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Abstract

This paper examines the use of tensor net-
works, which can efficiently represent high-
dimensional quantum states, in language mod-
eling. It is a distillation and continuation of the
work done in (van der Poel, 2023). To do so,
we will abstract the problem down to modeling
Motzkin spin chains, which exhibit long-range
correlations reminiscent of those found in lan-
guage. The Matrix Product State (MPS), also
known as the tensor train, has a bond dimen-
sion which scales as the length of the sequence
it models. To combat this, we use the factored
core MPS, whose bond dimension scales sub-
linearly. We find that the tensor models reach
near perfect classifying ability, and maintain a
stable level of performance as the number of
valid training examples is decreased.

1 Introduction

Quantum tensor networks have achieved great suc-
cess in many-body quantum systems, due to their
ability to efficiently represent high-dimensional
state vectors. Furthermore, there has been a growth
of interest in their application to machine learning
problems (Stoudenmire and Schwab, 2016). In this
paper, we are interested in exploring the application
of tensor networks to learn the Motzkin spin chain
dataset. We run experiments to learn this dataset
via Stochastic Gradient Descent (SGD), to demon-
strate a proof of concept of a Matrix Product State
(MPS), and a novel model we call the factored core
MPS.

This paper builds upon the work done for the doc-
toral thesis of Tai-Danae Bradley (Bradley, 2020).
This in turn was built on the works of John Terilla
et al. [(Pestun et al., 2017), (Stokes and Terilla,
2019), (Miller et al., 2020)]. The idea of using ten-
sor networks to do machine learning can be seen in
Exponential Machines (Novikov et al., 2016). Here,
Novikov, Trofimov, and Oseledets introduce the
Tensor Train (TT) as a method of factorizing a lin-

ear regression model. They also develop a stochas-
tic Riemannian optimization procedure to optimize
their model. Concurrently, the work of Stouden-
mire and Schwab (Stoudenmire and Schwab, 2017)
used tensor networks for image processing. They
used the DMRG algorithm (Schollwöck, 2011) in-
stead of the stochastic Riemannian optimization.
The advantage of using DMRG is that it automati-
cally adjusts the bond dimensions of the underlying
model, but it is computationally expensive. Other
works involving tensor networks include (Liu et al.,
2019), which trains a two-dimensional tensor net-
work for image recognition; (Martyn et al., 2020),
which investigates entanglement structures with im-
age classification; and (Tangpanitanon et al., 2022),
which uses the tensor networks to analyze Recur-
rent Arithmetic Circuits (RACs).

2 Theoretical Background

We will focus on sequences of finite fixed length,
where each element of the sequence comes from the
set V , the vocabulary. We denote its cardinality as
|V| = V . We will follow the procedure developed
in (Bradley et al., 2020).

Assume s ∈ Sn is a sequence in the set of length-
n sequences built from elements from V . Assume
furthermore that p(s) is a probability distribution
on the sequences; this is what we want our model
to learn. We will map each sequence s in Sn to an
orthonormal basis vector in the free vector space
|s⟩ ∈ CSn . Our model, |ψ⟩, aims to learn p(s) such
that it satisfies the Born Rule:

|⟨s|ψ⟩|2 = p(s) (1)

To do so, we will decompose the input sequences
into combinations of the constituent elements. As
we can decompose the sequences, so too can we
decompose the vectors they map to. We do this
using the tensor product. Let us begin with a sim-
ple decomposition. Imagine that we decompose
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ψ → M → U V † → U DV †
D

Figure 1: Vector decomposition, singular value decom-
position, absorbing diagonal matrix.

our set of sequences, Sn, into a Cartesian product
of sets, X and Y , which we call prefixes and suf-
fixes, using the terminology of Definition 3.1 of
(Bradley, 2020). Let both X and Y have fixed sub-
sequence lengths; therefore, each s ∈ Sn can be
unambiguously split into s = x+y, for x ∈ X and
y ∈ Y .

We now perform this decomposition with tensor
networks. A basic understanding of tensor net-
works and their diagrams is assumed, but we will
review core concepts. With tensor networks, each
shape is a tensor, and the number of legs it has
indicates its number of indices. Therefore, a vec-
tor has one leg, and a linear map (a matrix) has
two. Diagrammatically (as in Figure (1)), we can
imagine the decomposition as first reshaping our
model, |ψ⟩, from a vector into a linear map. This is
programmatically equivalent to reshaping a vector
array into an order-2 matrix, M .

Now, we can apply the Singular Value Decompo-
sition (SVD) to rewrite the matrix as the product of
a unitary matrix, a diagonal matrix (with zeros for
padding ifM is not square, to get the shapes to line
up), and the conjugate transpose of another unitary
matrix: M = UDV †. We can then absorb D in
U or V †, see Figure (1), where D is absorbed into
V †). We can think of the decomposed vector as a
map between the subspaces X and Y . As such, the
internal bond in the rightmost diagram of Figure
(1) can be thought of as a pathway to transport of
information.

