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Abstract
Internet platforms depend on accurately determining the ge-
ographical locations of online users to deliver targeted ser-
vices (e.g., advertising). The advent of decentralized platforms
(blockchains) emphasizes the importance of geographically
distributed nodes, making the validation of locations more
crucial. In these decentralized settings, mutually non-trusting
participants need to prove their locations to each other. The
incentives for claiming desired location include decentraliza-
tion properties (validators of a blockchain), explicit rewards
for improving coverage (physical infrastructure blockchains)
and regulatory compliance – and entice participants towards
prevaricating their true location malicious via VPNs, tam-
pering with internet delays, or compromising other parties
(challengers) to misrepresent their location. Traditional delay-
based geolocation methods focus on reducing the noise in
measurements and are very vulnerable to wilful divergences
from prescribed protocol.

In this paper we use Internet delay measurements to se-
curely prove the location of IP addresses while being immune
to a large fraction of Byzantine actions. Our core methods
are to endow Internet telemetry tools (e.g., ping) with cryp-
tographic primitives (signatures and hash functions) together
with Byzantine resistant data inferences subject to Euclidean
geometric constraints. We introduce two new networking
protocols, robust against Byzantine actions: Proof of Inter-
net Geometry (PoIG) converts delay measurements into pre-
cise distance estimates across the Internet; Proof of Location
(PoLoc) enables accurate and efficient multilateration of a
specific IP address. The key algorithmic innovations are in
conducting “Byzantine fortified trigonometry" (BFT) infer-
ences of data, endowing low rank matrix completion methods
with Byzantine resistance.

We implemented both PoIG and PoLoc protocols and inte-
grated them into a fully functional delay-based geolocation
service, with global coverage (with specific focus on US) and
integrated into a major blockchain (Ethereum). In a base-
line evaluation of our protocols, we demonstrate significant

∗Corresponding author: viswanath.pramod@gmail.com

improvements in the accuracy and robustness of location veri-
fication. In particular, location is identified within 100 km for
a large fraction of the area. Under Byzantine distance infla-
tion attack (with majority honest challengers), the accuracy
of PoIG remains above 95%. The precision and Byzantine
resistance improves with a greater diversity of the challengers’
ISPs and an increased number of challengers across different
directions.

1 Introduction

Internet and geolocation In today’s digital era, the geo-
graphical positioning of online participants is crucial for the
effective operation of Internet services. In the era of Web
2.0, location data is fundamental to the provision of targeted
advertising and customized services, serving as a key compo-
nent of various business models. With the advent of Web 3.0,
grounded in blockchain technologies, the significance of ge-
olocation has become even more pronounced. The core princi-
ple of decentralization in public blockchain networks [2,5,18]
emphasizes the need for geographically dispersed nodes to
prevent censorship, highlighting the importance of accurately
gauging the locations of these nodes. Moreover, geolocation
plays a vital role in a wide range of distributed services, in-
cluding platforms for distributed file storage [6, 17], VPN
services [13], and distributed wireless networks [8]. These
critical services require that hosts are physically located where
they claim, ensuring data redundancy and resilience in file
storage services, and the reliability of VPN services for pri-
vacy and accessing geo-restricted content.

Delay based geolocation The Internet’s dynamic nature
necessitates a robust framework for geolocation, one that can
handle the inherent noise in measurement data. The key is to
tie Internet delay measurements between pairs of addresses
into geographic distances, relying on the premise that the
propagation speed of EM/optical signals over wireless or wire-
line (including fiber optic) cables is relatively constant (e.g.,
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Figure 1: (a) The accuracy of delay-to-distance mapping is significantly improved under Byzantine distance inflation attack
when employing robust ratio-based filtering. Here we assume delay is a linear function of distance with exponential noises, and
the accuracy is the difference of MLE estimator to the coefficient. (b) An example of PoLoc protocol with three challengers
located at C1,C2,C3 shows that traditional multilateration method can be manipulated by Byzantine challenger who claims a
false location C′

3 and outputs the incorrect region in Mexico for P′ instead of the region in the US which contains Waldo’s true
location P. Our PoLoc protocol outputs the largest uncertainty in all directions including P′P, providing robustness against
Byzantine challengers.

a constant fraction of the speed of light). The challenge in
this premise is that it conflicts with the complex reality that
Internet delays are not directly proportional to physical dis-
tances. This discrepancy arises from factors such as the varied
speed of signal propagation across different media and the
circuitous paths data packets traverse, shaped by geopolitical,
commercial, and infrastructural considerations.

