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ABSTRACT

Complex chemical structures, like drugs, are usually defined by SMILES strings
as a sequence of molecules and bonds. These SMILES strings are used in
different complex machine learning-based drug-related research and represen-
tation works. Escaping from complex representation, in this work, we pose
a single question: What if we treat drug SMILES as conventional sentences
and engage in text classification for drug classification? Our experiments af-
firm the possibility with very competitive scores. The study explores the no-
tion of viewing each atom and bond as sentence components, employing ba-
sic NLP methods to categorize drug types, proving that complex problems can
also be solved with simpler perspectives. The data and code are available here:
https://github.com/azminewasi/Drug-Classification-NLP.

1 INTRODUCTION

Classifying drug types plays a pivotal role in drug discovery research, aiding in the categorization
of established drugs and enhancing our understanding of the distinctive features of newly identified
or synthesized drugs. It is necessary to ensure that a drug is used safely and that you get the greatest
possible benefit with the lowest possible risk. Different deep generative models have demonstrated
efficacy in addressing various drug discovery challenges (Pandey et al., 2022), mostly with the
capabilities of utilizing complex chemical structural data.

Simplified Molecular Input Line Entry System (SMILES) is a text-based representation of a chem-
ical molecule (Kong et al., 2022). They provide a standardized language for encoding molecular
information, facilitating analysis and machine learning applications in drug-related research. One
example of a drug structure and corresponding SMILES is shown in figure 2.

In this study, we explore the drug classification challenge from a simple perspective using drug
SMIILES. Given that drug chemical structures are conventionally denoted through SMILES strings,
an opportunity arises to avoid complex chemical representations by considering drug SMILES as
simple text sentences. In this analogy, the individual atoms and bonds within the molecule serve as
the constituent words, forming a coherent sentence using the sequential arrangement of SMILES,
word after word. Experimental results show that applying a basic bag-of-n-grams model can achieve
very competitive scores, showing proof that simple NLP approaches can be applied to complex
problems too, without using any complex chemical embedding or pre-trained models.

2 METHOD

In the process, a given SMILES string undergoes encoding via the bag-of-n-grams model, where ‘n’
signifies the number of letters within each token. Multiple tokens are generated from the dataset,
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Figure 1: Overview of our approach for Drug Classification using Text Classification Methods on
Drug SMILES Strings

with the top ‘K’ (the most frequently occurring) tokens selected. The remaining tokens are amal-
gamated into an ‘unknown’ token (‘UNK’). Subsequently, a sequence is constructed based on the
frequency of token appearances. This string is then fed into a Multilayer Perceptron (MLP) to ob-
tain logits, from which a classification label is determined by selecting the one with the highest
probability. A visual overview of the approach is presented in figure 1.

3 EXPERIMENT

In our experimental setup, we utilized a drug dataset obtained from Meyer et al. (2019), partitioned
into 70% for training, 10% for development, and 20% for testing. The dataset has 12 classes; they
are: dermatologic, antiinfective, antineoplastic, CNS, hematologic, lipidregulating, antiinflamma-
tory, cardio, gastrointestinal, respiratory system, reproductive control, and urological. More dataset
information is included in Appendix B.1. The modeling approach involved considering combina-
tions of 1 to 5 grams, representing sequences of 1 to 5 letters in the tokens, while encoding each
model. Each experiment is performed multiple times with different seeds, and an average is taken.
Also, we have performed fine-tuning only on TopK, and the best value is 1250. Experimental
setup details with comparison and ablation studies are presented in Appendix B. Here in table 1, we
present comparative analysis between different methods For fingerprints, we use these fingerprints:
Atom Pair Fingerprint, MACCS Fingerprint, Morgan Fingerprint.

