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The trajectories of neutrons in the reactor, the points of their fission of uranium nuclei, the points of neutron 

absorption, fission chains and chain reactions are considered from the standpoint of fractal geometry and 

percolation theory. In the study of the stationary critical operating mode of a nuclear reactor, models of 

Cayley trees and Laplacian fractals are used. This approach allows us to obtain the neutron multiplication 

equation and an expression for the critical size of the reactor. Models of irreversible growth and various 

fractal dimensions are also considered as applied to the evolution of neutrons in a reactor. Prospects for the 

development of the proposed approach to describing reactors, primarily the kinetics and processes of 

neutron transfer, are indicated. 
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1. Introduction  

 
Fractal models of various kinds of systems make it possible to discover new features of seemingly well-

known phenomena. Many physical systems are fractal and multifractal. Below we consider some 

possibilities for describing the motion of neutrons in a reactor using the approaches of percolation [1, 2] 

and fractality [2–4]. Percolation is the phenomenon of flow or non-flow of liquids through porous materials, 

electricity through a mixture of conductive and non-conducting particles, and other similar processes. 

Percolation theory finds application in describing a variety of systems and phenomena, including the spread 

of epidemics and the reliability of computer networks. Percolation is the moment when a system state 

appears in which there is at least one continuous path through adjacent conducting nodes from one to the 

opposite edge. The set of elements through which flow occurs is called a percolation cluster. In [5], fractal 

is a structure consisting of parts that are in some sense similar to the whole. Fractal properties manifest 

themselves especially clearly at the very point of the phase transition, in the critical region. The steady-state 

operation of a nuclear reactor (NR) takes place precisely at the critical point, and the fractal description 

should be very important for characterizing the neutron behavior in the reactor [6]. 

In [7], the spread of rumors in the percolation model is compared with a chain reaction. The relations 

of the theory of percolation [1, 2] are also valid in the general theory of phase transitions [8 - 10]. Fractal 

concepts were used in the study of highly developed turbulence, inhomogeneous star clusters [11], 

diffusion-limited aggregation, processes of destruction of matter, the structure of blood, etc. The description 

of the physical properties of systems with a fractal structure led to the development of analytical methods 

in the fractal concept based on the use of the mathematical apparatus of fractional order 

integrodifferentiation, since the dimension of space becomes fractional. The need to switch to neutron 

transfer equations in fractional derivatives may be of practical importance for reactor calculations [12], 

although there is often no sharp distinction between percolation processes and diffusion [2]. It was noted in 

[27] that transport processes in percolation clusters, fractal trees, and porous systems must be analyzed 

anew in order to obtain correct transport equations for such systems. In branching fractal structures, “super-

slow” transfer processes can occur, when a physical quantity changes more slowly than the first derivative. 

The index of the fractional derivative with respect to time corresponds to the proportion of channels 

(branches) open to flow. The dynamics of diffusion is determined by the random nature of particle motion. 

A diffusing particle can reach any point in the medium. Percolation is associated with a fractal environment. 

Below the occurrence threshold, the process of particle propagation is limited to a finite region of the 

medium. During diffusion from a source, a diffusion front appears that has a fractal structure. In [5], the 
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term shell of a percolation cluster is introduced. Below, from a fractal perspective, we consider the chain 

reaction processes in the reactor: neutron trajectories, fission of uranium nuclei by neutrons, the formation 

of new neutrons, their absorption, etc. 

 

2. Fractal behavior of fission chains. Percolation models 

 

The model of Cayley trees [13 - 15] or Bethe lattice is applicable to fission chains in NR. A Cayley 

tree, also called a Bethe lattice, is constructed starting from a central node from which z branches of unit 

length emanate, forming the first shell of the Cayley tree. The end of each branch is also a node. From each 

node z - 1 new branches emanate, forming z(z - 1) nodes of the second shell. The process continues ad 

infinitum. This produces an infinite Cayley tree with z branches emanating from each node. There are no 

loops in the system because any two nodes are connected by only one path. In this case, the random nature 

of branching should be taken into account. You can also apply the theory of random graphs [16]. In [17], 

objects are considered that are very close to the subject of our study - random trees (random aggregates 

without loops). A general relationship between the diffusion index and the fractal dimension of the tree is 

obtained. Knowledge of the internal properties of clusters allows one to study their dynamic properties. 

Fractal phenomena can be classified as stochastic phenomena, since there is a close connection between 

fractal phenomena and statistical distributions [18]. 