Extending this principle to decompose the entire
sequence, we have

|s⟩ = |s0⟩ ⊗ |s1⟩ ⊗ . . .⊗ |sn⟩ ∈ RSn . (2)

Note that we have switched to using real numbers.
This is done primarily to simplify the programming.
We will find in our experiments that the models per-
form well without needing to use complex numbers.
Model performance when using complex parame-
ters is left as an avenue for future work. For each
vector, |si⟩, in the tensor product, we have a corre-
sponding tensor in our tensor network. The |si⟩ are

⟨s|ψMPS⟩ = . . .

s0 s1 sn

Figure 2: Ket and diagrammatic notation.

χL 1 χR −→ 1

V
V χRχL

Figure 3: Index ordering.

the standard basis vectors of RV , where V is our
vocabulary.

2.1 Dense Core MPS

We will denote our specific model, a matrix product
state approximation of the desired (and unknown)
state |ψ⟩, as |ψMPS⟩: If we wish to contract the in-
put sequence with a model, we can write it in either
bra-ket notation, or diagrammatically, as shown in
Figure (2). Assume also that internal bonds have
dimension χ, and external (physical) bonds have
dimension V .

For use with numpy-like code (e.g. Jax), it is
useful to create diagrams that explicitly indicate the
ordering of the indices, which will be relevant with
reshaping operations during the contraction pro-
cess. As an example, examine tensor 1 from Figure
(2). As a convention, we take the first index to be
the external index, then take the internal indices
from left to right. Let us label the tensors by their
position in the chain. The legs are labeled with the
size of their dimensions, as shown in Figure (3).

2.2 MPS Norm

In order to interpret the contraction of an input
with our model as a probability, we must ensure
the model is normalized: ⟨ψMPS|ψMPS⟩ = 1. We
therefore need an algorithm to calculate the contrac-
tion of the MPS with itself. This needs to be done
carefully, to ensure the computational complexity
does not exceed O(χ3). We show diagrams for the
first of these steps for the sake of concreteness; the
position-index of the tensors can be incremented
without loss of generality. These steps, show in
Figure (4), both have a cost of V χ3.

Let us dive into the details. We start by con-
tracting the tensors at one end over their external



1T 2T . . . 1CT 2T . . . 2T . . .

0C −→ −→ 1C

1B 2B . . . 1B 2B . . . 2B . . .

Figure 4: Contraction loop.

0T . . . . . .

−→ 0C

0B . . . . . .

Figure 5: Cap contraction.

0T 0B 0C

V −→
χ χ χ χ

Figure 6: Cap contraction, index ordered.

dimension, to create what we shall call a “cap”. We
use subscripts to denote the copy of tensor 0 on the
top (T ) and bottom (B), as well as the resulting
cap (C). Again, the tensors are labeled by their
position in the chain, see Figure (5).

This contraction requires a computational cost
of V χ2 operations. The index-ordered diagram
(Figure (6)) shows that we transpose the top copy
of tensor 0, as can be seen by its crossing legs.
Since we are multiplying the tensor at position 0
by its transpose, shown in Figure (6), the resulting
matrix will be symmetric.

From here, we can follow a pattern of two steps
down the chain, namely, contracting the cap with
the top tensor, then creating a new cap. The first
step in this two-step loop can be done with a
straightforward batched matrix multiplication (as-
suming an implicit extra leading dimension of one
for the cap). Note that the rightmost index of the
cap technically corresponds to the bottom bond
instead of connecting to the top, but we take advan-
tage of the symmetry of the cap, and avoid doing a
transpose operation. This is shown in Figure (7a).
The second step requires the merging of dimen-

0C 1T 1CT

χ −→
1 χ V χ V χχ

(a) Contracting in the cap,

1B 1CT 1C

V χ −→
χ χ χ χ

(b) Creating the next cap;

Figure 7: Index ordered diagrams for the contraction
loop.

sions in the relevant tensors, as shown in Figure
(7b). After this, the second step is just a matrix
multiplication (where we have also transposed the
reshaped bottom tensor), bringing us back to a sym-
metric cap.

This loop will eventually bring us to the final
cap. From here, the contraction proceeds almost
like the above loop, but with one less index, see
Figure (8a). To contract the final two tensors, nCT

and nB , we flatten them and do standard vector
multiplication (the inner product) to yield the final
norm squared value, shown in Figure (8b).

3 Motzkin Spin Chains

In this section, we examine the dataset we will be
using to conduct our experiments. The so called
Motzkin numbers occur in a multitude of manifes-
tations, as demonstrated in (Donaghey and Shapiro,
1977). Here, we will be interested in Motzkin num-
bers as they count the number of possible Motzkin
walks of length n.

A Motzkin walk can be constructed for a spin
chain of length n and spin s ∈ N. Recall that, for
spin s, there are 2s + 1 values for the magnitude



1T (n− 1)C nCT

χ −→
V χ V χ

(a) Contracting in the final cap,

nCT V χ nB −→ Norm
2

(b) Getting the norm;

Figure 8: Final steps in MPS norm calculation.

Figure 9: All valid Motzkin walks of length four for
spin s = 1 (Commons, 2021).

along an axis (typically, z). We consider the middle
value (zero) to be a flat step (+1,0), positive values
to be an upward step (+1,+1; we differentiate these
with a label, such as color), and the negative values
are corresponding downward steps (+1,-1). We
will focus our attention on Motzkin walks with
spin s = 1. A valid Motzkin walk is one that starts
at (0,0) and ends at (0,0), without ever dropping
below y = 0. All valid Motzkin walks of length
four for spin s = 1, are shown in Figure (9).

