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Quantum spin liquids are exotic many-body states featured with long-range entanglement and
fractional anyon quasiparticles. Quantum phase transitions of spin liquids are particularly interest-
ing problems related with novel phenomena of anyon condensation and anyon confinement. Here we
study a quantum dimer model which implements a transition between a Z2 spin liquid (Z2SL) and
a valence bond solid (VBS) on the kagome lattice. The transition is driven by the condensation of
vison excitation of the Z2 spin liquid, which impacts on other anyon excitations especially leading to
the confinement of spinon excitations. By numerical exact diagonalization of the dimer model, we
directly measure the vison condensation using vison string operators, and explicitly check a confining
potential acting on spinon excitations in the VBS state. It is observed that topological degeneracy
of the spin liquid state is lifted concomitantly with the vison condensation. The dimer ordering
pattern of the VBS state is identified by investigating dimer structure factor. Furthermore, we find
an interesting state that exhibits features of spin liquid and VBS simultaneously. We discuss the
origin of the mixed behaviors and possible scenarios expected in thermodynamic limit. This work
complements the previous analytical studies on the dimer model, Phys. Rev. B 87, 104408 (2013)
and Phys. Rev. B 92, 205131 (2015), by providing numerical evidences on the vison condensation
and the spinon confinement in the Z2SL-to-VBS transition.

I. INTRODUCTION

Quantum spin liquids are highly entangled quantum
states of localized spins featured with fractional any-
onic quasiparticles [1–14]. Depending on the entangle-
ment structure, quantum spin liquids support different
types of anyon quasiparticles. Z2 spin liquids, which
are one of the most extensively studied states in frus-
trated magnetism, realize the Z2 lattice gauge theory
with four different anyons: trivial boson (1), bosonic
spinon (e), bosonic vison (m), and fermionic spinon
(ψ = e × m) [5, 6, 15–58]. Although e-anyon and m-
anyon are self-bosons, they can sense each other via the
Aharonov-Bohm effect (or nontrivial mutual statistics).
Namely, they see each other as a π-flux when e-anyon
moves around m-anyon and vice versa [18]. The mu-
tual statistics renders the bound state of e-anyon and
m-anyon (ψ = e × m) to be a self-fermion. Such non-
trivial anyons are created in pairs from the vacuum
by physical processes as indicated by the fusion rules,
e× e = m×m = ψ × ψ = 1. All these anyon properties
of the Z2 spin liquid are collectively called Z2 topologi-
cal order [2, 5, 6]. Resonating valence bond (RVB) state
on the kagome lattice is a good example of the Z2 spin
liquid [17, 31, 41]. Specifically, quantum superposition of
all possible dimer states (nearest-neighbor spin-singlets)
on the kagome lattice implements the Z2 topological or-
der [22]. Recently, such Z2 spin liquids have been exper-
imentally realized in quantum simulators of supercon-
ducting qubits and Rydberg atom arrays [59–64].

Anyon quasiparticles not only define the underlying
topological orders of quantum spin liquids, but also de-
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termine possible continuous transitions to other phases.
To be specific, condensing vison excitations in the Z2

spin liquid (Z2SL) results in a transition to a valence
bond solid (VBS) state [37, 39, 54–57]. Z2SL

1, e,m, ψ

 ⟨m⟩̸=0−−−−→

 VBS

1

 :
Spinons (e & ψ)

confined &
symmetries broken

In the Z2SL-to-VBS transition, spinon excitations are
confined due to their nontrivial braiding with the con-
densed anyon, the vison. In fact, this kind of anyon con-
densation transition is not limited to symmetry breaking
transitions to long-range orders, but can be further gen-
eralized to cover topological transitions between distinct
quantum spin liquids [65–67]. The Z2SL-to-VBS transi-
tion provides not only a simplest setup of anyon conden-
sation transition but also a condensed matter analog of
the quark confinement in high energy physics [68, 69].

