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Figure 1. LUWA poses a unique computer vision challenge due to: its complex wear formation and irregular wear patterns, ambiguous
sensing modalities and magnifications in microscopic imaging. Facing these challenges, the LUWA dataset encompasses both texture and
heightmap with different magnifications, encouraging the exploration of image classification beyond common objects.

Abstract

Lithic Use-Wear Analysis (LUWA) using microscopic im-
ages is an underexplored vision-for-science research area.
It seeks to distinguish the worked material, which is critical
for understanding archaeological artifacts, material inter-
actions, tool functionalities, and dental records. However,
this challenging task goes beyond the well-studied image
classification problem for common objects. It is affected by
many confounders owing to the complex wear mechanism
and microscopic imaging, which makes it difficult even for
human experts to identify the worked material successfully.
In this paper, we investigate the following three questions
on this unique vision task for the first time:(i) How well
can state-of-the-art pre-trained models (like DINOv2) gen-
eralize to the rarely seen domain? (ii) How can few-shot
learning be exploited for scarce microscopic images? (iii)
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How do the ambiguous magnification and sensing modal-
ity influence the classification accuracy? To study these, we
collaborated with archaeologists and built the first open-
source and the largest LUWA dataset containing 23,130 mi-
croscopic images with different magnifications and sensing
modalities. Extensive experiments show that existing pre-
trained models notably outperform human experts but still
leave a large gap for improvements. Most importantly, the
LUWA dataset provides an underexplored opportunity for
vision and learning communities and complements existing
image classification problems on common objects.

1. Introduction
Lithic Use-Wear Analysis (LUWA) is a long-standing sci-
entific problem (see Fig. 1) to identify the functions of
stone tools by examining wear traces at the microscopic
level on the tool’s surface [30, 41]. It seeks to distinguish
the worked material (like bone, wood, ivory and antler) us-
ing microscopic images, creating a classification problem.
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Investigating this unanswered vision-for-science problem
will provide invaluable insights for uncovering the hidden
story of ancient tools [38] and advancing the understanding
of material interactions [62, 66]. However, few studies have
begun to explore advanced learning-based methods, and this
field is still in a nascent stage [8, 45].

Besides its potential scientific impact, learning-based
LUWA on microscopic images also poses unique computer
vision challenges beyond common objects. Unlike com-
mon objects with distinct boundaries and typical size, wear
traces in microscopic images are irregular and discontin-
uous (see Fig. 1), making it difficult to define clear visual
characteristics [40]. In particular, their absence of clear
foreground and background might increase the difficulty of
feature extraction. Furthermore, recorded wear traces are a
hybrid consequence of the complex wear process and micro-
scopic imaging, which is affected by many factors [41]. For
example, the wear duration and the motion type that gen-
erates the wear can create significant intra-class variability.
Another crucial aspect is the ambiguous magnification and
sensing modality of microscopic images. High-sensitivity
microscopic imaging allows for capturing complementary
sensing modalities and zoom-in details at different mag-
nifications, respectively (see Fig. 1). We found that their
modality and magnification differences lead to very differ-
ent visual features. However, due to the understudied char-
acteristics of wear traces, there has been no conclusive an-
swer to this vision-for-science problem about which mag-
nification and sensing modality is better. In practice, the
accessibility of expensive equipment also limits the flexible
selection of captured data.

Recent advances in computer vision provide a good op-
portunity for this challenging scientific problem, especially
the emerging paradigm shift with foundation models pre-
trained on large-scale data [2, 7]. These foundation models
generate task-agnostic visual features and have shown ex-
cellent performance on image classification with common
datasets like ImageNet-{1k,A} [43]. But how much can
state-of-the-art (SOTA) pre-trained representations benefit
rarely seen domains not extensively covered by uncurated
data available on the Internet? The lack of diversity in
domain-specific datasets leaves uncertainty about this ques-
tion, particularly when addressing real-world vision chal-
lenges. Unfortunately, existing studies on LUWA also focus
on their own private data and the research community faces
a deficiency in accessible datasets. The complexity of wear
forms, microscopic imaging, equipment limitations, and the
need for expert interpretations hinders the collection of an
appropriate dataset that can represent the variability of this
domain.

To explore these unique challenges and opportunities, we
collaborated with anthropological archaeologists and built
the first open-source and the largest LUWA dataset contain-

ing 23,130 microscopic images. Its major characteristics
are summarized as follows: (i) Multi-scale wear patterns.
Lower and higher magnifications allow for an observation
of pattern distributions and topographical details, respec-
tively, which increases the scale variations. (ii) Comple-
mentary sensing modalities. Both grayscale microscopic
images and corresponding 3D surface profiles are available
to provide complementary texture information and geom-
etry cues, helping to identify discriminative features [21].
(iii) Both machine and human wear processes. Samples
of stone tools were collected from both machine and hu-
man wear processes. The former is to isolate the effect
of worked material by tightly controlling other factors [37]
while the latter is to reflect the complexity of real scenes,
especially for newly discovered categories without baseline
data [44, 52]. We envision that the LUWA dataset will en-
courage researchers to develop and evaluate algorithms for
image classification beyond common objects, as a precursor
for downstream tasks like segmentation and detection [3].

Based on the LUWA dataset, we go further in answer-
ing the following three problems facing real-world applica-
tions: (i) How well representative classification models can
generalize to the rarely seen domain? (ii) How can few-shot
learning be exploited when scarce microscopic images are
available, especially for newly discovered categories? (iii)
How do the ambiguous magnification and sensing modal-
ity of microscopic images influence the classification accu-
racy? Our contributions are summarized as follows:

• We introduce the first open-source and the largest LUWA
dataset including 23,130 microscopic images with dif-
ferent magnifications and sensing modalities. We col-
laborated with archaeologists and set up a data collec-
tion pipeline considering the influence of wear forma-
tion, microscopic imaging, and expert knowledge. The
LUWA dataset allows for reproducible investigations on
this rarely seen domain and complements existing image
classification problems on common objects.