Consider Figure (1) of (Lin and Tegmark, 2017),
shown in Figure (10). Here, we see that many se-
quences of interest, such as language, music, and

Figure 10: Mutual information is plotted as a function of
token distance in natural language, music, and Markov
processes (Lin and Tegmark, 2017).
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Figure 11: Mutual information vs. token distance for
Motzkin sequences of length 16.

. . .

. . .

Figure 12: Factored core model, h = 2.

DNA, have long-range, power-law scaling corre-
lations in the mutual information as a function of
token separation distance. We can calculate this
plot for the Motzkin chains as well: The sharp peak
for high token separation is likely due to boundary
effects. While the insides of Motzkin sequences
are fairly flexible, the ends are correlated, since
they contain matching open and close parentheses
that are needed to complete the remaining pairs.

These Motzkin spin chains were first studied as
a system of interest to the study of quantum many-
body systems (QMBSs) (Bravyi et al., 2012). In
(Bravyi et al., 2012), the authors show that the en-
tanglement entropy between half-chain subsystems
scales as ln(n), where n is the chain length. For an
MPS, the area law indicates that the entanglement
entropy scales as ln(χ). Thus, the bond dimension
would have to scale linearly with system size with
the MPS: χ ∼ n. The number of operations to
contract two inner cores (neither first nor last in
the sequence) would scale as n3, which quickly
becomes infeasible on contemporary hardware for
modest sequence lengths in the hundreds.

3.1 Factored Core MPS

This motivates the use of a factored core MPS. For
the factored core, we can think of the dense cores
as turned into vertical products of cores. Let h rep-
resent the height of the factored core model: the
number of tensors in the vertical direction. In Fig-
ure (12), h = 2. We now differentiate between
vertical and horizontal internal bonds, whose di-
mensions are denoted by χv and χh. The subscript



χh χh

χh χh ⇒ (χh)
2 (χh)

2

χv

V V

Figure 13: Factored core contraction, h = 2.

χh χh

V

χh χh

V

χv

Figure 14: Factored core with skip connections

h in χh merely indicates that we are using the hor-
izontal bond dimension, and is unrelated to the
factored core’s height.

When contracting the factored core model, we
contract the cores vertically first, as shown in Fig-
ure (13). This yields a network with the same topol-
ogy as the dense cores, so the dense algorithms in
sections (2.1) and (2.2) apply from this point on. In
our experiment, we will simply merge the internal
bond dimensions of the factored cores, such that the
resulting effective dense core has bond dimension
χh

h.
In the factored core shown in Figure (13), in-

formation must flow from the physical index up
through the core. As the core height increases, we
expect the information from the physical index to
degrade as it moves up the subcores. This can be
addressed by constructing a skip connection: where
there is a copy of the physical index on each sub-
core. A diagram is shown in Figure (14).

We claim that their contractions scale at most as

χh
4χv

3 ∼ ln3(n) (3)

The most computationally intensive step comes
from the contraction shown in Figure (15), which
occurs for factored cores of height of at least four.
An analytic MERA solution exists for the Motzkin
spin chain system (Alexander et al., 2021). We
imagine a factored core network as loosely topo-
logically encompassing the MERA network. Since
the MERA solution has h ∼ ln(n), we assume the
same for the factored cores. A factored core equiv-
alent of a dense core solution would have χh

h = χ.

χv

χh χh

χh χh

χv

χv

Figure 15: Most computationally intensive possible fac-
tored core sub-contraction.

Then, we expect

χh ∼ χ1/h ∼ n1/ ln(n) = e. (4)

Analogously to χ ∼ n for the MPS (imagine a fac-
tored core as a vertical MPS), we expect our verti-
cal bond dimension to scale as the height (“vertical
length”), so

χv ∼ h ∼ ln(n). (5)

With these, we arrive at Eq. (3).

4 Experiments

4.1 Neural Baseline
Now that we have discussed the tensor network
model, we want a baseline to compare it to. We
propose using a feed-forward neural architecture as
a widely familiar benchmark. This will give a famil-
iar model for a wider AI audience to compare the
tensor models’ performance to. We choose a Multi-
Layer Perceptron (MLP) with a single hidden layer;
a classic, and one that has shown to be performant
if given a large enough hidden layer (Hornik et al.,
1989). Each token in the input sequence, si, is first
passed into an embedding layer, ϕ(·), that maps
it to a learnable vector in an embedding space of
dimension de. These are concatenated and passed
into the hidden layer (which has dh neurons). The
neural model will output a single scalar, which is
passed through a sigmoid nonlinearity. The output
will be denoted ψ(s).

We will be comparing the tensor models to the
neural model using a classification task. Funda-
mentally, the two models are different; the MPS
maps an input sequence to the probability of that se-
quence out of all sequences, while the neural model
maps to its belief that the input is valid. This is
because the neural model has no form of normaliza-
tion, while the tensor network inherently does. For
binary classification, the classification decision is
made by comparing the scalar output to a threshold.



This threshold does not depend on normalization,
so the task provides a level playing ground for the
models.