The trajectories of neutron motions in nuclear reactors form a characteristic branching structure of the 

process for the total number of neutrons. The figure shows examples of the trajectories of one neutron 

introduced into a breeding medium, taking into account those evolutionary events (nuclear fission and 

neutron absorption) that lead to a change in the size of the neutron population. 

 

Fig. 1. Trajectories of neutrons and their descendants in the breeding medium:   - the point at which the initial 

neutron begins to move;  —points of fission of nuclei by neutrons;   - neutron absorption points. 

The processes represented by trees are associated with branching random processes [19]. We consider 

an aspect of the problem determined by the size and nature of the behavior of clusters - nodes connected to 

each other. By a node we mean a fissile nucleus (or a neutron introduced into the system - the root of a tree 

[16]), and by a connection - neutron trajectories. Neutron absorption points form so-called hanging ends 

[16] (vertices of degree 1) or free ends. 

At high subcriticality and large negative reactivity values ρ=(kef–1)/kef (the effective multiplication 

factor kef is much less than unity), the system contains small-sized clusters with a predominant number of 

hanging ends. If the intensity of neutron death during the time Δt→0 (absorption by the environment or 

leaving the system) is denoted сΔt+0(Δt), and the intensity of nuclear fission by a neutron λf∆t+0(∆t) 

(λf=vΣf, where v is the neutron speed; Σf is macroscopic fission cross section), then the probability of nuclear 

fission by a neutron is c=p=λf/(λf+λc). Effective neutron multiplication factor kef = p , where   is the 

mathematical expectation of the number of secondary neutrons in one fission event. As p increases, the 

cluster sizes increase. At p = 1, all fuel nuclei in the nuclear reactor are separated, and kef max=   (under 

such conditions an explosion occurs). For 1 - p    there is an infinite cluster in the system. There must 

be a critical value pc at which a transition from one mode to another occurs - an infinite cluster appears for 

the first time. This corresponds to the case kef = 1, pc = 1/   . The same result in the percolation model was 
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obtained strictly mathematically [1 - 4, 7]. The formation of an infinite cluster represents a phase transition, 

the beginning of a self-sustaining chain reaction, the critical point of the system. An important role in the 

theory of phase transitions is played by the concept of an order parameter, that physical quantity that 

occupies a key place in the processes leading to the transformation. In the theory of percolation clusters, 

the order parameter is the power of an infinite cluster - the probability that a lattice node will belong to an 

infinite cluster. The critical behavior of this quantity at p→pс , p  pс  is determined by the dependence 

P =( p − pc ) 
  ,                                                                                (1) 

where   is one of the so-called critical indicators (scaling indices - in terms of percolation theory) [1, 4]. 

The value  determines the critical behavior of the power of an infinite cluster P. In percolation theory, 

probability (1) is also called the percolation probability. It serves as the main characteristic of the 

percolation system. The percolation probability can be used to express properties of physical systems that 

depend on the topology of large clusters, such as spontaneous magnetization or conductivity. Such 

quantities as the average number of nodes of the final cluster, the correlation length , the characteristic 

spatial scale of the cluster at ppс, and at ppс - the characteristic size of the voids in it are also determined. 

The value of P  in a nuclear reactor is proportional to the deviation n - nc, where n is the neutron 

density, nc is the critical value of n. Let us denote τ=(p-pc)/pc=kef-1. The average number of nodes of a 

finite cluster s (this value is similar to the generalized susceptibility in statistical physics and the fluctuation 

theory of phase transitions [8, 9]) at τ →  behaves as 

, 1s


 
−

,                                                              (2) 

where  is the critical index for s. The correlation length , the characteristic spatial scale of the cluster at 

р рс, and at р рс - the characteristic size of voids in it, near the critical point the average size of the critical 

cluster at τ →  behaves as 


 
−

,                                                                 (3) 

where ν is the critical indicator of the value  (relative to τ). For nuclear reactors, the influence of external 

influences (sources, control rods, feedback, size of the system, its boundaries, etc.) is significant. If we 

denote the external field h (set in some effective way depending on the type of influence), then at h    we 

can introduce another critical indicator δ  
1/( 0, )P h h  = = .                                                      (4) 