• Facing the image classification problem beyond com-
mon objects, we benchmark the generalization capability
of state-of-the-art vision models (ResNet, ViT, DINOv2,
ConvNeXt) in this specific domain. Experimental re-
sults show that DINOv2 has the most stable performance
amidst varying levels of granularity, magnification, and
sensing modalities in the data. We also observed many
trends regarding the impacts that features like magnifica-
tion and sensing modality have on classification accuracy,
and some of them are not consistent with experts’ heuris-
tics. In general, state-of-the-art computer vision models
display super-human accuracy over domain experts.

• Considering the scarcity of microscopic images in real
scenarios, we investigate the performance of few-shot im-
age classification and reasoning on the LUWA dataset.
Particularly, we collected prompts from archaeologists



and did case studies on whether GPT-4V(ision) can
mimic the experts’ reasoning process. Further explo-
rations are required to improve the performance.

2. Related Work
Lithic Use-Wear Analysis. Lithic use-wear analysis was
originally developed in the 1950s and aims to answer the
scientific problem of how to distinguish the worked material
according to wear traces on the stone surface [30, 41, 55].
Low-power and High-power microscopy methods provide
useful magnified polishes or micro-fractures via confocal
microscopes, tactile profilometers, scanning electron micro-
scopes, and even atomic force microscopes [20, 31, 58]. Ex-
isting studies focus on blind tests [4, 19, 39] and quantifica-
tion methods [4, 5, 20, 28, 59, 60]. However, it remains an
insufficiently developed research area due to complex wear
patterns and the subjectivity of methods [47]. Existing blind
tests demonstrate unreliable identification results on differ-
ent worked materials. For example, correct identifications
of plant and wood are 32.4% and 49.1%, respectively [19].
The identification of worked materials can be regarded as
a unique vision problem, but learning-based algorithms are
rarely explored in this research area [8]. The deficiency in
accessible datasets also limits its research progress heav-
ily [19]. To solve these, we present the first open-source
LUWA dataset and investigate the capability of SOTA clas-
sification algorithms on this unique vision-for-science prob-
lem for the first time.
Image Classification beyond Common Objects. Image
classification is a fundamental vision task that categorizes
a whole image as a specific label or class based on its vi-
sual contents. Outstanding performance can be achieved on
the image classification task of common objects with rep-
resentative frameworks like ConvNeXt using only public
training data [67]. However, real-world scenarios, espe-
cially scientific applications, involve non-trivial objectives
with different physical properties like tiny pollen grains [6],
constituent materials [15, 18, 61], texture in the wild [12],
and hyperspectral remote sensing images [50]. Facing un-
common objects, many studies focus on specialized mod-
els in respective fields. However, we seek to answer
whether simpler pipelines can provide comparable perfor-
mance. Complementing existing datasets, we introduce a
new vision challenge to identify irregular and discontinu-
ous wear traces at the microscopic level and build a clas-
sification benchmark to explore how far the practical per-
formance of image classification on uncommon objects can
be pushed utilizing existing datasets and architectures, es-
pecially foundation models.
Microscopic Image Classification. In the context of us-
ing microscopic images for classification, a wide variety of
applications can be found across different scientific disci-
plines. This includes the study of biological cells [11, 29],

bacteria [65], tissue types [64], and material structures [23].
Each application presents unique challenges, particularly
in terms of the high-level detail and focus required in the
images. These challenges are often compounded by is-
sues such as ambiguity in magnification and sensing modal-
ity [23, 68]. To alleviate these challenges, the LUWA
Dataset presents a diverse configuration that covers differ-
ent magnification levels and sensing modalities.

3. LUWA Dataset
In this section, we describe the LUWA dataset creation pro-
cess and provide basic statistics. To represent the variability
of this domain, in Section 3.1, we present a data collection
pipeline, which consists of four key aspects (see Fig. 1).
Specifically, 1 considering the complexity of wear forma-
tion, we introduced both machine and human wear experi-
ments [36] to create stone samples; 2 to enrich the dataset
diversity and investigate the ambiguous magnification and
sensing modality, we utilized an optical 3D profilometer
with both 20× and 50× objective lenses to acquire high-
quality texture and heightmap; 3 natural materials were se-
lected according to existing blind tests in the literature [19],
particularly including fine-grained categories of wood and
plants. 4 domain-specific knowledge is twofold including
the identification of wear degrees to increase the dataset di-
versity and expert interpretations for potential explorations
on explainability and the application of vision language
models. In Section 3.2, we summarized the LUWA dataset
and analyzed its diversity in spatial distributions, magnifi-
cations, and sensing modalities.

3.1. Dataset Creation

Both Machine and Human Wear Processes. LUWA
dataset contains stone samples from both machine and hu-
man wear processes. Key factors that affect wear results
are material properties, mechanical factors, and environ-
mental conditions [48]. To isolate the effect of worked ma-
terials, a tightly controlled protocol was used for machine
wear experiments [36, 37]. We utilized a tribometer to sim-
ulate cutting actions so as to quantify the load applied to the
material (a load of 20N), the type of movement (a straight
back and forth motion with the speed of 35 repetitions per
minute), and the worked duration (0h, 1h, 3h, 5h, and 12h)
(see Fig. 1). To limit the influence of material properties
of stone samples, we chose the same flint (Baltic/morainic
flint from Denmark) for all experiments [47, 51]. Consider-
ing the low classification accuracy of various plants in blind
tests [19], we chose the plant cutting process as the human
wear experiment.
High-Quality Microscopic Imaging. To capture the high-
precision wear traces on stone samples, we utilized an op-
tical 3D profilometer (S neox, Sensorfar Metrology) to col-
lect data with a standardized and reproducible process (see
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Figure 2. Image diversity of LUWA dataset and corresponding visual explanations for human and model decision-making processes.
(i) LUWA dataset provides diverse microscopic images associated with spatial distributions (e.g. Regions 1 and 2), magnifications (e.g.
Regions 2 and 4) and sensing modalities (texture in the first row and heightmap in the second row); (ii) We compared visual explanations in
both human (in the third row) and model (in the fourth row) decision-making processes. Human experts labeled the most important region
with red and the less important region with yellow when looking at details of microscopic images to distinguish the worked material.
Similarly, Grad-CAM [54] heatmaps use red for the highest importance, yellow for lower importance, and blue for the lowest importance.
Interestingly, similar areas (e.g. Regions 1, 4 and 6) are labeled with higher importance for both humans and models.