4.2 Training

In order to test the efficacy of our models, we will
run a series of experiments on the Motzkin dataset,
using a sequence length of n = 16. Our goal is to
learn the distribution, p(s), which is uniform over
valid chains, and 0 elsewhere. There are 853 467
valid Motzkin chains out of 316 = 43 046 721 pos-
sible chains, which is a little less than 2%. The
training dataset, DT , will consist of a random 25%
of the valid Motzkin chains. To examine the tensor
networks’ performance during training, we use the
set of all valid Motzkin chains; we will call this the
validation set, DV . We are interested in seeing if
the fraction of probability mass put on the training
data versus on all valid chains equals the fraction
of training data to all valid chains. We use this
as a measure of generalization: that the model is
properly extrapolating the pattern of the training
data, and not just placing all probability mass on
the training data. The latter would also cause the
sum over the probabilities of all valid chains to
equal one.

We will point out that, usually, the training data
is purposefully excluded from the validation set.
In this case, we include it to calculate the true total
probability mass the model puts on all valid chains,
not just a statistical estimate. We are able to do
this since we are working with a dataset for which
we can feasibly calculate the output of every valid
sequence. Because we are able to calculate the true
generalization, there should be no notion of data
contamination. This is, of course, not the case with
“real world” data, and is a luxury that lets us focus
on the science instead of copious hyperparameter
tuning.

We use the binary cross-entropy loss:

L = −EDT

[
y lp(x) + (1− y) ln

(
1− elp(x)

)]
,

(6)

lp(x) ≡ 2 ln ⟨ψ|x⟩ − ln ⟨ψ|ψ⟩ , (7)

where DT is comprised of inputs and binary labels,
(x, y), and lp(x) is the log of the probability of
sequence x, rewritten from Eq. (1).

For a validation epoch, we contract the model
with all x ∈ DV . Summing all these probabilities
will yield the probability of the model’s outputting

a valid chain:

ΣV ≡
∑
x∈DV

⟨ψ|x⟩ ⟨x|ψ⟩
⟨ψ|ψ⟩ (8)

The complement of this probability will of course
be the model’s probability of outputting an invalid
chain, which should go to zero.

A metric commonly used in language modeling
tasks is perplexity. The perplexity of a statistical
model, ψ, is defined as

PP (ψ) ≡ exp{H(ψ)} (9)

Here, H(ψ) is the entropy of the model. Note that
the output of the model needs to be the probability
of the input sequence, not the probability that the
input is valid! Calculating the perplexity for neural
models can get a bit hazy, with conventions varying.
Because of this, we will stick to using ΣV as our
primary metric of interest.

5 Tensor Network Initialization

5.1 Dense Core Initialization
We would like to initialize the model such that it
generates a uniform (the maximum entropy) dis-
tribution, plus some noise, over the space of se-
quences it operates on. To do this, we initialize
each core (except the left-/right-most cores, which
we shall call the outer cores) to be an identity ma-
trix (plus some noise) for each slice along the phys-
ical index. We denote this with Iχ: the identity
matrix of rank χ. We initialize the outer cores to
be ones (again, for each slice along the physical in-
dex), scaled by a factor of 1/

√
χ, plus some noise.

We denote this with |1χ⟩, a vector of length χ with
all entries equal to one. The leftmost core will be
a bra instead of ket. The motivation for this is, if
we were to contract these ones vectors with the in-
ternal identities (ignoring the noise for a moment),
we would end up with, after contracting with an
arbitrary input string:

1√
χ
⟨1χ| Iχ...Iχ |1χ⟩

1√
χ

=
1

χ
⟨1χ|1χ⟩ =

χ

χ
= 1

(10)
After normalization, this will yield the uniform dis-
tribution, as desired. We examine the initialization
noise variance more in Sec. (C.4), where we con-
clude that a solid initialization has the inner cores
close to identity, to allow information to propagate
more freely along the sequence in the early stages
of training.



(χh)
h (χh)

h →
(1)

V (χh)
2 (χh)

2(h−1) →
(2)

V (χh)
h−1 (χh)

h−1

V (χh)
2 U V † (χh)

2(h−1) →
(3)

χh χh

V

D

χv

Figure 16: First step of iterating SVD to “factorize” a
dense core.

5.2 Factored Core Initialization

We would like to initialize our factored cores to be
equivalent after vertical contraction to a dense core
initialized as in the previous section. Recall Fig-
ure (12) for the dense equivalent of a factored core.
In some preliminary tests, we found that simply
initializing the parameters from a uniform distribu-
tion (the default behavior for Flax layers) yielded
a model unable to learn. Thus, this initialization
scheme was empirically found to be essential to
our model’s learning. A deeper understanding of
why this might be is left as an area for future work.

We iterate application of the Singular Value De-
composition (SVD) to extend the core upward. We
call this process “factorizing” a dense core, the first
step of which is shown in Figure (16). We start
with a dense core of bond dimension χh

h, where h
is the desired height of the factorized core.

For step (1) in Figure (16), we reshape the dense
core into an order-2 tensor, with the physical and
one set of horizontal bond dimensions (V χh

2) on
one index, and the remaining sets of horizontal
bond dimension on the other. For outer cores, a
set only has one power of χh, not two, since the
horizontal bonds are only on one side of the core.