Two stages of geolocation To address this challenge, a stan-
dard approach is to divide the geolocation framework consists
into two distinct stages. In the first stage, the Internet geom-
etry is learnt: this refers to the delay to distance mapping
(without regard to the angle) for a given IP address – us-
ing the known (and trusted) locations of certain addresses
(so-called “landmarks”). This mapping is navigating the com-
plexities of Internet topology and latency influences via learn-
ing network coordinate systems [29, 48], delay-to-distance
functions [38, 45, 52] and utilization of data-driven learning
methods [40, 47]. In the second “proof of location” stage, a
given IP address is geolocated via “triangulation”, using both
the Internet geometry and delay measurements via trusted
and location-aware landmarks [38, 40, 46, 47, 49, 52, 58]. The
goal is typically to find the smallest feasible region or the
most possible location the given address might be in face of
measurement noises.

Byzantine fault tolerant geolocation The above ap-
proaches largely deal with the uncertainty and noise in con-
verting Internet delay measurements into distances and subse-
quently using these distances to determine locations. However,
these methods are readily circumvented by the adversarial be-
havior, including the usage of VPNs and deliberate delay ma-
nipulations [21,22,37,51,57]. Participants in some blockchain
based services have incentives to obfuscate their true geoloca-
tions (e.g., Helium [8]). The location-based incentives lead to
adversarial behavior by the participants, including untrusted
landmarks and collusion among network participants, caus-
ing significant challenges to both the phases of delay based
geolocation.

Our contributions We systematically study Byzantine fault
tolerant delay based geolocation, including concrete modeling
of threat vectors and a mathematical formulation that allows
the characterization of security and accuracy of location iden-
tification. In this framework, a node desiring to substantiate
its claimed location (termed “Waldo”) subscribes to a group
of trustless challengers, possessing self-reported, but unver-
ified locations, tasked with resolving the geolocation query:
“Where is Waldo?”. The key contribution is in Byzantine
resistant inferences from data constrained by (Euclidean) ge-
ometry, that we call Byzantine Fortified Trigonometry (BFT).
We introduce new protocols for both stages of the geolocation
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process, detailed as follows:

- Proof of Internet geometry (PoIG). We propose a Proof
of Internet Geometry (PoIG) protocol for converting de-
lay measurements into distance estimates resistant to
Byzantine manipulations. During this stage, challengers
perform ping delay measurements among themselves to
establish a monotone curve that maps any given delay
to the largest possible distance. To mitigate the inflated
delay and distance claimed by malicious challengers,
we design a robust filtering process that excludes data
with the largest distance to delay ratios, achieving 95%
accuracy when the majority are honest (Figure 1a). Addi-
tionally, we utilize robust matrix completion techniques
to lower the costs associated with ping measurements
and to clean the data from honest participants.

- Proof of location (PoLoc). In the second stage, we
present a Proof of Location protocol (PoLoc) within
a fully Byzantine context, taking into account both
Waldo’s and the challengers’ Byzantine behaviors. The
protocol yields the maximum possible deviation of
Waldo from its proclaimed location, referred to as “un-
certainty”, alongside with a cryptographic proof repre-
senting the entire feasible region (see Figure 1b). The
protocol ensures that for an honest Waldo, the uncer-
tainty accurately reflects the optimal deviation bound
based on the measurements, and for a Byzantine Waldo,
the actual location cannot be further from the claimed lo-
cation than the uncertainty allows. The proof comprises
signed pings and measurements between Waldo and the
challengers, facilitating public validation. We analyze
that lower uncertainty can be achieved by improving
the accuracy of PoIG, limiting the fraction of Byzantine
actors, and increasing the number of challengers .

