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Abstract

We use the numerical continued fraction method to investigate quasinormal mode
spectra of extremal and non-extremal Reissner-Nordström black holes in the low and
intermediate damping regions. In the extremal case, we develop techniques that sig-
nificantly expand the calculated spectrum from what had previously appeared in the
literature. This allows us to determine the asymptotic behavior of the extremal spec-
trum in the high damping limit, where there are conflicting published results. Our
investigation further supports the idea that the extremal limit of the non-extremal
case, where the charge approaches the mass of the black hole in natural units, leads
to the same vibrational spectrum as in the extremal case despite the qualitative dif-
ferences in their topology. In addition, we numerically explore the quasinormal mode
spectrum for a Reissner-Nordström black hole in the small charge limit.
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1. Introduction

Natural vibrational modes, also called quasinormal modes (QNMs), of black holes have
attracted a great deal of attention since the first detection of gravitational waves emitted
from a binary black hole merger[1]. There also have been efforts in establishing a link
between QNMs and the quantum structure of a black hole spacetime. See for example
[2, 3, 4].

In this paper we focus on the QNMs of extremal and non-extremal Reissner-Nordström
(RN) black holes with charge q and mass M . Extremal black holes, when q = M using
units where G = c = ke = 1, hold an important and controversial status in black hole
physics. Traditionally these black holes were believed to be a limiting case of non-extremal
black holes[5]. This traditional view was challenged by Hawking and Horowitz in [6] based
on the fact that the topology of the extremal and non-extremal black holes have qualitative
differences. Due to these differences, the authors of [6] and [7] argued that extremal RN
black holes have zero entropy with no definite temperature despite having a non-zero
horizon area. Extremal black holes are also important in the context of supergravity
theories[8].

In [9], Onozawa et al. numerically computed the least-damped modes for four dimen-
sional extremal RN black holes. They found that the QNM spectra of gravitational waves
with multipole index ℓ and electromagnetic waves with multipole index ℓ − 1 coincide1.
Based on this observation, the authors of [10] conjectured that the modes of different per-
turbations can be matched because of the supersymmetry transformations in the extremal
solution. In [11], Berti was able to extend the numerical calculation of [9] to include higher
damped modes. Berti’s results show that the extremal RN QNM spectrum has a simi-
lar pattern to the Schwarzschild case. As the damping increases the oscillation frequency
seems to approach the same constant value as in Schwarzschild black holes, i.e.

ωR −→
|ωI |→∞

ln(3)

8πM
, (1.1)

where ωR represents the real part of the vibration frequency of the QNM, ω, and ωI is
the imaginary part that determines the damping rate. This result seems to be compatible
with the extremal limit, where q → M , of the non-extremal RN QNM spectrum which
was derived in [12] for the highly damped limit (|ωI | → ∞). Unfortunately the numerical
method in [11] is unstable after approximately twenty roots. Therefore, one cannot verify
the limit (1.1). It is suggested in [12] that since the topology of the Stokes/anti-Stokes
lines for the extremal RN black hole is different than the non-extremal case, the QNMs for
these black holes would require a separate analysis. Following this suggestion, the authors
of [13] and [14] have attempted to explicitly calculate the highly damped QNM frequency
of extremal RN black holes using the monodromy method of [15]. Neither of the analytic
results in [13] and [14] match the QNM spectrum of the extremal limit of the non-extremal
case. Therefore, they contradict the numerical results provided by Berti in [11]. In [16],

1Electromagnetic and gravitational waves in the RN black hole are coupled. Here, electromagnetic
(gravitational) refers to perturbations that reduce to pure electromagnetic (gravitational) in the zero
charge limit.
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two of us used the topology of anti-Stokes lines presented in [14] to show that in the higly
damped limit a particular path along the anti-Stokes lines will lead to results in agreement
with Berti’s numerical calculation in [11] and with the extremal limit of the non-extremal
case derived in [12]. A geometric treatment of the extremal and near extremal cases in [17]
also leads to similar conclusions. In this paper, we extend the numerical results of Berti
to higher overtone QNMs to show that the QNM spectrum of the extremal case matches
the extremal limit.