For step (2), we perform the SVD. Note that,
unless the vertical bond dimension, χv, equals the
rank of the target tensor being decomposed (D),
we will need to perform an extra step after the
SVD. If the desired χv is less than the target’s rank,
we need only discard the lowest singular values to
trim down to number to χv. If the desired χv is
greater than the target’s rank, we add additional
singular values. The additional singular values are
drawn from a uniform distribution; we default to a
minimum value of 0.001 and a maximum of 0.01.

Step (3) concludes by reshaping the tensors. Af-
ter we have trimmed/extended D to χv, we reshape
our bottom tensor, (labelled U ), and absorb the di-
agonal χv tensor into the top tensor (labelled V †).
We can then reshape the top tensor, to finish the

process, or iterate again to increase the core height
further. The result is a factored model that should
evaluate to a properly initialized dense model. Note
that, whether or not the factored core has skip con-
nections affects how close the factorized core is,
after vertical contraction, to its dense “parent”. The
extra expressivity of having a physical index on
each subcore, the case for skip connections, is
needed to capture all of the parent core’s infor-
mation.

In addition to factorizing cores, SVD can also
grant insight into a possible approximate contrac-
tion scheme. This can be done by removing sin-
gular values from the diagonal matrix, D, of the
SVD. Say we have M = UDV † in our SVD step,
with d0 the number of singular values in D. If
we remove singular values so this number reduces
to d1 (to yield a diagonal matrix D′), then the
Frobenius norm of the difference between M and
UD′V † =M ′ is

∥∥M −M ′∥∥ = ∥M∥
√∑

i>d1

(si)2, (11)

where si are the singular values of D (in this sum,
they are the ones that have been removed to yield
D′). This is the restricted rank tensor approxima-
tion; we can use it to quantify the loss in precision
as we reduce the computational cost of the fac-
tored core complexities (recall these scale at most
as χh

4χv
3).

6 Hyperparameters

In this section we will briefly discuss the experi-
ments run to determine the models’ sensitivities
to various hyperparameters. A more in-depth look
will be reserved for the appendices. There, we
examine the effects of bond dimension (C.1), in-
cluding the norm in the loss (C.2), alternative norm
calculations (C.3), and initialization noise variance
(C.4). Based on the results of our hyperparameter
tuning, we use a dense bond dimension of 8, and
for the factored core model a horizontal dimension
of 3 with a height of 2. For the skip-factored core,
we use a horizontal dimension of 2 and a height
of 3, so its effective bond dimension is equal to
the dense model’s. The model parameters used are
collected in Table (5), in the appendices. We do
not include a norm term in the loss, we calculate
the full norm, instead of approximating, and use an
initialization variance of 0.01
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Figure 17: Batch size sweep for dense core model.
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Figure 18: ROC AUC metrics for batch size sweep for
dense core model.

6.1 Batch Size Dependence

We would like to highlight a particularly intriguing
result we found when testing the effects of batch
size on the dense core model. We examine perfor-
mance for batch sizes of powers of two between
and including 2 and 1024. In Figure (17) and Fig-
ure (18), we see that the dense core’s performance
degrades as the batch size increases. Note in Figure
(18) that the ΣV metric begins falling off sooner
and faster than the classifier (ROC AUC) metric.
We investigate the classifier performance for the
neural and factored core models as well, shown
in Figure (19). Again, we see that the tensor net-
works’ performance begins to drop for large batch
sizes. This is not the case for the neural model,
which seems unaffected. Currently, we are unable

Model ⟨ΣT ⟩ ⟨ΣV ⟩ AUC

MLP - - 0.77(8)
Dense 0.252(8) 0.993(1) 0.999998(4)

No-Skip 0.23(6) 0.92(25) 1.00(1)
Skip 0.2472(2) 0.995415(2) 0.999999(2)

Table 1: 10-seed evaluation metrics for the four model
types.

to determine why this is the case. One possible ex-
planation involves the fact that the tensor network
models have a norm calculation to allow them to
express explicit probabilities, instead of the neural
model’s “belief” probabilities. We examined how
removing and replacing the norm, in Sec. (C.3), af-
fects learning, and since it reduces learning ability,
we found this be an unlikely explanation.

We proceed to our primary experiment, training
a binary classifier, and compare their performances
using the ROC AUC metric. Note that any AUC
less than 0.5 will be replaced with 1− AUC. This
is because, in that instance, the classifier is doing
worse than random guessing. As such, the opposite
of its classification choices can be taken to yield
better results.

7 Classifier Task

To begin, we use 10 random seeds to generate ag-
gregate results. We report averages to a precision
determined by the standard deviation of the data;
see Table (1).

For example, we start with the neural model,
which will serve as our baseline. We run our Multi-
Layer Perceptron (MLP) with embedding dimen-
sion de = 16, and hidden layer size dh = 256.
Across ten random seeds, we see an average ROC
AUC of 0.77 for the MLP, and a standard deviation
of 0.08. We will write this as 0.77(8) for compact-
ness. In this notation, we label our uncertainties
(standard deviation) in parentheses, which corre-
spond to the final digits of the measured average.