In this work, we study the Z2SL-to-VBS transition fo-
cusing on numerical detection of vison condensation and
spinon confinement. As a concrete model for the tran-
sition, we consider the kagome lattice quantum dimer
model (QDM) studied in Refs. [22, 38, 39]. Interestingly,
the model has three equivalent descriptions: (i) quan-
tum dimer model on the kagome lattice, (ii) Z2 gauge
theory on a honeycomb lattice, and (iii) transverse field
Ising model on a triangular lattice. Here we focus on the
dimer model description. The model is defined in the
dimer Hilbert space with each dimer state satisfying the
so-called hardcore dimer constraint, i.e., every site of the
lattice is covered by only a single dimer. The Hamilto-
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FIG. 1. ED results of the dimer model on the 36-site cluster. (a) Energy spectrum as a function of the parameter θ. Different
colors distinguish the four distinct topological sectors. Brown: (L1,L2) = (−1,−1). Yellow: (L1,L2) = (1, 1), (−1, 1), (1,−1).
The latter three sectors have an identical energy spectrum. The two arrows mark the topological degeneracy lift where the
threefold degenerate states (yellow) move upward crossing the lowest vison excitation energy level (brown). (b) Second derivative
of the ground state energy, −∂2Egs/∂θ

2. The peak indicates the phase boundary between the RVB state and the VBS state
(θc ≃ 0.06π). (c) Expectation value of the Z2-flux operator, ⟨Wp⟩. (d) Expectation value of the vison string operator, −⟨Vλ⟩.
The inset depicts the vison string operator (Vλ) used in the calculations.

nian is given by

HQDM = −h
∑
p

Wp +K
∑
p

Vp, (1)

where the h term generates kinetic motions of dimers and
the K term represents interactions of dimers. Specifi-
cally, the operator Wp moves dimers along closed loops
around a local hexagon plaquette p:

Wp =
∑
D

|D̄⟩⟨D| = | ⟩⟨ |+ | ⟩⟨ |+ · · ·

+ | ⟩⟨ |+ | ⟩⟨ |, (2)

where |D⟩ denotes a dimer covering on the 12-site David
star enclosing the hexagon p, and |D̄⟩ means the conju-
gate dimer covering that is obtained by shifting dimers
of |D⟩ along a close loop by one lattice spacing. Acting
on each dimer covering |D⟩, the operator Vp assigns an
interaction energy ED:

Vp =
∑
D

ED|D⟩⟨D| = 3| ⟩⟨ |+ 3| ⟩⟨ |+ · · ·

− 3| ⟩⟨ | − 3| ⟩⟨ |. (3)

The whole list of dimer coverings, dimer motion graphs,
and interaction energies is provided in Table I. The QDM
with no dimer interactions (K = 0) was initially intro-
duced by Misguich, Serban, and Pasquier as an exactly
solved model for a short-ranged RVB state [22]. After-
wards, Wan and Tchernyshyov investigated the extended
model in Eq. (1) as a low energy effective theory of the
spin-1/2 kagome lattice Heisenberg antiferomagnet [38].
It was shown that the effective QDM well captures the
low energy spin-singlet dimer fluctuations observed in the

density matrix renormalization group (DMRG) study by
Yan, Huse, and White [28]. In a previous work, we also
have studied the QDM and possible VBS orders that may
arise from the RVB state by using projective symmetry
group (PSG) analyses on vison excitations and Ginzburg-
Landau theories [39].
Here we investigate the QDM by numerical exact di-

agonalization (ED). Using the parametrization,

h = cos θ & K = sin θ, (4)

we find that the system has (i) the RVB state over a fairly
extended region containing θ = 0 and (ii) a 12-site pin-
wheel VBS state around θ = π/2, separated by a single
transition at θc ≃ 0.06π (see Fig. 1). The RVB state and
the VBS state exhibit distinguished behaviors in our ED
calculations on finite-size clusters. We identify the nature
of the RVB-to-VBS transition by calculating topological
degeneracy, dimer structure factor, vison condensation,
and spinon confinement. We measure the vison condensa-
tion and the spinon confinement by employing two types
of string operators that create a pair of visons and a pair
of spinons, respectively. For an intuitive understanding
of the underlying physics, the string operators and the
associated excitations are interpreted in dimer picture.
This work provides a complete understanding on the

RVB-to-VBS transition of the dimer model by demon-
strating the anyon physics of vison condensation and
spinon confinement that have been missing in previous
studies. On the other hand, we find that on negative θ
the system simultaneously shows behaviors of spin liquid
and VBS. We discuss the origin of the mixed behaviors
and possible scenarios expected in thermodynamic limit.
The rest of this paper is structured in the following

way. In Sec. II, the quantum dimer model is constructed
in a slightly different fashion from previous studies but
more efficiently. We discuss expected phases in the dimer
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FIG. 2. Qubit representation of the dimer model. The two
terms of Eq. (8) and the Gauss law constraint in Eq. (7) are
visualized in the figure.