Another issue that we examine in this paper is about the transition between intermedi-
ate and high damping regions of the QNM spectrum of RN black holes in the small charge
limit (q → 0). It was shown first by Motl and Neitzke[15] and then confirmed by Andersson
and Howls[12] that for RN black holes, the real part of the highly damped QNM frequency
in four dimensions approaches ln(5)/(8πM) as the charge goes to zero. The general validity
of this result was verified by Natario and Schiappa[14], who calculated RN highly damped
spectra in arbitrary spacetime dimensions. The apparent contradiction between the zero
charge limit of the RN case, and the Schwarzschild value was explained heuristically by the
authors of [12]. They noted, that, while ln(5)/(8πM) represents the correct RN result for
very high damping, one expects an intermediate range of damping in which one finds the
Schwarzschild value of ln(3)/(8πM) for ωR. Order of magnitude arguments suggest this
range in four spacetime dimensions to be:

1 << |ω|2M2 << M8/q8 (1.2)

In [18], the authors use a combination of analytical and numerical techniques to analyze
the limit of large but finite damping where the Schwarzschild limit is approached. For
four and five spacetime dimension, the authors of [18] explicitly calculate the spectrum
in the transition region from ln(3 + 4 cos( d−3

2d−5
π))/(8πM), in d spacetime dimensions, for

very large damping to the Schwarzschild value of ln(3)/(8πM). Based on this work, the
real frequency does not interpolate smoothly between the two values. Instead there is a
critical value of the damping at which the Stokes/anti-Stokes lines change topology and the
real part of the frequency dips to zero. This behavior seems to resemble the algebraically
special frequencies that mark the onset of the high damping regime.

The paper is organized as follows. In Section 2, we describe the general formalism
and the continued fraction method for the non-extremal case. In Section 3, we describe
numerical methods to address the extremal case. In section 4, we report and discuss the
results. Finally, in Section 5 we end the paper with some concluding remarks.

2. General Formalism

Various classes of non-rotating black hole metric perturbations are governed generically
by a Schrödinger-like wave equation of the form

d2ψ

dr2∗
+
[
ω2 − V (r)

]
ψ = 0 , (2.1)

where V (r) is the QNM potential. In this paper, we assume the perturbations depend on
time as e−iωt. Consequently, in order to have damping, the imaginary part of ω must be
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negative. The Tortoise coordinate r∗ is defined by

dr∗ =
dr

f(r)
, (2.2)

where the metric function, f(r), for the Reissner-Nordström spacetime is given by

f(r) = 1− 2M

r
+
q2

r2
. (2.3)

Combining the above two equations gives us the tortoise coordinate

r∗ = r +
r2+

r+ − r−
ln(r − r+)−

r2−
r+ − r−

ln(r − r−) (2.4)

where r± = (M ±
√
M2 − q2) are the roots of the metric function that determine the

locations of the inner (Cauchy) and outer (event) horizons. M is the ADM mass of the
black hole and q is the charge. The effective potential2 in Eq. (2.1) is

Vs(r) = f(r)

[
ℓ(ℓ+ 1)

r2
− βs
r3

+
4q2

r4

]
, (2.5)

where ℓ is the multipole number, s = 1 is the spin for perturbations that reduce to pure
electromagnetic as q → 0 (hereafter “electromagnetic” for brevity) and s = 2 is the spin
for perturbations that reduce to pure axial gravitational perturbations as q → 0 (hereafter
“gravitational” for brevity), and

βs = 3M + (−1)s
√

9M2 + 4q2(ℓ− 1)(ℓ+ 2). (2.6)

The effective potential is zero at the event horizon (r → r+) and at spatial infinity
(r → ∞). The QNMs are obtained using the boundary conditions in which the asymptotic
behavior of the solutions is

ψ(r) ≈
{
e−iωr∗ as r∗ → −∞
eiωr∗ as r∗ → ∞ (2.7)

representing in-going waves at the event horizon and outgoing waves at infinity.
We can write the solution to the wave equation (2.1), with the desired behavior at the

boundaries, in the form

ψ(r) =
r+e

−2iωr+(r+ − r−)
−2iω−1(r − r−)

1+iωeiωr

r
u−iωr2+/(r+−r−)

