(a21, a
2
1, a

2
2, a

2
2, . . . , a

2
M , a2M , (0)), (A6)

where the last 0 occurs only for odd N . We should there-
fore determine the minima of

HMF = 2r
∑
i

a2i + 4u
(∑

i

a2i

)2

+ 2w
∑
i

a4i . (A7)

For r > 0, the minimum corresponds to ai = 0 for all
i: this is the disordered phase. For r < 0, we should
distinguish two cases:

(i) For w < 0, a minimum configuration corresponds
to a1 = a, a2, . . . , aM = 0, with

a2 = − r

2(2u+ w)
, HMF,min = − r2

2(2u+ w)
. (A8)

The configuration is invariant under SO(2) ⊕ O(N − 2)
transformations (note that two-dimensional antisymmet-
ric matrices are invariant under SO(2) transformations).
This is the relevant phase for the model with v > 0.

(ii) For w > 0 the minimum corresponds to
a1, . . . , aM = a with

a2 = − r

2(2Mu+ w)
, HMF,min = − Mr2

2(2Mu+ w)
,

(A9)
which is invariant under the compact symplectic trans-
formation group USp(2M). If N is odd there is an addi-
tional Z2 invariance.

Note that this calculation also provides the stability
conditions for the quartic potential [56], 2u+w > 0 and
2Mu+ w > 0.
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