model. The RVB spin liquid and anyon excitations are
described along with anyon string operators. Also, VBS
orders proposed by the previous Ginzburg-Landau the-
ories are introduced together with the expected dimer
structure factor. In Sec. III, the results of numerical ex-
act diagonalization are presented, where we confirm the
vison condensation in the RVB-to-VBS transition by us-
ing vison string operators and also identify the dimer or-
dering pattern of the VBS state via the calculated dimer
structure factor. In Sec. IV, we discuss numerical evi-
dences on spinon confinement. In Sec. V, we discuss the
negative-θ region where the system shows behaviors of
spin liquid and VBS simultaneously. We point out the
origin of the mixed behaviors and suggest possible sce-
narios in thermodynamic limit. Lastly, we summarize
this study and conclude in Sec. VI.

II. DIMER MODEL

We recast the quantum dimer model in terms of site
variables on the kagome lattice. Specifically, a qubit is
assigned to each site of the kagome lattice. We note
that each site is shared by up-pointing and down-pointing
triangles on the kagome lattice. In other words, each
site can be covered by either a dimer in the up-pointing
triangle or a dimer in the down-pointing triangle. We
represent the dimer covering of each local site by the
qubit states |X = ±1⟩. For instance, if the site is covered
by a dimer in the “down” triangle, this dimer covering
is represented by the qubit state |X = +1⟩. If the site
is covered by a dimer in the “up” triangle, this dimer
covering is represented by the qubit state |X = −1⟩.
The dimer-qubit mapping is illustrated in the following
figure.

+1 +1 +1 +1 -1 -1 -1 -1 (5)

By applying the mapping to hardcore dimer states, one
can find that each local triangle has only four distinct
qubit states as follows.

(6)

It is important to note that the qubit states of up and
down triangles satisfy the condition,

Qijk = XiXjXk =

{
+1 (up triangle)
−1 (down triangle)

}
, (7)

where i, j, k denote the three sites of a given triangle. The
above condition defines the qubit Hilbert space which
corresponds to the dimer Hilbert space, and is called
hardcore dimer constraint in the QDM and Gauss law
constraint in the Z2 gauge theory description [38, 39].
Hence, we shall call the Q-operator “Z2-charge” opera-
tor.

In the qubit representation, the QDM takes the Hamil-
tonian in the following form.

H = −h
∑
p

Wp +K
∑

⟨⟨⟨ij⟩⟩⟩

XiXj . (8)

The h term is now represented by the hexagon plaquette
operator,

Wp =
∏
i∈p

Zi, (9)

i.e., the product of Pauli Z operators belonging to the
hexagon plaquette p. Following the Z2 gauge theory de-
scription [38, 39], we shall often call theW -operator “Z2-
flux” operator. The K term is simply given by third-
nearest-neighbor interactions of Pauli X operators. See
Fig. 2 for an visualization of the model. Notice that Z2-
charge operators commute with Z2-flux operators and the
Hamiltonian:

[Qijk,Wp] = [Qijk, H] = 0. (10)

In Fig. 3(a), we illustrate effects of a Z2-flux operator on
dimer/qubit states. The operator Wp switches the qubit
state of the hexagon plaquette p (Xi = +1 ⇄ Xi = −1
for i ∈ p), reproducing the dimer resonance motions of
the original QDM. One can also check the interaction
energy of the K term from the examples given in the
figure.

Dimer occupation can be quantified by using qubit
variables. We denote the dimer occupation at a link ij
by (i) dij = 0 for the absence of a dimer and (ii) dij = 1
for the presence of a dimer. We find that the dimer oc-
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TABLE I. Dimer motions and interactions in the quantum dimer model [Eq. (1)]. The first row illustrates the dimer motion
graph for each dimer covering. By the action of a Wp operator, dimers (red) move by one lattice spacing along the closed
loop (light blue). The second row indicates the dimer interaction energy (ED) for each dimer covering. Other cases related by
symmetries are dropped for simplicity.