∞∑
n=0

anu
n , (2.8)

where u = (r − r+)/(r − r−). Inserting (2.8) into the wave equation (2.1) leads to a
four-term recurrence relation

α1a1 + β1a0 = 0 (2.9)

2Here we only consider axial perturbations since the polar perturbations can be obtained from axial
perturbations using the Chandrasekhar transformation [19].
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α2a2 + β2a1 + γ2a0 = 0 (2.10)

αnan + βnan−1 + γnan−2 + δnan−3 = 0 (2.11)

where n = 3, 4, 5, . . . and a0 is a constant which we can take to be 1. The coefficients in the
above recurrence relation, which are functions of ω, are given in [20] for both gravitational
and electromagnetic perturbations. The QNMs are the values of ω that satisfy the above
four-term recurrence relation for all n. The recurrence relation (2.11) can be reduced to a
three-term recurrence relation

α′
nan + β′

nan−1 + γ′nan−2 = 0 (2.12)

using Gaussian elimination. For details, see [20].
Following Leaver in [21], this three-term recurrence relation gives a continued fraction

equation

β
′

1 =
α

′
1γ

′
2

β
′
2 −

α
′
2γ

′
3

β
′
3−···

=
α

′
1γ

′
2

β
′
2−

α
′
2γ

′
3

β
′
3−

α
′
3γ

′
4

β
′
4−

· · · (2.13)

which can be solved for ω. For higher overtone QNMs, we use inversions of (2.13) as
described in [21]. To evaluate the continued fraction numerically, we truncate it at some
point and approximate the tail-end using Nollert’s technique [22].

In the extremal case, where q =M (r+ = r−), we have a different topology that requires
a new approach suggested by [9]. We review the extremal case in the next section.

3. The Extremal Case

In the extremal case, where M = q, the tortoise coordinate becomes

r∗ = r − M2

r −M
+ 2M ln(r −M) . (3.1)

This leads to irregular singularities of the radial wave equation at the event horizon, r =M ,
and at infinity. Leaver’s method would be to expand the solution around the horizon using
u = (r−M)/r in (2.8). However, since r =M is an irregular singularity of the differential
equation, this will not work since the series will not converge. Onozawa et al. [9] gets
around this issue by using u = (r − 2M)/r instead. With this choice, the horizon is at
u = −1 and infinity is at u = 1. After substituting

∑
n anu

n into the wave equation, we
obtain a five-term recurrence relation for the an with coefficients αn, βn, γn, δn, and ϵn.
Now, convergence of the wavefunction (Eq. (17) in [9]) at the event horizon and at infinity
is equivalent to convergence of

∑
(−1)nan and

∑
an respectively. This is the same as

requiring
∑

n odd an and
∑

n even an to converge. Onozawa shows that the an odd themselves

satisfy a five-term recurrence relation with coefficients α̂n, β̂n, γ̂n, δ̂n, and ϵ̂n, as do the
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an even with coefficients ᾱn, β̄n, γ̄n, δ̄n, and ϵ̄n. These coefficients are related by the following
equation[9]:

a3
a1

=

−α5

ᾱ′′
2

γ̄′′2 + ϵ5 +

(
−α5

ᾱ′′
2

β̄′′
2 + γ5

)
a4
a2

α3
a4
a2

+ γ3 − ϵ3
α1

γ1

, (3.2)

where a4/a2 and a3/a1 can be written as continued fractions of the form

a4
a2

=
−γ̄′′2

β̄′′
2 −

ᾱ′′
2 γ̄

′′
3

β̄′′
3 −

ᾱ′′
3 γ̄

′′
4

β̄′′
4 − · · ·

(3.3)

a3
a1

=
−γ̂′′1

β̂′′
1 −

α̂′′
1 γ̂

′′
2

β̂′′
2 −

α̂′′
2 γ̂

′′
3

β̂′′
3 − · · ·

(3.4)

Here, ′′ indicates the coefficients obtained when the even and odd recurrence relations are
reduced to three terms, see [9].3

The solutions ω to Eq. (3.2) are the QNMs. However, using this equation, we are
only able to find a few of the solutions. Typically, when working with continued fraction
equations, it is possible to form inversions that make certain roots more numerically stable.
Therefore, the inversion allows one to find other roots. For most black holes, the QNM
equation involves one continued fraction, whereas here there are two, a4/a2 and a3/a1. To
be able to calculate the QNMs, we consider two different inversion methods. The first
method involves evaluating one continued fraction (either a4/a2 or a3/a1) to a fixed depth
and inverting the other one. In the second method, we invert both simultaneously. We
briefly explain these two methods below.