Since P n - nc, then external fields, which are sources and sinks of neutrons in nuclear reactors (their 

physical nature is due to the influence of feedback, control effects, the influence of boundaries, delayed 

neutrons, etc.), shift the critical point, playing the role of reactivity additives. The dependence of reactivity 

on such additives is generally nonlinear, and changes in reactivity are not additive. The value of pc =   

 shifts and fluctuations   - the number of neutrons emitted during the decay of the nucleus. The analogue 

of thermodynamic heat capacity сT behaves at τ →  as 

Tc



−

,                                                            (5) 

where α is the corresponding critical indicator. Formulas (2) and (3) are known in the theory of nuclear 

reactors, although they were obtained there in a different way. Thus, expression (2) is the neutron 

multiplication equation: 

N = (1 - kэф)-1,                                                        (6) 
those. critical index  =1, equation (3) - critical size equation 

Rэф=M(kef–1)–1/2
 ,                                                     (7) 

where Ref is the effective size, a geometric parameter, M is the neutron migration length. In this case, the 

indicator ν = 1/2. Expression (4) reflects the influence of factors such as control rods and boric acid 

concentration on the value of the order parameter at the critical point. It is not easy to give an unambiguous 

interpretation of expression (5). But the use of percolation theory and the constructions of fractal theory 
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makes it possible to write down a number of other relationships and consider, for example, dynamic critical 

indices, the dimension of the cluster skeleton, the spectral (fracton) dimension, etc. 

Power dependences (as in expressions (1) - (3)) are generally characteristic of random variables with 

infinitely divisible distributions [18] and their subclass - stable distributions, the connection of which with 

fractal behavior has been strictly proven for the Wiener process, but which, apparently, are also associated 

with other random processes corresponding to fractal phenomena. 

Critical exponents are related to each other by scaling relations 

2 2 2 , 1; 2 / ; 2d d           = − = − − = + = − = + ,                  (8) 

where d is the dimension of space, index  determines the behavior of the correlation function g(r) at large 

r, when g(r)  r-d+2-
 . The classical theory (its presentation for the case of polymer trees is given, for 

example, in [10]) allows us to obtain indices equal to  = , β = , ν = , δ  = ,  = , α=1. The validity 

of the classical indices for the reactor is explained by the fact that neutrons do not interact and the theory 

of a self-consistent field is valid. Critical exponents are universal, they do not depend on many rough 

properties of the chosen model, but are sensitive to various symmetry properties, the presence of long-range 

correlations, etc., characterizing a whole class of physical phenomena (in the asymptotic limit, near the 

transition point, where only the maximum term of the expansion is considered, for example by τ  in 

expressions (2) and (3)). 

The characteristic largest size of the finite clusters is determined by the exponent , for which the 

hyperscaling relation  = d - β is valid. At τ  

( ) ( )exp( )sn f s As 


= − ,                                                            (9) 

where ns is the fraction of fission chains, clusters consisting of s neutrons; f(s) is some function that grows 

no faster than the power s. Clusters with  
cs 

−
 are called critical. The probability that clusters will have 

larger sizes decreases exponentially. The characteristic spatial scale of the critical cluster is equal to the 

correlation length. 

The behavior of the system is determined by the relationship between two spatial scales: the minimum 

length а0 (a value on the order of the neutron free path λ) and the correlation length . At    а0 there is 

a region of intermediate asymptosis а0  r  . In this region, all characteristics of clusters (measurements 

on a scale smaller than ) are similar to their characteristics at the most critical point, when τ = 0,  = . 

Their properties in this area are characterized by self-similarity (scale invariance). The reason for the 

similarity of critical phenomena is the similarity (self-similarity) of geometric objects. A characteristic of 

such self-similarity is the fractal dimension. At scales smaller than а0, there is no self-similarity. There are 

various ways to determine the fractal dimension. For example, in the relations from [5, 15], the total number 

of particles in the system N is related to the linear size of the system r by the relation 

N   r D ,                                                                    (10) 

where D is the self-similarity dimension, the fractal critical dimension. In [15], a relation was written for 

the length of a broken curve of the form 

L = а0 (R/ а0) 
D

 , 
where а0 is the value of the scale used; R – distance in a straight line; D – fractal dimension. Near the critical 

point, the system can be considered as fractal self-similar, on scales а0  r  , and as homogeneous on 

large scales. You can enter density   type  

,

,

D d

N d

r rN

r const r






− 
= = 



.                                                        (11) 