Dimer covering &
dimer motion graph

ED 3 -3 -1 1 -1 1 3 -3

FIG. 3. Illustrations of Z2-flux operator and anyon string operators. (a) Z2-flux operator (Wp) acting on dimer/qubit states.
The operator switches the qubit state of the hexagon plaquette p (Xi = +1 ⇄ Xi = −1 for i ∈ p), reproducing the dimer
resonance motions of the original QDM. (b) Vison string operator (Vλ). The string operator measures the dimer parity at up
triangles (gray) touched by the string λ. The string operator changes the quantum number of Wp and the energy only at the
ends of the string. (c) Spinon string operator (Sl). The string operator moves dimers along the triangles (gray) touched by the
string l, resulting in the violation of the hardcore dimer constraint in the two triangles located at the ends of the string.

cupation can be represented by qubit variables in the
following fashion.

dij =
1

4
(1 +XiXj −XiXk −XjXk) (11)

Note that k is the nearest-neighbor site of i, j (i.e., i, j, k
form a local triangle). One may check this relationship
using the examples in Eq. (6).

On the other hand, qubit operators (X & Z) can be
also understood in the dimer basis. By using Eq. (11),
we obtain the relationship,

XkQijk = XiXj = (−1)dik+djk , (12)

which reveals thatXk operator measures the dimer parity
over the two links, ik & jk, in a local triangle ijk. By
contrast, Z operator switches the qubit state between
|X = +1⟩ and |X = −1⟩, which is equivalent to moving
a dimer from down triangle to up triangle or vice versa
[Fig. 3(a)].

The dimer model is exactly solved in two special cases,
(i) when K = 0 and (ii) when h = 0. In the former
case (K = 0), a resonating valence bond spin liquid state
appears as the exact ground state of the system. In the
latter case (h = 0), different types of valence bond solid
states emerge depending on the sign of K.

A. RVB spin liquid and anyon excitations

When K = 0, the ground state wave function is given
by

|RVB⟩ = N
∏
p

1 +Wp

2
|Φ⟩, (13)

where |Φ⟩ is an arbitrary state satisfying Eq. (7) and N
is a constant for normalization. In the dimer language,
the state is an equal-weight superposition of all possi-
ble hardcore dimer states, i.e., a short-ranged resonating
valence bond spin liquid [22].

The spin liquid state is characterized by the quantum
number, Wp = +1, at every plaquette. Visons are el-
ementary excitations of the state carrying the quantum
number, Wp = −1, at some local plaquettes, and they
are created in pairs by the string operator,

Vλ =
∏
i∈λ

Xi = (−1)Dλ . (14)

Here λ is an open string passing through kagome sites and
ending at hexagon plaquettes as shown in Fig. 3(b). The
string operator measures the dimer parity at up triangles
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FIG. 4. Three types of VBS orders and the dimer structure factors. (a) 12-site VBS state. (b) 36-site VBS state. (c) 6-site VBS
state. In each case, characteristic dimer structures are highlighted by gray shade. The bottom plots display the dimer structure
factors obtained by Eq. (23) only with the dimer-dimer correlator ⟨dijdkl⟩ (we drop the other term since ⟨dij⟩⟨dkl⟩ = ⟨dijdkl⟩
in pure dimer states). The hexagons denote repeated Brillouin zones in momentum space. The central one corresponds to the
first Brillouin zone.

touched by the string λ:

Dλ =

up triangles∑
i∈λ or j∈λ

dij . (15)

The string operator anti-commutes with the Z2-flux op-
erators at the ends of the string:

VλWp =

{
−WpVλ (p ∈ ∂λ)
WpVλ (otherwise)

}
. (16)

The string operator changes the quantum number of Wp

and the energy only at the ends of the string. Each end
point carries the excitation energy, ∆E = 2h, and the
Z2-flux, Wp = −1. Such point-like particles appearing
at the ends of string operators are the vison excitations
(m-anyons). Although the visons are immobile (com-
pletely static) at K = 0, in general they become mobile
by nonzero K.