Our dense core tensor network model is run with
a bond dimension of χ = 8. In addition to achiev-
ing ⟨ΣT ⟩ and ⟨ΣV ⟩ near the ideal values of 0.25
and 1.0, respectively, the models effectively reach
1.0 on the ROC AUC metric. Thus, the dense core
model is able to effectively learn! Moreover, it
learns to classify much better than the neural base-
line, and delivers consistent results across seeds.

Since we do not need to approximate the factored
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Figure 19: ROC AUC metrics vs batch size sweep for all models.

Position Dense Factored Skip

Outer 24 96 64
Inner 192 288 128
Total (n = 16) 2736 4224 1920

Table 2: Core sizes for the tensor network models.

core’s vertical contractions for the Motzkin dataset,
we expect it to have similar results to the dense core
model. For the factored core tensor network with-
out skip-connections, we use h = 2, χh = 3, and
χv = 8. We see effectively the same performance,
with the exception of an outlier datum, seed = 8,
that raises the variance. We perform the same ex-
periment with a skip-connection factored core, with
h = 3, χh = 2, and χv = 4. Again, we see very
similar performance between the tensor network
models.

Let us remove the seed that caused the outlier
catastrophic forgetting for all models, and display
both aggregate learning curves in Figure (20). For
both models, we see tight 95% confidence interval
bands. Without the outlier data, the factored core
model is also quite consistent, and it is worth point-
ing out, though, that the factored models achieve
ΣV ≥ 0.99 in fewer epochs than their dense coun-
terparts.

Consider the number of parameters each model
uses, shown in Table (2). Recall that the physical di-
mension is V = 3 for the Motzkin dataset. Though
for n = 16 the factored core uses more parameters
than the dense core after hyperparameter tuning,
we see the superior scaling of the skip-factored
core. While the experiments intended to show that
the factored core’s performance wasn’t too much
worse than the dense core, we show that it in fact
performs the same, even slightly better. Not to

µ MLP Dense

1.0 0.81(4) 0.999997(4)
0.75 0.74(3) 0.945(20)
0.5 0.70(3) 0.959(4)
0.25 0.61(6) 0.86(18)
0.1 0.58(7) 0.987(3)
0.01 0.57(4) 0.57(5)

µ Factored Skip

1.0 0.999998(4) 0.999998(2)
0.75 0.939(16) 0.96(3)
0.5 0.948(7) 0.97(3)
0.25 0.940(25) 0.94(3)
0.1 0.985(21) 0.9977(15)
0.01 0.60(11) 0.521(2)

Table 3: ROC AUC vs. µ per model, averaged over four
seeds.

mention, with an embedding dimension of de = 16
and hidden layer size of dh = 256, the MLP uses
66 352 parameters. The tensor network models
are able to capture the structure of the data using
far fewer degrees of freedom, suggesting their ar-
chitecture is a very good prior, for this dataset at
least.

8 Robustness to Sparse Valid Data

Finally, we are interested in how our models re-
spond to a lack of valid-chain signal. In order
to examine model robustness, let µ be the frac-
tion of the training dataset that are valid Motzkin
chains. In the previous section, we restricted our-
selves to µ = 1.0. We will examine values of
µ = 1.0, 0.75, 0.5, 0.25, 0.1, 0.01, each with four
random seeds. The results are shown in Table (3).
Again, we will start with our neural baseline. The
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Figure 20: Probability masses with 95% confidence interval for 9 random seeds for tensor network models.

MLP’s classification performance decreases mono-
tonically with µ; it performs better with a training
dataset of purely valid data than a mix to contrast.
This is somewhat surprising, as conventional wis-
dom would predict that a balanced mix of valid
and invalid samples would be ideal. This could be
due to the long-range structure in the data. Cou-
pled with the fact that valid Motzkin chains are rare
among the set of possible chains, this suggests that
each valid sample is quite important in helping the
neural model learn the overall distribution.

We proceed to examine the µ robustness of the
dense core model. In Figure (21), we see that the
model is able to successfully learn the distribution
of the valid Motzkin chain for µ = 1.0, but not for
lower µ. As with Tables (7) and (9), despite low
ΣV performance, the model continues to perform
well with classification in Table (3), except for µ =
0.01.

The factored core model’s results without skip
connection are shown in Figure (22), and with skip
connection in Figure (23). We see similar results
as with the 10 seed classification experiment. In
both cases, the model that does learn, µ = 1.0,
does so with fewer epochs of iteration over the
training data than the dense core model. As with
the dense core model, for the lower values of µ,
the model is unable to capture the distribution over
the valid Motzkin chains. The models are able to
function as a good classifier, except when trained
with µ = 0.01.

8.1 Comparison of the Tensor Networks’
Robustnesses

In Figure (24), we display all three model’s ro-
bustness performance, in terms of AUC vs µ, with
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Figure 21: Dense core probability masses with 95%
confidence interval for various µ.
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Figure 22: Factored core probability masses with 95%
confidence interval for various µ, without skip connec-
tion.
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Figure 23: Factored core probability masses with 95%
confidence interval for various µ, with skip connection.

95% confidence interval bands. Note that we have
removed the runs corresponding to the seed with
value 1, since they led to an outlier result.