Fig. 1). To test the influence of magnifications for micro-
scopic image classification, both 20× and 50× objective
lenses were chosen for measurements. Their spatial reso-
lutions are 0.65 and 0.26 µm/pixel, respectively. Further-
more, complementary grayscale images and corresponding
3D surface profiles are acquired via Sensormap. We applied
a standard filtering protocol to extract the worn surface and
alleviate the effect of natural flints’ surface topography [9].
Domain-Specific Expert Knowledge. Domain-specific
knowledge is twofold: (i) human experts help to identify
microscopic traces with different wear degrees, enriching
the dataset diversity; (ii) for further investigations on ex-
plainability and the application of vision language models,
human experts also labeled their attention maps when mak-
ing decisions on worked material (see Fig 1) and provided
classification prompt for GPT-4V [42] (see Fig. 6).
Material Selection and Processing. To benchmark models
in this field, we chose representative natural materials (see
Fig. 1) according to blind test results in the literature [19]
and included fine-grained categories on wood and plants in
particular. For the further exploration of wear mechanisms,
we analyzed their properties, including the hardness [47]
and silicon content [22] in the supplementary material.

3.2. Dataset Analysis

To reflect the variability of this scientific domain, we built
the first public and largest LUWA dataset containing 23,130

Stone Samples Motion Types Worked Time Material Categories
34 2 7 9

Magnifications Sensing Modalities
2 2

Table 1. Key factors considered in the LUWA dataset that can
reflect the complex wear formation and microscopic imaging.

microscopic images. Specifically, key factors of the com-
plex wear formation and microscopic imaging are consid-
ered in the LUWA dataset. As shown in Tab. 1, we report (i)
the number of microscopic images, (ii) the number of stone
samples, motion types, worked time, and material classes
which are exploited, (iii) the number of magnifications and
sensing modalities LUWA dataset supports.

Image diversity of LUWA dataset brings challenges for
algorithm robustness. It is associated with the spatial dis-
tribution of the region collected, the selection of the mag-
nification, and the sensing modality. Greater distances be-
tween sampled areas typically result in more pronounced
variations in their surface distributions (see Regions 1 and
2 in Fig. 2). Even collected from the same wear trace, the
selection of the magnification also contributes to scale dif-
ference, which causes totally different wear patterns (see
Regions 2 and 4 in Fig. 2). Moreover, LUWA dataset pro-
vides both the texture and heightmap, helping to identify
discriminative features. We explore the semantic diversity
of LUWA dataset on the magnification and sensing modal-
ity (see Fig. 2) [3]. We selected VGG [56], ResNet [26],
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Figure 3. Cosine similarity distribution of LUWA dataset on dif-
ferent magnifications and sensing modalities.

ConvNeXt [34], and DINOv2 [10, 14, 43] as feature ex-
tractors. Then we compute the mean cosine distance of im-
ages with different magnifications and sensing modalities,
respectively. Scale difference leads to obvious diversity of
semantic information and visual descriptions (see Fig. 3).

4. Algorithm Benchmarking
By benchmarking a wide range of image classification
methods, both classic and state-of-the-art, on this unique
vision-for-science dataset, we explore how different fea-
tures of this dataset affect model performance and hope that
we can provide some useful analysis that future work can
build on. Specifically, we divide our experiments into two
major segments: (1) fully-supervised image classification
and (2) few-shot image classification, with specific motiva-
tions explained in their corresponding sections below.

4.1. Fully-Supervised Image Classification

Unlike datasets crawled from the internet, such as
ImageNet-1k [16] or LAION-5B [53], LUWA contains
niche microscopic images with irregular and discontinuous
wear traces that often lack obvious foreground or back-
ground. In this experiment, we investigate how well clas-
sic and state-of-the-art image classification algorithms gen-
eralize to the LUWA dataset and seek to find compelling
patterns affecting different models’ performance. We want
to see how well these patterns align with domain experts’
knowledge. We also aim to position SOTA methods from
the computer vision community with respect to classifica-
tion performance achieved by human experts.
Experimental Settings. We deploy classic methods such as
SIFT+FVs [49], ResNets[24] and cutting-edge models such
as ViT [17], ConvNeXts [34] and DINOv2 [13, 43] to our
LUWA dataset. We believe the time-tested classic meth-
ods can serve as a lower-bound benchmark, while the more
recent advancements such as DINOv2, which can often be
characterized by intensive scale-up in parameter count, can
be used as a reference comparable to human experts’ per-
formance on the same task.

Another major reason that propels us to deploy this wide
range of models is to see if there are consistent trends across

different model architectures and parameter counts and if
these trends align with domain experts’ knowledge. Specif-
ically, we study the impact of image granularity, magnifi-
cation, and sensing modality on image classification perfor-
mance. We also compare different training strategies.