Spinons are another elementary excitations in the RVB
spin liquid, excited by violating the hardcore dimer con-
straint or the Gauss law constraint in Eq. (7). They are
created in pairs by the string operator,

Sl =
∏
i∈l

Zi, (17)

where l is an open string lying on links of the kagome
lattice as shown in Fig. 3(c). The string operator moves
dimers along the triangles touched by the string, resulting
in the violation of the hardcore dimer constraint in the
two triangles located at the ends of the string. The string
operator anti-commutes with the Z2-charge operators at
the ends of the string:

SlQijk =

{
−QijkSl (ijk : at the ends of l)
QijkSl (otherwise)

}
. (18)

The Z2-charge excitations created at the ends of the
string correspond to spinons (e-anyons).
Notice that the vison operator (Vλ) and the spinon op-

erator (Sl) anti-commutes if there is an intersection be-
tween the two string operators. This implies that there
is mutual statistics between vison and spinon; specifi-
cally, the wave function undergoes an overall sign change
(|Ψ⟩ → eiπ|Ψ⟩) if a spinon moves around a vison or vice
versa.

B. VBS orders

When h = 0, the Hamiltonian is diagonal in the basis
of X operators or in the dimer basis. By examining the
energetics of dimer states, the ground state can be iden-
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FIG. 5. Clusters for the exact diagonalization.

tified for the two cases, K > 0 and K < 0 [39]. When
K > 0, the 12-site VBS state with the characteristic pin-
wheel dimer structure appears as the ground state with
the energy Egs = −N |K| (N : number of kagome sites);
see Fig. 4(a). In the opposite case of K < 0, the ground
state manifold has the energy Egs = −N |K|/3 with sub-
stantial degeneracy consisting of various states such as
36-site VBS and 6-site VBS. The 36-site VBS is com-
posed of the characteristic pinwheel and hexagon dimer
structures [Fig. 4(b)]. The 6-site VBS is featured with
the arrangement of parallel dimers and zigzag dimers
[Fig. 4(c)]. For the three types of VBS orders, the pre-
dicted dimer structure factors are presented together in
Fig. 4.

The three types of VBS orders have been studied by
the author in a previous work using Ginzburg-Landau
theories [39]. In this paper, we investigate the RVB spin
liquid, the VBS orders, and their transitions by numerical
exact diagonalization.

III. EXACT DIAGONALIZATION

The dimer model is solved by exact diagonalization
(ED) on finite-size clusters. We consider a 36-site cluster
and three different 72-site clusters with periodic bound-
ary conditions shown in Fig. 5. For efficient ED calcula-
tions, we reduce the size of the Hilbert space by utilizing
conserved quantities of the system. With periodic bound-
ary conditions, we may define non-contractible loop oper-
ators that commute with the Hamiltonian. As illustrated
in Fig. 6, for the 36-site cluster there are three different
non-contractible loop operators:

L1 =
∏
i∈Λ1

Xi, L2 =
∏
i∈Λ2

Xi, L3 =
∏
i∈Λ3

Xi. (19)

X
X

X
X

L1

X

X

L1

X
X
X
XL2

X

X
L2

X

X

X

X

L3
X

X

L3

FIG. 6. Non-contractable loop operators (L1,2,3) of the 36-
site cluster.

In fact, among L1,2,3 only two are independent due to
the identity,

L1L2L3 =
∏

ijk∈C

Qijk, (20)

i.e., the product of the loop operators is identical to
the product of Q-operators inside the closed path (C)
formed by the three non-contractible loops (Λ1,2,3).
Since the loop operators commute with the Hamiltonian
([Ln,Wp] = [Ln, H] = 0), the Hilbert space is partition-
ized into four distinct topological sectors labeld by the
eigenvalues of the loop operators, L1 = ±1 & L2 = ±1.
In the case of the 36-site cluster, each topological sector
has the dimension,

236

223 · 22
= 211, (21)

where 223 comes from the hardcore dimer constraints
[Eq. (7)] with periodic boundary conditions and 22 counts
the four topological sectors. For 72-site clusters, each
topological sector has the dimension,

272

247 · 22
= 223. (22)

We run our ED calculations in each of the four topological
sectors for a given cluster.