In the first method, we invert the following equation:

−γ̂′′1

β̂′′
1 −

α̂′′
1 γ̂

′′
2

β̂′′
2 −

α̂′′
2 γ̂

′′
3

β̂′′
3 − · · ·

= F(ω) (3.5)

where F(ω) is the right-hand-side of (3.2). We call (3.5) the 1st inversion. The n-th
inversion, for n = 2, 3, . . . , of (3.5) is defined to be:

β̂′′
n −

α̂′′
n−1γ̂

′′
n

β̂′′
n−1−

α̂′′
n−2γ̂

′′
n−1

β̂′′
n−2−

· · · α̂
′′
1 γ̂

′′
2

β̂′′
1−

−γ̂′′1
ˆF(ω)

=
α̂′′
nγ̂

′′
n+1

β̂′′
n+1−

α̂′′
n+1γ̂

′′
n+2

β̂′′
n+2−

α̂′′
n+2γ̂

′′
n+3

β̂′′
n+3−

· · · . (3.6)

For each inversion we find a number of QNMs. A rough rule of thumb is that the nth

QNM, ωn, is the most stable solution of the nth inversion. Thus, we are able to find a large

3Note that the exact form of these coefficients in [9] require M = 1.
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number of roots by taking more and more inversions. Alternatively, we can first solve (3.2)
for a4/a2 and repeat the above procedure.

Whichever continued fraction is inverted, we find the same roots up to roughly ω200.
Interestingly, after n ≈ 200, the inversions of Eq. (3.5) only give every other root. Similarly,
the equation we get by first solving for a4/a2 and then inverting also starts to give us every
other root. Conveniently, the two inversion methods are complimentary in finding the roots
that are missing in the other one. Thus, we are able to find roots up to roughly ω1000.

In the second method, we simultaneously invert both continued fractions, a3/a1 and
a4/a2. To abbreviate the procedure, we rewrite Eq. (3.2) as

O1 =

−α5

ᾱ′′
2

γ̄′′2 + ϵ5 +

(
−α5

ᾱ′′
2

β̄′′
2 + γ5

)
E1

α3E1 + γ3 − ϵ3
α1

γ1

, (3.7)

We can put this in the form

A1O1 +B1E1 + C1E1O1 +D1 = 0 , (3.8)

where

E1 =
a4
a2

=
−γ̄′′2

β̄′′
2 −

ᾱ′′
2 γ̄

′′
3

β̄′′
3 − · · ·

(3.9)

O1 =
a3
a1

=
−γ̂′′1

β̂′′
1 −

α̂′′
1 γ̂

′′
2

β̂′′
2 − · · ·

(3.10)

A1 = γ3 −
α1ϵ5
γ1

, (3.11)

B1 =
α5

ᾱ′′
2

β̄′′
2 − γ5 , (3.12)

C1 = α3 , (3.13)

D1 =
α5

ᾱ′′
2

γ̄′′2 − ϵ5 , (3.14)

We create “inversions” of (3.8) by multiplying by the denominator of the continued fractions
of E1 and O1. Repeating this process, the nth inversion will have the form

AnOn +BnEn + CnEnOn +Dn = 0 , (3.15)

where

En = β̄′′
n+1 −

ᾱ′′
n+1γ̄

′′
n+2

β̄′′
n+2 −

ᾱ′′
n+2γ̄

′′
n+3

β̄′′
n+3 − · · ·

(3.16)
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On = β̂′′
n −

α̂′′
nγ̂

′′
n+1

β̂′′
n+1 −

α̂′′
n+1γ̂

′′
n+2

β̂′′
n+2 − · · ·

(3.17)

A2 = −γ̄′′2B1 , (3.18)

B2 = −γ̂′′1A1 , (3.19)

C2 = D1 , (3.20)

D2 = γ̂′′1 γ̄
′′
2C1 , (3.21)