Implementation and evaluations We implemented both
PoIG and PoLoc protocols and integrated them into a fully
functional delay-based geolocation service, with global cov-
erage (with specific focus on Asia, North America and Eu-
rope) and integrated into major blockchains (Ethereum and
Solana). We conducted a comprehensive evaluation of our
protocol to demonstrate its accuracy and robustness against a
variety of practical adversarial behaviors. When examining
accuracy, the PoIG protocol outperforms the “bestline” fit
used in CBG [38] by 10% accuracy. And the PoLoc protocol
achieves an uncertainty of less than 100 km for about 45% of
honest Waldos and an uncertainty of less than 1000 km for
about 95% of nodes, using 450 challengers. When examining
the robustness of the implementation, our protocol effectively
detects measurements manipulation during PoIG phase, and
location spoofing and VPN usage during PoLoc phase.

Organization The rest of the paper is organized as fol-
lows: In Section 2, we compare our protocol with prior work,

highlighting the unique contributions of our approach. We
formally define the system model and security assumptions in
Section 3. In Section 4, we outline the main PoLoc protocol
and explain how trigonometry is employed to ensure robust
location estimation. Section 5 introduces two variants of the
PoIG protocols, designed to operate under different trust re-
sources. We present the results of our evaluation in Section 6.
Finally, we conclude the paper in Section 7, summarizing our
findings and suggesting directions for future research.

2 Related Work

2.1 Delay Based Geolocation
In delay-based geolocation, ping delay is measured between
hosts with known locations, known as landmarks, and the
target. These methods vary in their approach to mapping delay
to distance. Constraint-Based Geolocation (CBG) [38] assigns
delay to distance individually for each landmark. It establishes
a straight line, termed the “bestline” fit, for the pairs of delay-
distance points from a given landmark to all other landmarks,
maximizing the possible distance any other landmark can
be from a given landmark for a specific delay. Octant [58]
employs a convex hull around pairs of delay-distance points
to estimate the minimum and maximum distance the target
could be from a given landmark.

Unlike deriving a delay to distance mapping separately
for each landmark, Spotter [46] develops a single delay-
distance mapping for all landmarks through a probabilistic
delay-distance model. Geoping [52] implements two distinct
delay-based methods for geolocation. Initially, it identifies
the location of the target as the location of the landmark
with the shortest delay. Subsequently, it employs a probability
distribution-based approach for estimating distance based on
delay. Studies by [23,24] also utilize a probability distribution-
based mapping from delay to distance, whereas [33] adopts
a segmented polynomial regression model. An investigation
by [60] explores how the accuracy of delay-based approaches
is influenced by the placement of landmarks.

Delay-based geolocation accuracy can be further enhanced
through integration with other information, such as routing
information [41, 44], internet topology [44] and region labels
[40].

Our protocol leverages the delay-based geolocation ap-
proach. However, as detailed in Sec. 4, we ensure that the esti-
mated distance from the challenger to Waldo is always greater
than the actual distance. Each challenger, therefore, utilizes a
monotone delay to distance mapping that yields the maximum
possible distance for a given delay. Our method resembles
CBG [38], but through the use of a monotone mapping, we
demonstrate an improvement in performance compared to
CBG, as discussed in Sec. 6.3.
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2.2 Other Approaches

Besides measurement-based geolocation, other techniques
have been employed for geolocation. [39] applies web mining
to scrape web pages containing location information of web
servers, thus tracking the cities hosting web servers. [31] pro-
poses a machine learning-based solution for mapping DNS
names to locations, while [30] enhances location estimates
by mining query logs. GeoTrack [52] maps router labels to
locations. [47] utilizes crowdsourcing through an Internet
speed measurement tool for geolocation. [32] employs IP
interpolation, assuming IPs within the same range are col-
located. Additional methods include the use of host names
inferred from traceroute, DNS mapping, and others for loca-
tion identification [25,53,55,56]. Some studies apply machine
learning to enhance location estimates [34, 35, 42, 59]. There
are also various services, both free and paid, that maintain IP
to location databases [9–12, 54].