Figure 1 displays the ED results on the 36-site cluster.
We identify two phases, the RVB spin liquid and the 12-
site VBS, separated by a single transition at θc ≃ 0.06π
as indicated by the second derivative of the ground state
energy, −∂2Egs/∂θ

2 [Fig. 1(b)]. It is observed that the
Z2-flux expectation value ⟨Wp⟩ remains pretty large in
the RVB spin liquid whereas it is substantially suppressed
in the 12-site VBS [Fig. 1(c)]. The transition is also ver-
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(a) µ=¡0:4¼

RVB

(b) µ=0 (c) µ=0:06¼
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(d) µ=0:3¼
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FIG. 7. Dimer structure factor D(k) obtained with the 36-site cluster at (a) θ = −0.4π, (b) θ = 0, (c) θ = 0.06π, and (d)
θ = 0.3π. In each plot, D(k) is presented as a color map on momentum space. The white hexagons denote repeated Brillouin
zones with the central one being the first Brillouin zone. See Fig. 8 for the strength of D(k) at several peak positions.

ified through the energy spectrum. Around the point
θ = 0, the system shows fourfold ground state degener-
acy below the two-vison excitation gap, ∆E = 4h, which
is exactly the topological degeneracy expected for the Z2

spin liquid. Across the transition point θc ≃ 0.06π, the
ground state degeneracy is fully lifted and the lowest en-
ergy levels of vison excitations come down close to the
ground state; see the right arrow in Fig. 1(a).

The nature of the two phases and their transition are
further clarified via the investigation of vison condensa-
tion and dimer structure factor.

A. Vison condensation

We measure vison condensation by calculating the ex-
pectation value of vison string operator, ⟨Vλ⟩, as shown
in Fig. 1(d). The RVB spin liquid phase has relatively
small values of ⟨Vλ⟩ whereas the VBS phase is charac-
terized by substantially large values (⟨Vλ⟩ ≈ −1), which
confirms that the VBS phase is indeed a vison-condensed
state.

B. Dimer structure factor

Structure factors are useful quantities in identifying
symmetry-broken long-range orders and also quantum
spin liquids [43–51]. We determine the dimer ordering
pattern of the VBS phase by investigating the dimer
structure factor (DSF),

D(k) =
1

Nd

∑
ij,kl

eik·(rij−rkl) (⟨dijdkl⟩ − ⟨dij⟩⟨dkl⟩) , (23)

where ij & kl denote nearest-neighbor bonds (dimers),
rij & rkl are their position vectors, and k is momentum
(Nd: number of dimers). The calculated dimer structure
factor is displayed in Fig. 7. The RVB spin liquid exhibits
broad features in the DSF due to the absence of dimer
ordering [Fig. 7(b)]. As the system enters the VBS phase
across the transition point (θc ≃ 0.06π), sharp peak
structures are developed in the DSF [Figs. 7(c) and 7(d)].

By comparing Fig. 7(d) with Fig. 4, we identify that the
12-site VBS emerges via the vison condensation transi-
tion [70].

IV. SPINON CONFINEMENT

In general, anyon condensation gives rise to novel phe-
nomena on other anyons called confinement effects. If an
anyon has nontrivial braiding with the condensed anyon,
then the (uncondensed) anyon becomes confined, i.e., the
anyon cannot be isolated/observed as a single particle in
the low energy physics of the condensed phase [65–67]. In
our system, the vison condensation generates such con-
finement effects on the two spinons (e- and ψ-anyons).
The spinon confinement can be understood in several

ways. In the perspective of anyon theory, bosonic spinon
and fermionic spinon become identical particles (e = e×
m = ψ) under the vison condensation (⟨m⟩ ≠ 0) since

-0.5 -0.25 0 0.25 0.5
µ=¼

0

0.5

1

1.5

D
(k
)

FIG. 8. Strength of the dimer structure factor D(k) at k-
points where peak structures appear. The inset depicts the
peak positions over the repeated Brillouin zones. Red (blue)
indicates the largest peak of DSF appearing on positive (neg-
ative) θ.
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we can freely take visons out of the vacuum. However,
e- and ψ-anyons have different topological spins due to
the nontrivial braiding between e- and m-anyons; the e-
anyon is a self-boson but the ψ-anyon is a self-fermion.
For the condensed phase to have a self-consistent anyon
theory, e- and ψ-anyons should not appear as deconfined
anyons in the low energy physics of the condensed phase,
i.e., e- and ψ-anyons are confined by the condensation of
the m-anyon.