Table 1: Performance Metrics for Different Configurations
Model Accuracy Precision Recall F1 (Weighted) F1 (Macro) ROC-AUC
1-gram+MLP 0.622 0.610 0.622 0.604 0.406 0.760
2-gram+MLP 0.669 0.700 0.669 0.672 0.445 0.810
3-gram+MLP 0.737 0.764 0.737 0.744 0.553 0.848
4-gram+MLP 0.726 0.758 0.726 0.731 0.524 0.841
5-gram+MLP 0.728 0.740 0.728 0.730 0.563 0.838
AtomPair+MLP 0.799 0.804 0.800 0.799 0.702 0.876
MACCS+MLP 0.797 0.801 0.797 0.796 0.702 0.873
Morgan+MLP 0.800 0.804 0.800 0.799 0.703 0.876

Table 1 illustrates the performance of several drug classification models. Among the ngram mod-
els, 3-gram models achieve around 73.7% accuracy and 76.4% precision in our experimental setup.
Most of the ROC-AUC scores are also above 0.835, suggesting good performance. Molecular fin-
gerprint models like AtomPair+MLP, MACCS+MLP, and Morgan+MLP exhibit improved accuracy
and noteworthy precision, recall, and F1 scores. Remarkably, Morgan+MLP excels in various met-
rics, showcasing its effectiveness despite the advantage of molecular fingerprints. In summary,
3-gram+MLP emerges as the optimal solution among ngrams, showcasing competitive scores with
fingerprint-based models. This demonstrates the feasibility of treating drug SMILES as strings and
employing basic NLP methods for classification tasks. While molecular fingerprints are intended to
capture particular molecular characteristics and are therefore anticipated to score higher, it is note-
worthy that n-gram models, such as 3-gram+MLP, surprisingly hold their own and do reasonably
well in drug classification. This observation emphasizes the versatility and competitive performance
of n-gram approaches, even when compared to specialized molecular fingerprinting techniques. Ad-
ditional details on our model’s correlation with fingerprint-based models, our work’s practical sig-
nificance, and its limitations are discussed in Appendix C.
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A RELATED WORKS

Deep learning and NLP: Deep learning (DL) models are utilized in drug development for the
following purposes: quantitative structure-activity relationship, virtual screening, and drug design
(Deng et al., 2021). Therefore, in recent years, we have seen the application of various DL systems
being employed for drug tasks where (Xiong et al., 2019) incorporated graph attention methods to
Graph Neural Networks and constructed Attentive FP, a function capable of preserving the interac-
tions between topologically adjacent atoms. (Gómez-Bombarelli et al., 2018) devised a Variational
Autoencoder model to facilitate the automated design of molecules to transform the SMILES input
strings into a representation of continuous vectors. Based on SeqGAN (Yu et al., 2017), (Guimaraes
et al., 2017) constructed objective-reinforced Graph Adversarial Network (ORGAN) to produce
molecules from SMILES sequences while optimizing a variety of domain-specific metrics. For text
classification, n-gram modeling is one of the most basic and fundamental model. (Khan et al., 2022)
have employed several n-gram features, including unigrams, bigrams, trigrams, and numerous com-
binations thereof to train DL classifiers and perform sentiment analysis, achieving a good score. In
our work, we have also presented an example of how effective it can be in modeling very complex
scenarios like drug classification.

SMILES-drug representation: While recent deep learning advances have resulted in accelerat-
ing drug discovery processes, not many of them address the generalization problem due to lack of
labeled data. (Wu et al., 2021) develop a bidirectional long-short-term memory attention network
(BAN) with a multi-step attention framework, extracting the important characteristics from SMILES
strings and capturing latent representations of molecules. Tackling the same problem of data avail-
ability, (Winter et al., 2022) leverage an NLP mechanism called SMILES-to-properties-transformer
(SPT) for predicting binary limiting activity coefficients from SMILES codes for thermodynamic
property prediction. Through the integration of synthetic and experimental data, the fine-tuning
process achieved computational efficiency.

Fingerprint-based representation: Ali et al. (2023) presented a detailed study of fingerprint-based
feature extraction for drug subcategory classification. This work explored the prediction of drug
subcategories by employing traditional molecular fingerprints and sequence-based embedding meth-
ods, specifically focusing on SMILES strings in the bioinformatics domain. The study evaluates five
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types of embeddings, including Morgan fingerprint, MACCS fingerprint, k-mers, and minimizer-
based spectrum. Furthermore, a weighted variant of k-mers, incorporating inverse document fre-
quency for assigning weights to individual k-mers within the spectrum, is also investigated.

Graph-based Drug representation: Graph ML has established its usefulness in biomedical ap-
plications, especially in classification tasks. Liu et al. (2019) developed N-Gram Graph, an unsu-
pervised molecular representation. By embedding vertices in the molecule graph and constructing
compact representations through short walks, this method successfully represents molecular prop-
erties; empirical experiments and theoretical analyses confirm the method’s strong representation
and prediction capabilities. In contrast, our model adopts a simpler perspective, leveraging drug
SMILES as text sentences for drug classification directly without any complexities.