While these alternative approaches can complement delay-
based geolocation to improve accuracy, they do not offer
Byzantine fault tolerance. Therefore, their adaptability in a
Byzantine setting remains uncertain.

2.3 Byzantine Geolocation

Our focus primarily lies on Byzantine fault tolerance for ge-
olocation. In this context, [21, 45, 49, 57] are most closely
related to our work. [21] provides location guarantees for a
Byzantine Waldo using the triangle inequality to offer loca-
tion guarantees. However, they produce a triangular region
where Waldo could likely be located, in contrast to our proto-
col which determines the intersection of circles centered at
the challengers. They assume Waldo cannot inflate delays, a
restriction we do not impose. [57] addresses the geolocation
of VPN servers potentially misrepresenting their locations.
While their scenario allows for inflated ping delays involv-
ing a VPN server, they do not offer location guarantees for a
Byzantine Waldo. [45] proposes a decentralized geolocation
verification protocol that outputs the most possible location
and a confidence score, their information propagation model
is built by a group of trusted servers. Recent work [49] ex-
plores the geolocation problem in decentralized file storage
service with trusted anchors providing timestamps. Hence,
our work differs from these studies as our threat model varies,
and we provide performance guarantees for our protocol.

3 Security Model

3.1 Problem Setting

The problem setting that we consider involves a node, Waldo,
who claims a particular location, P̃, which includes latitude
and longitude coordinates. Waldo’s true location is denoted
as P. We have P̃ = P if Waldo is honest; otherwise, P̃ ̸= P.

A group of N challengers are geographically distributed
following a uniform distribution. Each challenger reports their
location, Ci (where i ranges from 1 to N). Both Waldo and the
challengers are connected to the Internet, allowing for direct
communication. The challengers can measure the ping delay
to Waldo or other challengers through application layer pings.
These pings are cryptographically signed by both parties us-
ing their private keys, as part of a public key infrastructure
(PKI), serving as proof of communication. The public keys
are broadcast before the protocol starts.

The core issue we address is quantifying the extent of
deviation that P̃ can have from Waldo’s real location, P. This
deviation, denoted as uncertainty R = ∥P− P̃∥, is expressed
in kilometers (km) and signifies the furthest possible distance
that P̃ might diverge from P. We consider the maximum R
in any direction, termed as R∗. The formal definition of R∗ is
illustrated in Section 4.1.

3.2 Threat model
We adopt a Byzantine failure model where the adversary can
corrupt a certain fraction of participants, causing them to
deviate from the protocol arbitrarily. However, the security
of PKI prevents them from forging signatures. A corrupted
Byzantine Waldo may claim a false location (P̃ ̸= P) and de-
lay or refuse to send a response upon receiving an application
layer ping from challengers. The adversary can corrupt less
than β fraction of challengers uniformly randomly in loca-
tions. Byzantine challengers may also claim false locations
and manipulate the measurement results. Note that the ping
delay measured by an honest challenger can only be inflated
if Waldo or the target challenger are Byzantine, as they can-
not send back a response before receiving the actual packets
due to the unforgeability of signatures. However, the reported
delay can be both inflated or deflated when the source chal-
lengers are Byzantine.

4 Proof of Location Protocol

In this section, we detail the methodology our protocol em-
ploys to quantify the uncertainty in Waldo’s geolocation and
analyze various factors influencing this uncertainty.

4.1 Protocol Overview
When Waldo wishes to prove its location, P̃, a PoLoc chal-
lenge is initiated. All challengers within a predetermined
distance, X kms from P̃, are selected to validate it. The deter-
mination of X is discussed in Section 5.

Suppose n challengers are selected to verify Waldo. Each
challenger initiates communication with Waldo by sending
a ping packet and waiting for its response. They measure
the round-trip time (RTT), ti for the i-th selected challengers,
from when the ping packet was sent to when the response was
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received. A large number of ping packets are exchanged, and
the minimum RTT from all measurements is selected. Using
a large number of packets helps account for any intermittent
network congestion. As previously stated, Waldo can delay
the ping response, meaning the delay, ti, can be inflated. If
challenger i is also corrupted, they can collude to report an
arbitrary ti.