The value  is the scale at which the density becomes constant (in NR this is the region in which nuclear 

fissions do not occur, but there is a uniform flux of neutrons escaping from the region with fissions, for 

example, a reflector). Any intensive quantity behaves in the same way. Fractal behavior significantly affects 

the operation of nuclear reactors in the critical region. Thus, fractal characteristics determine the speed of 

propagation of disturbances in the supercritical regime, at p  pc. The chemical distance Rc between nodes 
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i and j is defined as the minimum number of steps in which one can get from i to j, passing only through 

accessible nodes. Having defined the ball Bc as a set of nodes for which Rc ≤ n, we can define the chemical 

dimension as an indicator Dс such that the number of NB nodes belonging to Bc increases with n, as 

NB ~ n Dc .                                                             (12) 

The value Dc = D/DR is the ratio of two dimensions - the cluster dimension D and the dimension DR of the 

curve, the length of which gives us the chemical distance. Another name for this dimension is the 

connectivity dimension. The effective speed of propagation of the disturbance front at p > pc, at local 

supercriticality is equal to 
( 1)RD

v
 −

; the indicator  = (DR - 1) effective speed determines the magnitude 

of the critical deceleration as p approaches pc from above. In classical theory  = 0.5, and v~τ0.5. This 

characteristic is important for assessing various types of time characteristics of a critical reactor and, 

ultimately, for the safety of nuclear power plants. If local supercriticality occurs in a nuclear reactor, then 

the speed of its propagation must be assessed based on fractal patterns. Many important properties of the 

kinetics of processes in nuclear radiation can be understood in more detail by considering the dynamics of 

processes on the Bethe lattice (taking into account delayed neutron sublattices); this applies to both lattice 

diffusion and other dynamic phenomena. From the fact that =0.5, we find: DR = 2, Dc = 2 and NB ~ n 2. 

For the Bethe lattice and Cayley trees d = 6, D = 4. Classical values of the critical exponents are valid 

for d 4 [9]. Note that fractals can have an entire fractal dimension greater than the dimension of the space 

in which they exist; this is true, for example, for infinite clusters. Cayley trees are constructed in ultrametric 

hierarchical space. For a three-dimensional Euclidean embedding space in a cubic lattice, the value of the 

fractal dimension corresponds to the branching measure. This paper examines approaches to describing 

fission processes in nuclear reactors associated with percolation laws, with fractal dimension D = 4 and 

Laplacian fractals with D = 2.4. It is also possible to use other models, for example random trees [17]. 

Expression (4) makes it possible to evaluate the influence of control parameters (using control rods, 

boric acid concentration, etc.) at the most critical point, with reactivity ρ equal to zero. The classical value 

in the theory of a self-consistent field of the critical index is δ=2. From expression (6), differentiating it 

with respect to τ ~ ρ, we obtain: 2
~ c

dN
p p

d 

−
− − , and the power coefficient of reactivity near the critical 

point is equal to 
2 2

~ ~ ~ 1N c

d
p p k

dN


 − − − − . 

An expression is also written for the behavior of the correlation function g(r) at large r, when g(r) r-d+2-, 

the classical value of the index η = 0, and for d = 6, D = 4: 

g(r)  r -d+2
  r -4  l -2. 

Note that in the Cayley tree model, relations of the form (10) involve not the Euclidean distance r, but 

the chemical distance l between nodes. Thus, the chemical distance between the central node and an 

arbitrary node belonging to the l-th shell is equal to l [26]. The last relation l-2 corresponds to the dependence 

l -(d-D. The size of the critical cluster is determined by the relation 
cs 

−
 , where the value ∆ = 2. For 

d=3, in a cubic lattice, g(r)  r -d+2
  r -1. The total number of particles in the system N is related to the 

chemical distance in the system l by the relation N l Dc. The fraction of clusters with s nodes (the fraction 

of fission chains of s neutrons) in accordance with expression (9) and with the classical value of the index 

∆ = 2 is equal to 
2 5/2( ) ( )exp( ), ( )s s sn f s As n p s  −= − = . The last expression shows that at the most critical 

point the fraction of fission chains of s neutrons is related to the value of s not by an exponential, but by a 

power-law dependence. 

For neutron processes in a nuclear reactor, the most important characteristics are the percolation 

probability, which is interpreted as the probability of a self-sustaining chain reaction, and the percolation 

threshold value, which is proportional to the neutron multiplication factor. In [20], a recurrence relation was 

obtained for the probability of percolation from the root vertex, the probability that a connected component 

of the configuration containing the root vertex (some starting point of the appearance of the first neutron in 

the system, which generated a chain reaction), reaches the opposite edges of the system. Conventionally, 
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mathematically, the size of the system and the connected component tends to infinity, although real systems 

are finite. It was noted in [21] that the size of the Bethe lattice is proportional to lnN, where N=n. The value 

n in our problem is interpreted as the number of generations of neutrons in a chain reaction. 