B EXPERIMENTS

B.1 DATASET

In our study, we utilized a drug dataset retrieved from Meyer et al. (2019), partitioning it into training
(70%), development (10%), and testing (20%) subsets for analysis. We removed all multi-label
options and kept only single labels for this work to simplify the model. The dataset is available in
the supplementary materials, and the distribution of labels across the 12 classes is outlined in Table
2. ”Antiinfective” drugs are most common, followed by ”antineoplastic” and ”CNS”. There is a
class-imbalance between different classes. The most common type ”antiinfective” is 83 times more
present than the least common type ”urological”.

Table 2: Dataset Classes
Type Count
antiinfective 2412
antineoplastic 1175
cns 1149
cardio 797
antiinflammatory 372
hematologic 266

Type Count
gastrointestinal 259
lipidregulating 164
reproductivecontrol 148
dermatologic 115
respiratorysystem 100
urological 29

  
 

 

 

 
 
 

 

 

 

 

 

  
 

 
 
 

 
 
 

 

Figure 2: Molecular structure for a drug named Abemaciclib, with following SMILES string -
CCN1CCN(CC2=CC=C(NC3=NC=C(F)C(=N3)C3=CC(F)=C4N=C(C)N(C(C)C)C4=C3)N=C2)CC1
(Wishart et al., 2018).

Here we present the n-gram modeling of a drug molecule SMILES, named Abemaci-
clib. The SMILES string is: CCN1CCN(CC2=CC=C(NC3=NC=C(F)C(=N3)C3=CC(F)=C4
N=C(C)N(C(C)C)C4=C3)N=C2)CC1. Table 3 shows the number of unique n-grams for each n,
which is denoted by K for this particular SMILES.

Table 3: n and K in Abemaciclib
n K Some Examples
1 10 ‘N’, ‘C’, ‘F’, ‘=’
2 31 ‘NC’, ‘C2’, ‘C3’, ‘C=’, ‘CN’, ‘N=’
3 58 ‘C4N=’, ‘4=C3’, ‘=C4’, ‘N1C’
4 67 ‘C3=C’, ‘CCN1’, ‘C3=N’, ‘C4N=’, ‘=NC=’
5 69 ‘(=N3)’, ‘CC2=C’, ‘C(F)C’
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B.2 EXPERIMENTAL DETAILS

Table 4 presents experimental parameters and hyperparameters. In all experiments, the parameters
are kept the same. Experimental codes are included in supplementary materials.

Table 4: Parameter Configuration for the Experiment
NAME VALUE
Number of Epochs 200
TopK 1250
Dev Set Ratio 0.1
Test Set Ratio 0.2
Number of ngrams considered (TopK+1) 1251
Batch Size 32
MLP Hidden Size [512, 256, 128, 32]
MLP Dropout 0.1
MLP Learning Rate 3× 10−5

B.3 ABLATION STUDY: TOPK

In Table 5, we present an ablation study on the hyperparameter topK using 3-grams. The results
indicate optimal performance at TopK = 1250, followed closely by TopK = 1500 as the second-
best configuration.

Table 5: Performance at Different Values of TopK
TopK Accuracy Precision Recall F1 (W.) F1 (Macro) ROC-AUC AUPRC
500 0.705 0.744 0.705 0.713 0.525 0.830 0.587
750 0.695 0.715 0.695 0.697 0.435 0.825 0.574
1000 0.711 0.740 0.711 0.717 0.477 0.834 0.593
1250 0.737 0.764 0.737 0.744 0.553 0.848 0.620
1500 0.732 0.758 0.732 0.737 0.561 0.846 0.612

C DISCUSSION

C.1 DISCUSSION ON EXPERIMENTAL FINDINGS

Drug classification is challenging, considering molecular structures are complex and multifaceted.
The task is further complicated by the broad spectrum of compounds, minor variations in chemical
composition, and the constantly changing interactions that occur within biological systems. Further-
more, the dynamic landscape of drug design and discovery demands flexible classification models
that are capable of navigating novel chemical spaces, which makes the task inherently demanding.