At the level of a microscopic model, the confinement ef-
fects can be understood by using vison and spinon string
operators. Nontrivial braiding between vison and spinon
is encoded in the string operators, Vλ & Sl. When there
is a crossing point between the two string operators,
the two operators have the anti-commutation relation,
VλSl = −SlVλ (since the two operators are defined by
the conjugate variables, X & Z), which implies the ex-
istence of nontrivial braiding between vison and spinon.
Dimer interpretations of the string operators offer an in-
tuitive picture about spinon confinement. First, we note
that vison condensation sets a specific dimer pattern in
the system. The spinon string operator creates a pair of
spinons by moving dimers between adjacent up and down
triangles along the string, obviously leading to an energy
cost proportional to the length of the string [Eq. (17)
and Fig. 3(c)]. Therefore, spinons are confined due to
the linearly increasing energy cost (confining potential).

We confirm the spinon confinement in our numerical
calculations. Figure 9 displays the energy cost of cre-
ating a spinon-pair as a function of distance. In these
calculations, a pair of spinons are inserted to the system
by switching two Z2-charge eigenvalues in the original
Gauss law constraint [Eq. (7)]:

Qijk = +1 ⇄ Qijk = −1 at r1 & r2. (24)

We fix a Z2-charge at r1 = 0 and change the location
of the other Z2-charge from r2 = 1 to r2 = 4 [see the
inset of Fig. 9(d)]. For each spinon-pair configuration, we
obtain the lowest energy level, Egs(r2 − r1), as shown in
Fig. 9(d). Then, we calculate the spinon-pair excitation
energy with respect to the ground state with no spinon,

V (r2 − r1) = Egs(r2 − r1)− Egs(no spinon). (25)

In the RVB phase, the excitation energy is almost con-
stant regardless of the separation [Fig. 9(b)]. In stark
contrast, in the VBS phase, the excitation energy in-
creases proportional to the separation length [Fig. 9(c)].
As the system enters deep inside of the VBS phase, the
excitation energy more rapidly increases upon separating
two spinons further. This result clearly demonstrates the
phenomena of spinon confinement in the VBS phase.

V. DISCUSSION

We identified the anyon physics of vison condensation
and spinon confinement occurring in the RVB-to-VBS
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FIG. 9. Interaction energy of the inserted two spinons.
(a),(b),(c) The minimum excitation energy, V (r2− r1), of the
two-spinon state as a function of the separation length, r2−r1.
(d) Energy profile of the lowest two-spinon state for various
separations (r2 − r1 = 1, 2, 3, 4). For comparison, the ground
state energy (with no spinon) is plotted together (black). The
inset depicts the locations of the spinon-pair. One spinon is
fixed at r1 = 0 and the other spinon is moved over different
locations (r2 = 1, 2, 3, 4). The results are obtained with the
36-site cluster.

transition of the dimer model. Until this point, we have
focused on positive θ in the parameter space. We now
turn our attention to negative θ and discuss some unex-
pected behaviors observed in this dimer model.

A. Mixed behaviors in negative θ

When the K term (dimer interaction) becomes dom-
inating over the h term (dimer motion), we generally
expect a transition from the RVB state to a VBS state.
This is what happens on the positive side of θ as already
discussed in previous sections. However, the expectation
seems betrayed on the negative side of θ. In the parame-
ter region of θ ≲ −0.15π, features of RVB and VBS states
are simultaneously observed as we summarize below.

• RVB features: We do not see any clear sign of tran-
sition on negative θ in Fig. 1(b). Moreover, the Z2

flux is substantially large over the entire region of
negative θ as shown in Fig. 1(c). Broad features are
observed in the dimer structure factor [Fig. 7(a)].

• VBS features: Topological degeneracy of the RVB
state is lifted near θ ≃ −0.15π; marked by the left
arrow in Fig. 1(a). The vison condensation has non-
neglibile strengths over the entire region of negative
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FIG. 10. ED results on the 72-site clusters. Left: 72A cluster. Middle: 72B cluster. Right: 72C cluster. Each column shows
the lowest energy levels (Egs) of the four topological sectors (L1 = ±1,L2 = ±1), the ground state energy second derivative
(−∂2Egs/∂θ

2), the Z2 flux expectation value (⟨Wp⟩), and the vison condensation (−⟨Vλ⟩) calculated with the vison string
operator depicted in the inset. In the case of the 72C cluster, there is a level crossing transition at θ ≃ −0.18π (marked by
dashed line).