 

3. Models of irreversible growth. Dimensions 

 

The fractal dimension of tree-like structures D in a reactor with thermal neutrons and uranium as fuel 

(for example, VVER) is equal to the average number of secondary neutrons in one fission event, D = 2.4. 

This follows from [5, Ch. 16], where it is noted that for trees with infinitely thin trunks, the fractal dimension 

D serves as a measure of branching. However, in this work we also used the Cayley tree model, for which 

the fractal dimension is D = 4. The difference in dimensions is caused by different embedding spaces. 

Another significant reason for the difference in fractal dimensions is the multifractality of the processes of 

fission and neutron transfer in nuclear reactors. 

In [20, 21], fractal structures that simulate electrical breakdown are considered. The same kind of 

phenomena are observed in the processes of crack formation. The equations describing these processes are 

compared with the diffusion model of neutron transfer in the reactor. The study is carried out on a cubic 

lattice in a three-dimensional embedding space. The fractal dimension D for this case is close to the 

branching measure of 2.4 for uranium nuclei in the reactor. The human circulatory system has almost the 

same dimension: 2.4 – 2.6. 

The average density of particles in a cluster behaves as it moves away from the center, as in relation 

(11). It can be expressed by the formula [7] 

10

0 ( ) ( )
2

N N

r R r

r r

 
−

= 


,                                                         (13) 

where α1 = d - D, d – dimension of space, α1 = d – D = 0.6 for d = 3, D = 2.4; r is the depth of penetration 

of a particle into a cluster of size R; r - distance from the cluster center; R >> R - r0 >> r; Ф(х) - probability 

integral; r0 is a certain minimum radius (such as the mean free path of a neutron). For the total number of 

particles in the cluster we find (for r << R) 

12 1/2

0 0
0

2
4 ( ) 4 [1 ( ) ], 2.4

D
R R r

N r r dr r D D
D R

   



= = − = .                           (14) 

It is possible to estimate the dependence of the particle penetration depth ∆r when connecting to a 

cluster from the task parameters. The expressions obtained in [20] for the average distance between nearest 

branches may also be of some interest in reactor theory 

( )
1( )

d D

dr r
−

−= ,                                                          (15) 

and other parameters. If (r) is the number of lines of neutron trajectories of one chain intersecting a circle 

of a given radius; ±(r) is the radial density of branching points (fissile nuclei) (+) and free ends (-) (neutron 

absorption points), and L(r) is the total length of the neutron trajectory lines of one chain in a circle of radius 

r, then the following are satisfied similarity relations [21] 
1 2( ) ; ( ) ; ( )D D DL r r r r r r − −


.                                           (19) 

In addition to those listed, you can specify other fractal characteristics that can prove to be effective 

for solving various problems of operation and studying the behavior of nuclear reactors. Relations (15) and 

(19) are written for d = 3, D = 2.4 in the form 
0.3 2.4 1.4 0.4( ) ; ( ) ; ( ) ; ( )r r L r r r r r r    . 

In [17], such an internal indicator of a cluster is used as the internal dimension of its skeleton dl 
S. The 

cluster skeleton is defined as the set of all shortest paths connecting the cluster nodes with the surrounding 

shell, located at a chemical distance L << 1 from the region under consideration. The skeletons of 

percolation clusters in a space of any number of dimensions at a critical concentration are linear in the sense 
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of the chemical distance, i.e. dl 
S = 1. General relationships between dynamic indicators describing diffusion 

and statistical indicators describing the structure of the tree are obtained: 

dw 
l=2+Dc- dl 

S;    dw=D(2+Dc- dl 
S)/Dc;      d =2Dc/(2+Dc- dl 

S), 

where dw is the diffusion index; dw 
l – chemical diffusion indicator; d = 2D/dw is the fracton (or spectral) 

dimension characterizing the connectivity of an object, the density of states and its spectral properties [17]. 

When dl 
S = 1, 

dw 
l=1+Dc;   dw=D(1+Dc);     d =2Dc/(1+Dc). 