We see that the neural model has consistently
mediocre performance. The tensor network mod-
els, in contrast, have generally good performance,
that falls off for small µ. In this case, small µ mean
the fraction of valid chains in the training dataset is
smaller than the fraction of valid chains out of all
possible chains (≈ 0.0198), for the given sequence
length (n = 16). In the low µ regime, the mod-
els perform very similarly, but the tensor network
models perform consistently better in other cases.

9 Discussion

We have examined using tensor networks to de-
scribe Motzkin spin chains, a one-dimensional
dataset with long range correlations. While ex-
amining the tensor network’s sensitivity to hyper-
parameters, we have used the Multi-Layer Percep-
tron (MLP) to ground our analysis in the familiar.
Due to their origin in quantum physical theories,
tensor networks offer a novel method of interpret-
ing results, supported by an established theoretical
ecosystem.

We have seen that the tensor models can train
remarkably well as a classifier with very low quan-
tities of valid chain examples. This can be seen
despite the fact that the model fails to capture all of
the probability mass (µ = 0.75 and below). This
seems unintuitive: how can a model classify if it
doesn’t understand the underlying distribution? It
is important to note here that binary classification
only really depends on the difference between prob-
abilities. As such, it is possible that the probability
mass for invalid chains is smeared thin enough that
it is still substantially lower than the probability
mass attributed to the valid chains, making effec-
tive classification possible.

It is worth pointing out that, when µ drops to
0.01, the tensor models barely do better than a
random classifier. This is the regime where our
neural baseline pulls ahead, suggesting that neither
model-type is a clear winner. Instead, it behooves
a machine learning practitioner to consider each
as a tool that has greatest effect when played to its
strengths.

10 Future Work

Two results emerged that are still rather surprising
at the time of writing this paper. Firstly, an intrigu-
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Figure 24: ROC AUC vs. µ with 95% CI for all models, with seed = 1 removed.

ing phenomenon is the batch size dependence of
the tensor models. Specifically, that they perform
significantly better with smaller batch sizes, instead
of larger ones (to the point of the models’ inability
to learn at all with large batch sizes). This an impor-
tant caveat, since parallelization techniques allow
larger batch sizes to be computed more quickly,
reducing wall time of training. We initially thought
that, since tensor networks have a vector norm, see
Sec. (2.2), and neural networks do not, this differ-
ence may be part of the explanation. By testing the
performance of the tensor network with an alternate
norm calculation (eschewing the normalization step
in the training loss calculation, or using a simple l2
norm instead), we rule out this characteristic as a
possible explanation. The cause of this batch size
dependence is an exciting area for future work.

Secondly, we find that the neural model func-
tions better with a training dataset based purely on
valid chains, as opposed to a mix, for it to be able
to compare and contrast. There is literature that
suggests that neural models perform fairly consis-
tently across training dataset skewness (Larasati
et al., 2019). A more thorough investigation of the
threshold where tensor network performance drops
as a function of µ is also suitable for future work.

Limitations

Instead of being able to use off-the-shelf model
implementations, via e.g. HuggingFace, all models
had to be built from scratch. This required several
months of debugging and testing, to validate that
the models were working as intended. This was
time that could have been used for further experi-
mentation.

Additionally, the limitations in time also led to
the decision to use a smaller, toy dataset. Being
a novel combination of model and task (to the

author’s knowledge), care was taken to examine
the effects of the models’ various hyperparame-
ters. With a full natural language dataset, the time
needed to perform hyperparameter sweeps would
have been greatly increased, as well as adding ad-
ditional complexity for the aforementioned debug-
ging and testing.

Ethics Statement

Given that the data, the Motzkin spin chains, reside
in the realm of mathematical objects, there were no
considerations needed regarding fairness or repre-
sentation. However, great care was taken in making
the results reproducible, down to releasing the full
source code to an open GitHub repository at https:
//github.com/ConstantijnvdP/eidolon. The
goal is not only to reduce the barrier to participate
in this line of research, but also to encourage others
to question and reproduce the results. This repre-
sents the research ethics credo used to write this
paper: that reproducibility and healthy skepticism
underlie scientific integrity.
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Figure 25: χ sweep for dense core model.

A Overview of Parameters and Their
Values

For quick reference, we include tables of global
and model variables, along with their symbols and
values in Table (4).

B Neural Hyperparameter Tuning

Here, we examine the sensitivity to embedding
dimension and hidden layer size. We run each
combination of embedding dimension and hidden
layer size for four seeds, and display the average in
Table (6). We use an embedding dimension of 16,
and hidden layer size of 256 in further experiments,
to trade off performance with model size. Should I
try bigger neural models? Or is that not worth
the effort?

C Dense Core Hyperparameters

C.1 Bond Dimension

The bond dimension can be though of intuitively
as the size of the “pipe” for information to flow
through between elements of an input sequence.
We are interested to see experimentally how the
tensor network models’ performance is affected by
varying the bond dimension, χ. Examine Figure
(25) and Table (7). Even despite the catastrophic
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Figure 26: α sweep for dense core model, with 95%
confidence intervals.

forgetting seen for χ = 7, all of the models do
well with the classification task. We also see that
for χ = 4, the model saturates around ΣV ≈ 0.71,
indicating that the model does not have enough
capacity to learn the structure of the Motzkin data.
Again, this does not seem to significantly impact
classification performance.