Molecular fingerprints and n-gram modeling serve as indispensable tools in Cheminformatics and
language modeling, respectively, enabling the efficient comparison and analysis of complex struc-
tures. In order to extract features, molecular fingerprints transform structural elements into bits in
a bit vector or counts in a count vector, such as substructures for small molecules or atom-pairs for
larger molecules Riniker & Landrum (2013). Morgan fingerprints, a type of molecular fingerprint,
transform intricate molecular structures into unique bit vectors by identifying circular substructures
within a specified radius around each atom Capecchi et al. (2020). On the other hand, n-gram mod-
eling operates as a probabilistic language model, predicting the likelihood of word sequences by
breaking down input into chunks (n-grams) and assessing their probabilities based on occurrence
frequency. The goal of both methods is to reduce complex structures—like molecules or strings—to
simpler, more similar forms. The correlation is also observed in our model’s scores, as presented in
Tables 1 and 5. This interesting phenomenon suggests a relationship between the chemical aspects of
our model and the corresponding parameters in Morgan fingerprints. For instance, the optimal per-
formance observed at TopK = 1250 and n = 3 mirrors the characteristics of Morgan fingerprints,
where TopK is associated with the standard number of bits and n with the specified radius. The
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close alignment of our model’s optimal settings with Morgan fingerprints exemplifies how chemical
intuition can fine-tune simple n-gram models in Cheminformatics intuitively. Further research could
delve into these rationales and explore these intriguing relationships.

Apart from these shared characteristics, there are also some differences. Morgan fingerprints are
susceptible to bit collisions when different substructures map to the same bit, which could lead to
ambiguity. On the contrary, n-gram models perform very well in representing each n-gram distinc-
tively, which neutralizes the risk of collisions. Furthermore, molecular fingerprints only account
for the presence of specific substructures, potentially leaving out vital information in some cases,
whereas n-gram models are context-sensitive and take letter order of SMILES into consideration,
which can induce noise.

Our work also suggests that capturing some key substructures is sufficient for drug classification.
Table 5 shows that the score increases until TopK reaches 1250 and declines thereafter, indicat-
ing that only 1250 tokens are sufficient for accurate classification. This proves that, by focusing
on essential molecular motifs, models are able to distill meaningful information, striking a balance
between computational efficiency and predictive accuracy. This approach acknowledges the practi-
cal constraints of analyzing large chemical spaces while still yielding valuable insights for effective
drug classification by proposing a simple baseline.

C.2 DISCUSSION ON PRACTICAL IMPACT AND SCALABILITY

We believe that using a basic NLP model in drug classification has significant potential impact and
utility. This approach streamlines the representation of complex chemical structures into a format
analogous to natural language, thereby simplifying the drug classification process. The model’s suc-
cess in achieving competitive scores without relying on intricate chemical embeddings or pre-trained
models demonstrates its effectiveness in addressing complexity through simplicity. This technique
has the potential to transform drug classification by providing a more accessible and interpretable
framework, potentially enhancing collaboration between experts in diverse fields. Its simplicity
not only promotes ease of implementation but also contributes to democratizing drug discovery pro-
cesses, making them more approachable for researchers and practitioners without extensive expertise
in chemoinformatics.

C.3 DISCUSSION ON LIMITATIONS AND FUTURE WORKS

In addition to drug classification, NLP-based methods can play a pivotal role in drug Quantitative
Structure-Activity Relationship (QSAR) research by enabling the extraction of meaningful infor-
mation from textual data, enhancing the understanding of drug properties and interactions through
advanced linguistic analysis. Also, we can observe the class imbalance in the table B.1. Future
works in this area may explore strategies like oversampling, undersampling, or synthetic data gen-
eration to address this issue. Additionally, leveraging advanced transfer learning models may en-
hance adaptability, presenting promising avenues for further investigation into robust drug classifi-
cation methods using NLP techniques. The interpretability of this model can be utilized to clarify
the decision-making process involved in drug classification, assisting researchers and healthcare
providers in comprehending the variables affecting forecasts. The transparency of the model makes
it easier to identify the critical characteristics that contribute to each drug type, offering insightful
information about the classification choices made.

D CONCLUSION

This study showcases the application of fundamental NLP models to intricate challenges like drug
classification by treating drug SMILES as strings. Our experimental findings reveal that our basic
NLP model, typically defined by a bag-of-n-grams approach, attains highly competitive scores in
drug classification tasks.
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