An = −ᾱ′′
n−1γ̄

′′
n(Bn−1 + β̂′′

n−2Cn−1) , n > 2 (3.22)

Bn = α̂′′
n−2γ̂

′′
n−1(An−1 + β̄′′

n−1Cn−1) , n > 2 (3.23)

Cn = Dn−1 + β̄′′
n−1Bn−1 + β̂′′

n−2(An−1 + β̄′′
n−1Cn−1) , n > 2 (3.24)

Dn = α̂′′
n−2ᾱ

′′
n−1γ̂

′′
n−1γ̄

′′
nCn−1 , n > 2 (3.25)

For each n we can solve Eq. (3.15) for ω. This procedure gives us the same roots as the
previous method. However, we find that it is not as efficient in finding the roots. Therefore,
the results presented in this paper only use the first method.

4. Numerical Results

Roots are calculated by Leaver’s method[21] (with Nollert’s improvement[22]) and are
verified by checking that the roots remain stable for different depths in the continued
fraction and persist for at least two inversions.

In Fig. 1, we show the QNM spectra for various values of charge q. For all charges there
is an initial “bounce” off the imaginary axis at around the ninth mode. Then, for lower
values of the charge, there are subsequent bounces starting at some damping rate that
decreases with increasing charge.4 The rough overall picture is that the bounces become
more frequent as the charge increases and start lifting away from the imaginary axis. In
Fig. 1, this lifting becomes visible at q = 0.48. This lifting continues until there is no
bouncing at the extremal case. As the charge approaches the extremal limit, the peaks
in between the bounces approach ln(3)/(8πM) as damping increases. When the charge
approaches zero, the peaks approach ln(5)/(8πM).

To study the asymptotic behavior of the extremal QNM spectrum, we fit the points
(x, y) = (ωI , ωR) with functions of the form

y(x) =
a0 + a1x+ · · ·+ anx

n

b0 + b1x+ · · ·+ bnxn
, (4.1)

4For most cases, the bounces do not actually hit the imaginary axis.
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Figure 1: The QNM spectra for different values of charge with M = 0.5 and ℓ = 2. The light vertical
line is at ωR = ln(3)/(8πM) and the dark vertical line is at ωR = ln(5)/(8πM).
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We then take the limit as x→ −∞ [i.e. y(x→ −∞) = an/bn] to find the asymptotic value
of ωR. For the extremal case, we found that the best fit is a seventh order rational function
and the limit is within 0.0009 of ln(3)/(8πM). From Fig. 1, one can see that the peaks
of the bounces make a transition from ln(5)/(8πM) to ln(3)/(8πM) as q approaches M .
We looked at the asymptotic behavior of the peak of the bounces for q = 0.35 and 0.45.
For q = 0.45, we found that the best fit is a second order rational function and the limit
is 0.008 less than ln(5)/(8πM). For q = 0.35, we found that the best fit is a fourth order
rational function and the limit is 0.0003 more than ln(5)/(8πM). Therefore, it appears
that the peaks of the bounces make a transition from ln(5)/(8πM) to ln(3)/(8πM) in the
charge range of 0.35 ≲ q < 0.5. This is consistent with the results in [11].

Our results show that, as the charge gets smaller, the second bounce occurs at approx-
imately 2M3/q4, which is consistent with Eq. (1.2). However, we cannot determine if for
very small charges there are no subsequent bounces in transitioning from ln(3)/(8πM) to
ln(5)/(8πM) as predicted by the semi-analytic calculations of [18].

We also looked at the extremal case for ℓ = 3 and 4. The results are shown in Fig. 2,
3, and Table I. Again, to determine the asymptotic value we fit a rational function to the
data and found the limit to be within 0.002 of ln(3)/(8πM) for ℓ = 3 and within 0.004 for
ℓ = 4.

M = q = 0.5

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

50

60

ωR

|ω
I|

Figure 2: The QNM low damped spectra in the extremal case for, from left to right, ℓ = 2, 3, 4.
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Figure 3: The QNM spectra in the extremal case for, from left to right, ℓ = 2, 3, 4. The light vertical
line is at ωR = ln(3)/(8πM) and the dark vertical line is at ωR = ln(5)/(8πM).