Granularity refers to how many pictures one single use-
wear is partitioned into. The use-wear is first captured as an
image at 865 × 865 resolution. Because many pre-trained
models resize the input, which results in pixelated images
and loss of fine-grained details that many experts believe are
crucial to such a classification task, we partition the origi-
nal image into 24 or 6 patches and feed all the patches to
the model. Importantly, to make our results comparable to
those of human experts, we adopt a voting mechanism dur-
ing test time. If the majority of the 24 patches are classified
as class 1, then all the patches of the same use-wear will
be classified as class 1 regardless of their actual test results.
We believe this method most resembles how archaeologists
perform classification when given an 865 × 865 image, as
they do not assign a label to each partition.

Magnification represents the magnification multiplier on
our microscopic imaging equipment. Our dataset comprises
images after 20× and 50× magnification. We also mix 20×
and 50× data together without any indicator of magnifica-
tion added to the data to see if mixing magnification will
cause any confusion in our models. Note that the magnifi-
cation multipliers are fixed when the images are taken, and
50× images will not look like 20× images, even if we sig-
nificantly downsize them.

Sensing Modality refers to whether the picture of the use-
wear is stored as texture scans or heightmaps. Texture scans
have no depth information, although depth cues are still
present. Meanwhile, heightmaps explicitly store the depth
information and only the depth information. We want to
see if different ways to represent the use-wear will affect
computer vision models.

Training Strategy is also varied in our experiments.
Some models are initialized with state-of-the-art initializa-
tion methods [25] and then trained from scratch. We also
apply full-parameter fine-tuning and linear probing [1] with
unfrozen and frozen pre-trained weights, respectively.

By combining the above configurations, we have 324 to-
tal experiment results.
Implementation Details. We deploy ResNet50 (25.6M
parameters), ResNet152 (60.4M), ConvNeXt-tiny (28.6M),
ConvNeXt-large (197.7M), ViT-H (632M), and DINOv2-
ViT-g/14 with registers [13] (1.1B). All models are trained
with Adam optimizer [32] on the default setting in PyTorch.
We employ linear warmup with cosine annealing [35] as
the learning rate scheduler strategy. No data augmentation
technique is applied during pre-processing. We defer more
details to our supplementary material.
Results and Analysis. The overall experiment results can
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Figure 4. The impact of the training strategy, granularity, magnification, and sensing modality on top-1 classification accuracy in %: (a)
Due to their huge parameter counts, the experiments do not include full-parameter fine-tuned DINOv2, and ViT-H and DINOv2 trained
from scratch. (b) Larger numbers in granularity mean more detailed information about a use-wear is fed into the model.

be found in Fig. 4. Fig. 4 (a) demonstrated that linear prob-
ing yields the most stable and optimal performance across
the broad. These results align with our expectation as fine-
tuning on uncommon domain-specific datasets may cause
catastrophic forgetting [33]. On the other hand, the LUWA
dataset itself is too small to train generalizable models from
scratch. From the perspective of granularity (Fig. 4 (b)), the
more granular partition of the images tends to result in bet-
ter outcomes, although a diminishing marginal return can
be observed. This aligns with our speculation that keeping
the original larger image’s information as intact as possi-
ble is beneficial. It is also possible that the introduction
of a voting mechanism brought about a positive regulariza-
tion effect. More discussion on the voting mechanism can
be found in the supplementary material. Considering the
selection of magnification, results in Fig. 4 (c) indicated
that a higher magnification multiplier is beneficial, which
aligns with some human experts’ opinions. Notably, mix-
ing data with different magnifications does not confuse the
models, and they are able to reap the benefit of abundant
data. The same cannot be said for humans, as images with
different magnifications can cause confusion. For the sens-
ing modality, we observed that while the best results are
usually trained with heightmaps, larger models tend to fa-
vor texture. However, the discrepancy is small in general,
and the overall performances of the two modalities are com-

parable as in Fig. 4 (d). More visualizations and detailed
tables that follow the trends described above can be found
in the supplementary material.

The best performance of 67.05% top-1 accuracy is
achieved by linear probing on ImageNet-1K pre-trained
ResNet152 with the heightmap data of 24 partitions and
20×+50× magnification. Overall, DINOv2 excels across
all aspects, demonstrating the most stable performance
amidst varying levels of granularity, magnification, and
sensing modalities. The worst performance of the tradi-
tional baseline SIFT+FVs is better than the worst config-
urations of other deep learning methods, but its better con-
figurations are significantly worse than those of the deep
learning methods that achieved upper-echelon performance.
Explainability and Comparison with Human Experts.
Currently, archaeologists have about 49.5% accuracy in a
double-blind test with a similar setup [19]. Our in-house
testing with two professional archaeologists yields an accu-
racy of 43.75% in a few-shot setting (Tab. 2). All tested
models, except SIFT+FVs, are able to achieve far better
accuracy (over 59.5%) under several configurations of the
dataset. Notably, DINOv2 with linear probing is able to
achieve superior or comparable performance under almost
all possible configurations.

However, feature visualization demonstrated that DI-
NOv2 (with registers for better visualization) sometimes



PreTr 20X TEX 50X TEX 20X HM 50X HM 20X+50X TEX 20X+50X HM
9w5s 9w20s 9w5s 9w20s 9w5s 9w20s 9w5s 9w20s 9w5s 9w20s 9w5s 9w20s

ResNet18 54.54 61.97 54.43 62.48 31.19 38.79 35.27 42.34 42.11 49.60 26.43 31.80
ResNet50 54.13 59.20 55.08 62.18 32.67 38.97 36.71 43.95 45.37 51.46 28.91 34.56
ResNet152 52.92 59.14 57.59 64.26 30.83 38.74 34.12 41.40 44.32 51.40 26.39 31.89