C.2 Alpha Dependence

We are interested in the effect of adding the norm
to the loss (Eq. 6), which is controlled via an α
parameter:

Lα = L+ α ln ⟨ψ|ψ⟩ , (12)

We tested α values of 0.0, 0.25, 0.5, 0.75, 1.0; each
with 4 seeds. We did not see major effects on the
model’s performance, so we took α = 0 for all
other experiments.

As was discussed in Sec. (C.4), the tensor net-
work cores are initialized to be close to identity.
This is done to facilitate information transfer along
the sequence. If this is indeed conducive to a perfor-
mant model, then learning will keep the cores near
identity. We speculate this will also serve to keep
the norm in check, without needing an additional
term in the loss to do so manually.



Name Symbol Value

Sequence length n 16
Vocabulary/Physical Dimension V 3
Total Dataset Size D 43 046 721
Number Valid Data DV 853 467
Training Dataset Size DT 213 366
Fraction of DT that are valid Motzkin chains µ 1.0†

† µ is varied in the robustness experiments of Sec. (8).

Table 4: Global variables.

MLP Name Symbol Value

Neural Network Embedding Dimension de 16
Neural Network Hidden Layer Size dh 256

Dense Bond Dimension χ 8

Factored Core Type Symbol Factored Skip
Height h 2 3
Horizontal Bond Dimension χh 3 2
Vertical Bond Dimension χv 8 4

Table 5: Model variables.

AUC

de dh = 128 dh = 256 dh = 512

8 0.68(4) 0.66(6) 0.64(4)
16 0.79(5) 0.81(4) 0.77(8)
32 0.82(4) 0.82(9) 0.82(9)

Table 6: AUC metrics for MLP architectures.

χ ΣT ΣV AUC

4 0.1859 0.7065 0.9993
5 0.2404 0.9359 0.9999
6 0.2598 0.9914 1.0000
7 0.0334 0.1443 0.9431
8 0.2595 0.9934 1.0000
9 0.2593 0.9929 1.0000

Table 7: χ metrics for dense core model.

C.3 Alternative Norms

A large part of the computational cost of training
a tensor network model lies in its normalization.
We are interested in examining whether this calcu-
lation could be replaced by a faster computation.
Furthermore, we are interested to see if the ten-
sor network’s norm could be an explanation for its
strange batch size dependence.

As a first-order naive attempt, we see what hap-
pens when we ignore the norm calculation entirely,
assuming it to be 1.0 when calculating the loss. We
perform a sweep of the batch size, taking values
8, 32, 128, 512, and 1024. In Figure (27), the
models all tend towards the same total valid prob-
ability mass. However, this apparent asymptote is
nowhere near the desired full 1.0 probability; the
models simply do not learn the data. As seen pre-
viously in Sec. (6.1), increasing batch size seems
to decrease performance here as well. Because we
have removed the norm from the training loss, this
cannot be an explanation for this strange behavior.

We will also attempt to replace the norm with the
architecture-agnostic l2 norm. This norm simply
sums the square of each parameter, independent of
how they are configured. In Figure (28), we see
even less evidence of learning; the norm seems to
just throw off the model.
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Figure 27: Set dense core norm to 1.0, batch size sweep.
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Figure 28: Replace dense core norm with l2 norm, batch
size sweep.

ΣV

σinner σouter = 0.01 σouter = 0.1 σouter = 1.0

0.01 0.9929 0.9930 0.7788
0.1 0.9922 0.9912 0.9914
1.0 0.1465 0.1709 0.1541

Table 8: Initialization variance vs. ΣV .

C.4 Initialization Variance
Let’s take a closer look at the variance in the ini-
tialization function. Both inner and outer noise are
drawn from normal distributions with mean zero.
With four seeds each, we run our model on the
Motzkin dataset of length sixteen. The results are
as follows: In Table (8), we see that, in general,
lower variance performs better. Also, it is interest-
ing to note that the inner variance is much more
correlated with performance than outer.

D Factored Core Hyperparameters

D.0.1 Factored Core Model
For the factored cores, this is represented by both
the horizontal and vertical bond dimensions, re-
spectively χh and χv. Interestingly, in Table (9),
we see that the tensor network models’ ability to
classify chains, as measured by the ROC AUC met-
ric, continues to be strong even when their ability
to learn the probability distribution, measured by
ΣV , is weak, as seen by some combination of bond
dimensions in Figure (29).
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Figure 29: χh and χv sweep for factored core model.

χh = 3 χh = 4 χh = 5

χv ΣT ΣV AUC ΣT ΣV AUC ΣT ΣV AUC

5 0.2226 0.8092 0.9999 0.2320 0.9340 0.9999 0.2320 0.9341 0.9999
6 0.2559 0.9932 1.0000 0.2420 0.9923 1.0000 0.2428 0.9925 1.0000
7 0.2556 0.9948 1.0000 0.0589 0.2388 0.9719 0.0585 0.2364 0.9695
8 0.2547 0.9958 1.0000 0.0378 0.1490 0.9503 0.2419 0.9960 1.0000

Table 9: χh and χv sweep.