For Cayley trees Dc = 2, dw = 6, dw 
l
 = 3, d  = 4/3. These are not all the results of fractal and percolation 

approaches to describing the internal and dynamic properties of neutron clusters that form tree-like 

structures of fission chains in nuclear reactors. Thus, in [1, 2] the dimension of the shell, the boundary of a 

connected cluster, is defined as Dh = (1 + ν)/ν, equal to 3 for percolation on Cayley trees. In [22], the 

dependence of the cluster perimeter P on the number of nodes in it s is given by the relation 

P = [s(1 - pc)/pc] + Asσ, 

where A is a constant, σ = 1/νD, equal to 1/2 for percolation on Cayley trees. In [22], the fractal dimension 

of the cluster perimeter dG (equal to 2 for percolation on Cayley trees), obtained in the butterfly walk (cluster 

growth) model, was considered, and a new relation was proposed for the chemical dimension Dc=D/(D-

dG). 

 

4. Conclusion 

 

The importance of the relations of the percolation theory for neutron processes in a reactor is already 

evident from the fact that they allow us to immediately obtain the neutron multiplication equation and the 

equation for the critical size of the reactor (expressions (6) and (7), interpreting the general relations of the 

percolation theory (2) and (3)). Expressions (6) and (7) obtained directly from the relations of percolation 

theory indicate the effectiveness of this approach in the theory of neutron processes in a reactor. The relation 

for the speed of propagation of a disturbance at local supercriticality should prove useful. Many other 

expressions of percolation theory applied to reactors may also be of interest. This is apparently due to the 

fact that percolation is a critical process that presupposes the existence of a threshold, a critical point. At 

the threshold, flow occurs along a fractal set, the geometry of which is determined by criticality. The 

geometric characteristics of a fractal are independent of the microscopic properties of the medium. Below 

the critical point, kinetic processes are limited to a finite region of phase space, scattering, absorption and 

other neutron processes. At the critical point, the fractal set, which is formed when the free energy of the 

statistical ensemble decreases, becomes decisive. The behavior of the system under slow forcing influences 

on it tends to self-organized criticality - a singular nonequilibrium (quasi)stationary state [23, 24]. 

Stationary nonequilibrium states on fractal structures are chaotic, turbulent in nature. In [25 - 26], the 

Lorentz model is used to study them. 

The kinetics and processes of transfer in fractal reactor structures require a separate detailed study [4, 

11, 12, 26]. In the region of the critical point, long-range correlation effects appear, manifested in the non-

Gaussian behavior of kinetic processes, determined by the topological invariants of self-similar fractal sets. 

Transfer processes at the percolation threshold are discussed in [11 - 12]. Fractional derivative equations 

are used that take into account the effects of memory, nonlocality and intermittency. 

A deeper analysis of the hierarchical structure of neutron trajectories in nuclear reactors, based on the 

results of [26], shows that the behavior of the probabilities of a chain reaction occurrence is determined by 

the probabilities c=p=λf/(λf+λc), the degree of criticality, and proximity to the critical point. Depending on 

this proximity, three (more precisely, four, if we highlight the critical point itself) main modes of behavior 

are distinguished: subcritical and supercritical (in them the laws of behavior (4) and (10) differ only in 

sign), critical (11), (14), and critical point (12), (13). In the traditional theory of nuclear reactors, only 

subcritical and supercritical regimes and the critical point are studied, although in the general theory of 
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phase transitions a critical region is necessarily present. This is due to the fact that neutrons do not interact; 

the values of the classical critical indices are valid for them (as for a self-consistent field) [31]. In the 

stationary operating state of reactors there are many neutrons, their number can be considered infinitely 

large. In this case, the critical region contracts to a critical point. Note that in this case the equation for P in 

the continuum limit can be solved exactly. But the integrals are complex, and it is difficult to express the 

function P explicitly. 

The critical region itself, as shown in [32], has a complex three-member structure. In [32], three modes 

of critical behavior of nuclear reactors were discovered, depending on the sign of control actions and 

feedbacks, the boundaries of these modes were found, and it was shown that in the region of the critical 

point the time behavior is power-law. Time is proportional to the number of generations, and this behavior 

is characteristic of self-similar irregular trees [26]. At the most critical point, the total number of neutrons 

is proportional to time, which corresponds to a degenerate tree. Thus, neutron trajectories vary depending 

on the probability c and the multiplication factor. In the subcritical (and supercritical) region the movement 

occurs along regular trees, in the critical region along self-similar irregular trees, at the critical point along 

a degenerate tree. Above the critical point, but in the critical region - again using self-similar irregular trees. 

In the supercritical region - again using regular trees. 
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