ConvNeXt-tiny 46.27 52.44 52.74 59.23 32.25 39.72 36.43 43.46 42.64 49.43 27.33 33.04
ConvNeXt-base 48.04 54.45 54.74 62.48 31.62 39.70 35.26 43.46 41.91 48.56 26.35 32.12
ConvNeXt-large 50.89 57.00 56.65 63.51 30.15 37.70 35.20 42.91 43.80 50.67 25.46 30.79

ViT-base 41.00 48.80 43.89 50.99 20.60 24.98 22.68 27.59 35.65 42.31 19.32 22.64
DINO-small 58.85 66.10 59.50 67.35 33.55 41.27 42.52 51.11 46.94 53.93 28.02 33.49
DINO-base 57.28 65.33 61.39 69.67 33.07 41.83 42.39 51.23 47.52 55.34 28.23 34.00
DeiT-small 47.00 55.99 52.08 60.64 29.36 36.70 35.45 44.43 39.93 47.68 26.18 32.14
DeiT-base 53.70 61.48 55.12 63.81 32.71 40.68 37.67 46.80 44.21 52.57 27.20 34.13
CLIP-base 42.98 51.30 46.52 55.01 29.75 36.92 36.91 44.51 34.45 41.29 27.81 34.02
GPT-4V 37.78 - 31.11 - 20.00 - 20.00 - 21.11 - 23.33 -

Human Expert 35.00 - 43.75 - 20.00 - 18.75 - 33.33 - 19.44 -

Table 2. Few-shot image classification performance on LUWA dataset is associated with the magnification and sensing modality. ‘PreTr’
denotes pre-trained models we used; ‘20X’ and ‘50X’ denote microscopic images at 20× and 50× magnifications; ‘TEX’ and ‘HM’ denote
texture and heightmap; ‘9w5s’ and ‘9w20s’ denote 9-way-5-shot and 9-way-20-shot, respectively.

recognizes important polished regions in microscopic im-
ages of beechwood (see Fig. 5) as the foreground, but recog-
nizes the same polish of different categories ( sprucewood,
bone, and antler, see Fig. 5) as the background. More ex-
plorations are needed to explain this unwanted behavior. In-
terestingly, we found that the regions recognized as highly
important for classification are similar for human experts
and our best model ResNet152, under the same data config-
uration (see Regions 1, 4, and 6 in Fig. 2). We visualize the
results for ResNet152 using Grad-CAM [54].

4.2. Few-Shot Image Classfication

In practice, LUWA faces a scarcity of microscopic images
due to limited stone tools, expertise requirements, and spe-
cialized equipment, especially when discovering new cat-
egories. Human experts can identify new classes of wear
traces with a few examples. To emulate this, we investigate
whether few-shot learning can be utilized and how micro-
scopic image magnifications and sensing modalities influ-
ence the model’s performance.
Experimental Settings. We designed two main experi-
ments: (i) Few-shot image classification with a simple but
effective pre-train + ProtoNet pipeline [27]. We evalu-
ate the performance of powerful pre-trained models (in-
cluding ResNet, ViT, DINO [10], ConvNeXt, CLIP [46],
DEIT [63]) and popular meta-learners ProtoNet [57] on
LUWA dataset. We simulated 600 episodes/tasks and re-
sults are demonstrated under 9-way-5/20-shot settings. (ii)
GPT-4V [42] experiments: few-shot image classification
and reasoning following instructions from human experts.
To explore the potential mode of AI-human collaboration
facing scientific domains in the advent of large multi-modal
models, we collected prompts from three archaeologists and
conducted case studies on whether the latest GPT-4V can

follow and mimic the experts’ reasoning process when an-
alyzing the samples. Then we summarized key points that
matter during the experts’ analysis and used that to prompt
the GPT-4V for few-shot image classification and reason-
ing. The experiments are illustrated in Fig. 6. Additionally,
we included human experts’ test results to reflect the diffi-
culty for humans to distinguish these discovered categories
with just a few examples. Results are reported under 9-way-
5-shot settings in Tab. 2.
Results and Analysis. Experimental results in Tab. 2
demonstrated that DINO excels at few-shot learning clas-
sification. Note that in the case of limited microscopic
images, classification results of textures at 50× magnifica-
tion setting yield notably superior results compared to oth-
ers, which provides valuable guidance for few-shot learning
tasks in our domain. Moreover, the number of parameters
in pre-trained models has a limited impact on this few-shot
learning task. We found that GPT-4V can effectively fol-
low the experts’ analysis as highlighted in Fig. 6. It learns
to emphasize the same points that the experts pay attention
to. However, the analysis doesn’t always lead to the correct
answer. GPT-4V did poorly on few-shot classification. We
hypothesize that our data is very different from the web data
that GPT models are trained on, and the vision module in
GPT-4V still struggles to efficiently present detailed vision
information to the language module, especially in a long
context such as our multi-image few-shot classification sce-
nario. This means the vision ability of SOTA multi-modal
language models still needs improvement before they can be
used in scientific tasks with domain-specific data like ours.

5. Impact and Limitations of LUWA Dataset
Scientific Impacts. AI-expert collaboration can provide
invaluable insights for scientific research. To tackle the



(a) Sprucewood (b) Beechwood (c) Bone (d) Antler

Figure 5. Feature visualization of LUWA dataset using frozen pre-trained DINOv2.

User Prompt:

GPT-4V Answer:

An archaeologist conducting lithic use-wear analysis 
would examine ⋯
• Polishing ⋯
• Striations ⋯
• Microflaking ⋯

Support
9-W

ay-5-Shot
Task C

ontext

⋯

Q
uery

Sprucewood.

Few shot Image Classification with GPT4-V

This is another image, do the traces on this image 
belong to which of the nine use-types as demonstrated 
above? Answer in exactly one word: 

{Antler} {Sprucewood} {Barley}

This is an image taken with advanced microscopes containing 
traces created by material {x}, so the use-type is {x}.