Table I. Gravitational QNMs for the extremal case q = M = 0.5 and different values of ℓ

n ℓ = 2 ℓ = 3 ℓ = 4
1 0.8626816− 0.1669206i 1.408445− 0.1717481i 1.931525− 0.1740026i
2 0.8090471− 0.5099687i 1.376931− 0.5192489i 1.907624− 0.5242399i
3 0.7068025− 0.8827452i 1.307249− 0.8362094i 1.860405− 0.8812876i
4 0.5742327− 1.304909i 1.210897− 1.279042i 1.791303− 1.249989i
5 0.4398891− 1.777137i 1.112650− 1.673036i 1.703111− 1.635329i
6 0.3137466− 2.280441i 0.9974355− 2.117280i 1.600492− 2.041800i
7 0.1547576− 2.806363i 0.8886952− 2.590614i 1.489995− 2.472200i
8 −3i (?) 0.7935161− 3.084178i 1.379015− 2.926427i
9 0.1580074− 3.505822i 0.7130847− 3.589352i 1.273919− 3.401330i
10 0.1798750− 4.033519i 0.6455107− 4.100264i 1.178613− 3.891979i
25 0.1537770− 11.63929i 0.0238001− 11.83155i 0.5586342− 11.56845i
50 0.1291992− 24.18044i 0.1689169− 24.58826i 0.2298217− 24.21602i
100 0.1135335− 49.20611i 0.1459628− 49.64689i 0.1671020− 48.56283i
250 0.1014775− 124.2261i 0.1204621− 124.6934i 0.1446396− 123.6476i
500 0.0961954− 249.2349i 0.1083683− 249.7141i 0.1248627− 248.6851i
750 0.0941383− 374.2385i 0.1033898− 374.7226i 0.1162330− 373.7004i
1000 0.0929643− 499.2405i 0.1005974− 499.7273i 0.1112799− 498.7090i

Modes with ωR = 0 are called algebraically special modes and were discovered ana-
lytically by Chandrasekhar [23]. They can be found using the formula given by Berti in
[11]5

ω = ±i (ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

2[3M + (−1)s
√
9M2 + 4q2(ℓ− 1)(ℓ+ 2)]

. (4.2)

For gravitational perturbations, where s = 2, the above equation gives ωℓ=2 = −3i, ωℓ=3 =
−12i, and ωℓ=4 = −30i when M = q = 0.5. Unfortunately, roots near the imaginary axis
are numerically difficult to calculate due to the need for higher depth in the continued
fraction Eq (3.6). For ωℓ=2, Berti found −3.047876i, but we were unable to find this,
thus the question mark in Table I. In Fig. 2, the gap between neighboring roots for ωℓ=2

seems insufficient to house another root near −3i. In the ℓ = 3 case, the closest root we

5This corrects a typo in Eq. (24) of [11].
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found to the algebraically special frequency was 0.01101539− 12.42338i. We were unable
to find ωℓ=4. However, in Fig. 2 there is a big gap between the two neighboring roots
around ωℓ=4 = −30i, which suggests there should be another root in this area. See [11] for
discussions regarding the algebraically special frequencies.

5. Conclusions

Because there has been conflicting results in the literature regarding the asymptotic
behavior (|ωI | → ∞) of the QNM spectrum of extremal Reissner-Nordström black holes,
we numerically calculated over one thousand roots for multipole indices ℓ = 2, 3, and 4
using a modification of the continued fraction method. We determined, for all of these
indices, the highly damped limit of the real part of the QNMs in the extremal case to
be ln(3)/(8πM), consistent with the extremal limit of the non-extremal case. This agrees
with the analytic result found in [16].

We also examined the behavior of the spectrum in the non-extremal case for ℓ = 2. Here,
the spectrum has a “bouncing” behavior. The peaks of the bounces asymptotically appear
to approach ln(5)/(8πM) for small values of charge, but then transition to ln(3)/(8πM)
as the charge becomes larger. In the limit where charge goes to zero, [18] shows that the
spectrum approaches ln(3)/(8πM) in an intermediate damping region and then bounces
once and transitions to ln(5)/(8πM) in the high damping limit. While our results are
consistent with this behavior, we were not able to compute enough roots to confirm it.
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