θ as shown in Fig. 1(d). Also, peak structures are
observed in the dimer structure factor [Figs. 7(a)
and 8].

In addition to the above features, the spinon exci-
tation energy becomes negative when θ ≲ −0.15π
[Fig. 9(a) and 9(d)], suggesting that the nature of the
RVB state is changing across θ ≃ −0.15π.

B. Results on 72-site clusters

To better understand the mixed behaviors shown in
the 36-site cluster, we perform ED calculations on larger
clusters of 72 sites. Overall, we find similar behaviors in
the 72-site clusters as summarized in Fig. 10. In the 72C

cluster, a level crossing transition occurs at θ ≃ −0.18π
(third column of Fig. 10). We find that VBS features
become slightly more prominent than RVB features in
negative θ of 72-site clusters (Figs. 11 and 12). To be
specific, suppressed Z2 flux values [Fig. 12(a)] and en-
hanced DSF peak strengths [Figs. 11 and 12(d)] are ob-
served in 72-site clusters compared to the 36-site cluster.
Nonetheless, the Z2 flux values are still non-negligible
(⟨Wp⟩ ≳ 0.4) in negative θ and there is no clear sign of
transition in the 72A and 72B clusters. It is unclear even
on 72-site clusters what is the true nature of the state in
negative θ.
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FIG. 12. Comparison of all the ED results obtained with the
36, 72A, 72B, and 72C clusters. (a) The Z2 flux expectation
value (⟨Wp⟩). (b) The vison condensation (−⟨Vλ⟩). (c),(d)
Strength of the dimer structure factor D(k) at several peak
positions. Identical results are obtained for the 72A and 72B
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72B cluster results in each plot. In the panel (c), 72-site clus-
ters show abrupt changes in D(k) around θ = 0.46π, which
are caused by ground state degeneracies. The dashed line
marks the level crossing point (θ ≃ −0.18π) observed in the
72C cluster.

C. Three possibilities

The mixed behaviors in negative θ are attributed to the
dimer interactions which allow extensive ground state de-
generacy when K < 0. As illustrated in Fig. 1(a), lots
of states come down to the ground state as we approach
the θ = −0.5π point (in sharp contrast to the energy
spectrum at θ = 0.5π). Considering the extensive degen-
eracy at θ = −0.5π, we may think of three possibilities
about the phase appearing on negative θ in thermody-
namic limit.

• VBS order: Out of the extensively degenerate
ground state manifold at θ = −0.5π, a VBS state

can be selected by the so-called quantum order-by-
disorder effect. Perturbative quantum dimer reso-
nance motions lift the degeneracy by generating a
kind of zero-point energy in the ground state man-
ifold.

• Spin liquid: Dimer resonance motions can mix the
degenerate dimer states, yielding some kind of RVB
state. But this state is expected to be somewhat
different from the RVB state near θ = 0 due to the
difference in the participating dimer states.

• Mixture of VBS order and spin liquid: Based on our
numerical results, another plausible state is a spin
liquid with broken lattice symmetries. This state
can be viewed as some mixture of VBS and spin
liquid states, which may exhibit both features of
VBS and spin liquid as we have seen in our results.

The last possibility is particularly interesting since such a
spin liquid state with partial symmetry breaking is quite
rare and usually not expected to occur in dimer mod-
els. We hope to clarify the true nature of the system by
large-scale numerical simulations such as density matrix
renormalization group studies in future.

VI. CONCLUSIONS

In this work, we studied a quantum dimer model that
implements a transition from a RVB-type Z2 spin liq-
uid to a valence bond solid on the kagome lattice. The
RVB state supports two types of anyon excitations, vi-
son and spinon, whereas the VBS state has a crystalline
order of dimers but no anyon excitation. By using nu-
merical exact diagonalization methods, we identified the
RVB-to-VBS transition mechanism, which is represented
by the two anyon phenomena, vison condensation and
spinon confinement. We further clarified the dimer or-
dering pattern of the VBS state by investigating dimer
structure factor. On the other hand, we found mixed be-
haviors of spin liquid and VBS states in a certain param-
eter region of the dimer model, suggesting a possibility of
a new phase different from conventional phases of dimer
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models. For the clarification of this matter, it is neces-
sary to perform large-scale numerical computations. We
leave this nontrivial problem for future study.
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