GPT-4V Reasoning

First image is more 
polished I would argue 
it was used in softer 
wood (spruce). ⋯
softer materials creates 
larger polishes region. 
I see linear traces like 
striated marks ⋯
 does not appear that 
way for harder 
materials. 
Second image ⋯
 beechwood. 
Beechwood is a harder 
material ⋯ smaller 
region of polish ⋯ no 
linear traces seen in 
the first image.

• Sprucewood, being softer, would create 
a larger, more distributed polish and 
possibly show linear traces.

• Beechwood, being harder, would leave 
smaller and less extensive polish, 
without the linear traces.

The characteristics of the wear in the 
image suggest the use of beechwood, given 
the absence of widespread polished areas 
or striated marks. This aligns with the 
anthropologist's explanation that harder 
materials like beechwood tend to create 
less polish and more pronounced features 
on the wear surface. 

Prompt: Expert Analysis GPT-4V Analysis

It appears to have a smaller 
region of polish with sharp 
bumps and lacks the linear, 
striated marks that would 
indicate a softer material like 
sprucewood. Following the 
anthropologist's analysis:

⋯

{Bone} {Ivory}

Figure 6. GPT-4V few-shot image classification and reasoning following instructions from human experts.

long-standing problem of stone tool use, we make the first
attempt to collaborate with archaeologists and utilize ad-
vanced learning-based methods for worked material infer-
ence. The LUWA dataset allows for further investigations
to advance our understanding of ancient tool use and mate-
rial processing techniques.
Limitations and Future Directions. We will enrich the
LUWA dataset from the following three aspects: (i) supple-
ment microscopic images with both worn and unworn re-
gions using lower-magnification objectives, allowing wear
trace segmentation and detection tasks; (ii) collect images
including wear traces caused by different worked material;
(iii) increase categories of man-made materials for compre-
hensive analysis on wear features and material properties.

6. Conclusion
We collaborate with anthropological archaeologists and
present the first public and the largest Lithic Use-Wear
Analysis (LUWA) dataset benefiting both vision and sci-
ence domains. The LUWA dataset serves as a benchmark

to evaluate the generalization capabilities of advanced mod-
els on image classification tasks beyond common objects.
Addressing specific challenges of wear formation and mi-
croscopic imaging, LUWA offers vital guidance on select-
ing suitable magnifications and sensing modalities facing
different scenarios. Our analysis reveals that SOTA mod-
els encounter distinct difficulties when facing these specific
challenges. Despite DINOv2’s superior performance rela-
tive to other methods, it overlooks visual features that ar-
chaeologists identify as indicative of wear. We anticipate
that the LUWA dataset will stimulate further research into
enhancing the adaptability of large-scale models to special-
ized domains within computer vision.
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Supplementary Material

Appendix
This document supplements the main paper as follows:

1. Describe dataset fidelity, material properties and human anno-
tations (supplement Section 3.1).

2. More details about the training recipe and reproducibility (sup-
plement section 4.1).

3. More visualizations and detailed tables (supplement sec-
tion 4.1).

4. More details about the human expert tests(supplement sec-
tion 4.2).

A. LUWA Dataset
A.1. Dataset Fidelity
Archaeological samples. Archaeologists struggle to reach a con-
sensus on how to identify the worked material on ancient lithic
tools because of a lack of ground truth information. LUWA aims
to be the first step to building the benchmark and tool that can
help archaeologists make more informed decisions as archaeolo-
gists believe the underlying physics should remain the same across
real-world and lab-made use wear, and models that can work well
on lab-made data could be an ancillary input to archaeologists’
heuristics.
Worked time. We followed a tightly controlled protocol and
“worked time” to reflect various wear degrees.
Impact of aging and conservation status. This is minimized be-
cause post-depositional alterations are usually visible under the
microscope, and archaeologists can exclude pieces with signs of
weathering.

A.2. Material Properties
Existing studies have indicated that both the hardness of materials
and their silicon content can have an impact on the visual features
of wear traces. This suggests that the properties of materials being
worked or worn play a significant role in shaping the wear pat-
terns observed. In machine wear experiments, we listed the hard-
ness of worked materials for further explorations of wear mech-
anisms (see Tab. I). In human wear experiments, LUWA dataset
supports fine-grained analysis on representative plants: horsetail
has the highest silicon content, followed by ferns, and then barley.

A.3. Human Annotations
Human experts provide domain-specific knowledge for LUWA
dataset in the following aspects (see Fig. I):
• Identification of Wear Traces: Human experts are actively in-

volved in the process of data collection and are responsible for
identifying wear traces on objects. Their expertise allows them
to recognize and differentiate between various types of wear pat-
terns, such as microwear polish, scratches, and impact marks.
This identification is fundamental for understanding the history
and use of the objects.

Ivory Antler Bone Beechwood Sprucewood
Hardness 3.930±0.025 3.253±0.727 2.961±0.246 2.833±1.672 0.122±0.004

Table I. Hardness of worked materials in machine wear experi-
ments.

Region 1

Region 2
Region 1

TextureStone Sample

50X

Heightmap Texture Heightmap

20X 20X
Region 2

50X
Region 1 Region 2

Wear Trace

(a) Identify Wear Traces

(b) Label Attention Maps

⋯⋯

(c) Provide Classification Prompt

Antler can create deeper gouges and grooves on the stone surface. These features 
may be more pronounced and have a distinct directional pattern.

Label: Antler

High Importance

Low Importance

Figure I. Domain-specific expert knowledge: (a) human experts
helped to identify wear traces during the process of data collec-
tion; (b) human experts labeled the most important region with
red and the secondary important region with yellow when making
decisions on worked materials; (c) human experts provided classi-
fication prompt for GPT-4V.

• Color Labeling for Attention Maps: During the decision-making
process regarding worked materials, human experts use a color-
coded system to label different regions of the objects. The most
important regions are labeled with the color red, while less im-
portant regions are labeled with the color yellow. This color-
coded system likely helps prioritize the analysis of wear traces
and their significance in understanding the function and use of
the objects.

• Classification Prompt for GPT-4V: Human experts also con-
tribute by providing a classification prompt for GPT-4V, an AI
model. This classification prompt likely guides the AI in recog-
nizing and categorizing wear traces on objects, benefiting from
the expertise of human specialists to enhance the accuracy of the
AI’s analysis.

B. Algorithm Benchmarking
B.1. Training Recipe
The start learning rate, which is also the ηmax in the linear warmup
with cosine annealing scheduler, is set to 0.01. The batch size
for the smaller models, such as ResNets and ConvNeXts, is set to
200, while for larger models, such as ViT and DINOv2, it’s set to
100 to save VRAM. We do not adjust the learning rate based on
changing batch size because we believe our learning rate sched-
uler will offset the changes. When training from scratch, we train



for 20 epochs. We reduce that to 10 epochs when fine-tuning and
linear probing. The dataset is partitioned into portions of 6/2/2
as train/val/test. To ensure fairness, we put all images from the
same stone sample in the same set. We report all results based
on the checkpoints with the lowest validation error. All experi-
ments are done on a single Nvidia A100 with 80 GB VRAM. All
models are trained three times with different random seeds and
PyTorch deterministic=True and benchmark=False to
maximize reproducibility. No data augmentation is applied except
simple resizing to 224 × 224 to match pre-trained models’ input
dimension.

B.2. More Fully-Supervised Image Classification
Results

We present more results that cannot fit into the main text.
More Visualization. A larger and clearer visualization is con-
tained in Fig. II and Fig. III. As we can see, the trend described in
Sec. 4.1 still holds true.
Quantitative Analysis. We provide quantitative analysis of the
distribution overlap in the regions of interest as described in
Sec. 4.1. As shown in Tab. II, we select IoU as the quantitative
metric for evaluating the distribution overlap.

Table II. IoU for human labeling and Grad-CAM heatmaps.
Fern Sprucewood Ivory Beechwood Before Use Horsetail Barley Antler Bone

IoU 0.9089 0.8577 0.7070 0.6959 0.6165 0.5773 0.4929 0.4535 0.3501

Data Configurations for the Best Performance. Tab. III shows
the data configuration to achieve the best performance for each
model. We can see the patterns described in Sec. 4.1 are well re-
flected among the top-performing models. Note that even though
the best model for SIFT+FVs can achieve a reasonable perfor-
mance of 52.88%, most of the other data configurations result in
a significant performance downgrade for this method. In fact, this
is the only super-human performance (> 49.5% accuracy) for this
specific method.
Models that Achieve Super-Human Performance. Tab. VI con-
tains all the models and their corresponding data configurations
that achieve super-human performance. Out of 358 possible data
configurations, 79 (22%) are able to achieve super-human perfor-
mance. Tab. IV contains the count and ratio of different features
that appear in super-human models, and we can see that this aligns
with the trends described in the main text as well.
More on the Voting Mechanism. For the best performing mod-
els, Tab. V shows that when the final voted prediction is cor-
rect, how many partitions are predicted correctly before the vot-
ing (Corr Consis), and when the final voted prediction is incorrect,
how many partitions are correct (Incorr Consis) or the same as the
final wrongly-voted result (Incorr Common Consis). As we can

Model Granularity Magnification Modality Training Strategy Accuracy
SIFT+FVs 24 50× heightmap N/A 52.88
ResNet50 6 20× + 50× heightmap Linear Probing 66.91

ResNet152 24 20× + 50× heightmap Linear Probing 67.05
ConvNeXt-tiny 24 20× + 50× texture Linear Probing 62.27

ConvNeXt-Large 24 20× + 50× texture Linear Probing 66.82
ViT-H 6 20× + 50× heightmap Linear Probing 62.5

DINOv2 24 20× + 50× texture Linear Probing 66.82

Table III. Best Performing Data Configuration for Each Model

Model Name Count Ratio Training Strategy Count Ratio
ResNet50 16 20% Linear Probing 66 84%
ResNet152 14 18% From Sratch 8 10%
DINOv2 13 16% Full-Parameter Fine-Tuning 4 5%

ConvNeXt-tiny 13 16% Granularity Count Ratio
ConvNeXt-large 12 15% 24 37 47%

ViTH 10 13% 6 25 32%
SIFT+FVs 1 1% 1 17 22%

Magnification Count Ratio Sensing Modality Count Ratio
20× 2 3% Texture 36 46%
50× 38 48% Heightmap 43 54%

20×+50× 39 49% - - -

Table IV. Count and ratio of different features that appear in super-
human models

Figure II. The impact of the training strategy, granularity, magni-
fication, and sensing modality on top-1 classification accuracy in
%: Larger numbers in granularity mean more detailed information
about a use-wear is fed into the model.

see here, the predictions for each partition are relatively consistent
before voting.

Table V. Consistency Analysis of the Voting Mechanism
Model Corr Consis Incorr Consis Incorr Common Consis

ResNet50 86.30% 8.15% 78.52%
ResNet152 78.85% 11.59% 62.14%

ConvNext-Tiny 82.48% 12.27% 60.84%
ConvNext-Large 78.57% 9.79% 66.55%

ViT-H 89.80% 9.33% 72.00%
DINOv2 86.34% 7.34% 66.90%

B.3. More Few-Shot Image Classification Details
In a test scenario where new categories of wear traces were identi-
fied, we provided identical support and query sets to both GPT-4V
and two anthropologists. These anthropologists had no prior ex-
posure to the samples in the sets, and we selected their best results
for analysis.



(a) Ivory (b) Before Use

(e) Fern (f) Horsetail(d) Barley

(c) Bone

Figure III. More feature visualization of LUWA dataset using frozen pre-trained DINOv2.



Model Name Granularity Magnification Sensing Modality Training Strategy Accuracy

ResNet152 24 20× + 50× heightmap Linear Probing 67.05
ResNet50 6 20× + 50× heightmap Linear Probing 66.91

ConvNeXt-large 24 20× + 50× texture Linear Probing 66.82
DINOv2 24 20× + 50× texture Linear Probing 66.82
DINOv2 24 20× + 50× heightmap Linear Probing 66.14
ResNet50 24 20× + 50× heightmap Linear Probing 62.73

ViTH 6 20× + 50× heightmap Linear Probing 62.50
ConvNeXt-tiny 24 20× + 50× texture Linear Probing 62.27

ResNet152 6 20× + 50× heightmap Linear Probing 61.76
ConvNeXt-large 24 20× + 50× heightmap Linear Probing 61.59

ResNet50 24 50× heightmap Linear Probing 60.58
ConvNeXt-large 24 50× heightmap Linear Probing 60.58
ConvNeXt-tiny 6 20× + 50× heightmap Linear Probing 60.25
ConvNeXt-large 1 20× + 50× heightmap Linear Probing 60.00

DINOv2 24 50× heightmap Linear Probing 59.62
ResNet152 24 20× + 50× heightmap Full-Parameter Fine-Tuning 59.32
ResNet152 24 50× heightmap Linear Probing 58.65

ConvNeXt-large 1 50× heightmap Linear Probing 58.65
ResNet50 24 20× + 50× heightmap From Scratch 58.64
ResNet152 6 20× + 50× texture Linear Probing 58.50

ConvNeXt-tiny 24 20× + 50× heightmap From Scratch 58.41
ConvNeXt-tiny 6 20× + 50× texture Linear Probing 58.09
ConvNeXt-large 6 20× + 50× heightmap Linear Probing 58.09

DINOv2 6 20× + 50× heightmap Linear Probing 58.09
ConvNeXt-tiny 6 50× heightmap Linear Probing 57.69

ResNet152 24 50× texture Linear Probing 57.69
ConvNeXt-large 6 50× heightmap Linear Probing 57.69

ResNet152 1 20× + 50× heightmap Linear Probing 57.50
ViTH 6 20× + 50× texture Linear Probing 57.35
ViTH 24 20× + 50× texture Linear Probing 57.27
ViTH 24 50× heightmap Linear Probing 56.73

ConvNeXt-tiny 24 50× texture Linear Probing 56.73
ConvNeXt-tiny 1 20× + 50× texture Linear Probing 56.67
ConvNeXt-tiny 1 20× + 50× heightmap Linear Probing 56.67

DINOv2 1 20× + 50× texture Linear Probing 56.67
ResNet152 24 20× + 50× heightmap From Scratch 55.91

ConvNeXt-large 6 20× + 50× texture Linear Probing 55.88
ResNet152 24 20× texture Full-Parameter Fine-Tuning 55.82
DINOv2 1 50× texture Linear Probing 55.77
DINOv2 24 50× texture Linear Probing 55.77

ViTH 6 50× heightmap Linear Probing 55.77
ConvNeXt-tiny 24 50× heightmap Linear Probing 55.77

ResNet50 6 50× heightmap Linear Probing 55.77
ResNet50 24 20× + 50× texture Linear Probing 55.23
ResNet50 6 20× + 50× heightmap From Scratch 55.15
ResNet50 24 50× texture Linear Probing 54.81

ViTH 1 50× heightmap Linear Probing 54.81
DINOv2 6 50× texture Linear Probing 54.81

ConvNeXt-tiny 6 50× texture Linear Probing 54.81
DINOv2 6 50× heightmap Linear Probing 54.81

ConvNeXt-large 24 50× texture Linear Probing 54.81
ResNet152 24 20× + 50× texture Linear Probing 54.77

ConvNeXt-tiny 24 20× + 50× heightmap Linear Probing 54.55
DINOv2 24 20× texture Linear Probing 54.39

ResNet152 6 50× heightmap Linear Probing 53.85



ConvNeXt-tiny 1 50× texture Linear Probing 53.85
ConvNeXt-large 1 50× texture Linear Probing 53.85

ResNet50 6 50× texture Linear Probing 53.85
ViTH 24 50× texture Linear Probing 53.85

ResNet50 1 50× heightmap Linear Probing 53.85
ViTH 6 50× texture Linear Probing 53.85

DINOv2 1 20× + 50× heightmap Linear Probing 53.33
ResNet50 24 20× + 50× texture From Scratch 53.18
DINOv2 6 20× + 50× texture Linear Probing 52.94

SIFT+FVs 24 50× heightmap NaN 52.88
ConvNeXt-large 6 50× texture Linear Probing 52.88
ConvNeXt-tiny 1 50× heightmap Linear Probing 52.88

ResNet50 24 20× + 50× heightmap Full-Parameter Fine-Tuning 52.27
ResNet152 6 50× texture Linear Probing 51.92
DINOv2 1 50× heightmap Linear Probing 51.92
ResNet50 6 20× + 50× texture Linear Probing 51.47

ViTH 1 50× texture Linear Probing 50.96
ResNet152 1 50× heightmap Linear Probing 50.96
ResNet152 24 20× + 50× texture From Scratch 50.91
ResNet50 1 20× + 50× heightmap Linear Probing 50.83

ViTH 24 20× + 50× heightmap Linear Probing 50.45
ConvNeXt-large 24 50× heightmap From Scratch 50.00

ResNet50 24 50× texture From Scratch 50.00
ResNet50 24 50× texture Full-Parameter Fine-Tuning 50.00

Table VI. All the models and their data configuration that achieve super-human performance (accuracy > 49.5%)
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