Each challenger i has a delay-to-distance mapping, denoted
as Fi, which converts measured RTT into physical distance.
Fi is derived from a proof of internet geometry (PoIG) phase,
discussed in Section 5. We explore two variants of PoIG proto-
cols: one requiring trusted challengers and the other applying
robust filtering techniques to minimize the trust assumption.
To increase the efficiency and reduce noises, we employ ro-
bust matrix completion to fill the RTT measurements. With
their delay-to-distance mapping, challenger i can estimate
how far Waldo is from itself, i.e., di = Fi(ti). As demonstrated
later in Section 4.2, the challenger can then estimate the dis-
tance between P̃ and P in every direction to determine the
boundary of the output region.

4.2 The Trigonometry in Proof of Location

(true location)

(claimed location)

P true location of Waldo
P̃ claimed location of Waldo
Ci challenger i
Ri uncertainty in geolocation of Waldo by Ci
di distance between Ci and P
d̃i distance between Ci and P̃
d̂i distance estimated between Ci and P from latency

Figure 2: Bound on uncertainty.

Figure 2 illustrates the situation where an honest challenger
i is measuring P, the true location of Waldo, while P̃ is the
claimed location. The distance between P and P̃, represented
as Ri, is the uncertainty in a certain direction with angle αi
relative to the direction CiP̃.

The PoLoc protocol is detailed in Algorithm 1, containing
a ping phase conducted by each challenger individually, and
a proving phase when measurements are collected to evaluate
the location. In the ping phase, the challenger i measures
the minimum RTT ti between its own location Ci and the
actual location of Waldo P. It then estimates the distance by
calculating d̂i = Fi(ti). Here, we assume the challenger knows

Algorithm 1 Proof of Location Protocol
Input: n, β, [F1,F2, · · · ,Fn], τ, [C1,C2, · · · ,Cn], P̃.
Initialize: d̃i = ∥Ci − P̃∥
Ping phase for challenger i: For i = 1, . . . ,n, challenger i
sends a signed ping packet to Waldo, who also signs the packet
as response. On receiving the response, challenger i measures
the time elapses and repeat q times to get a minimum ti. Then
it calculates d̂i = Fi(ti).
Proving phase: On receiving all distance estimations or at
least (1−β)n measurements and a timer τ expires (note that
an unobserved d̂i = 0), we calculate the following value for
each challenger i ∈ [1,n] at each direction θ ∈ [0,2π):

Riθ =

√
d̂i

2 − d̃i
2 sin2(γi −θ)− d̃i cos(γi −θ) (1)

where γi is the angle between Ci and P̃ with respect to ge-
ographic north. Then we exclude the βn smallest values in
each direction θ, let Sk represent the k-th smallest element in
set S, we compute:

R∗
θ = {Riθ|i ∈ [1,n]}βn (2)

Output:
R∗ = max

θ∈[0,2π]
R∗

θ (3)

the delay-to-distance mapping Fi. The process of calibrating
the mapping through PoIG is discussed in Section 5.

We denote d̂i as the distance between Ci and the claimed
location of Waldo. As mentioned, a Byzantine prover can only
inflate the RTT when the challenger is honest (by potentially
delaying the response), which means

d̂i ≥ di. (4)

From Figure 2, we have:

d2
i = (Ri + d̃i cosαi)

2 + d̃i
2 sin2

αi (5)

where αi is the angle between the lines joining challenger
Ci and P̃, and P and P̃. Substituting Equation (5) in Equa-
tion (4) and simplifying, we get:

Ri ≤
√

d̂i
2 − d̃i

2 sin2
αi − d̃i cosαi. (6)

Thus, Equation 6 provides the bound on the uncertainty of
Waldo in terms of the estimated distance between the chal-
lenger and Waldo, d̂i.

This uncertainty calculation is for a single challenger for
angle αi. To find the uncertainty in every direction with αi
varying from 0 to 2π, we consider that Ri will vary for differ-
ent challengers at different angles αi. We aim to derive the
maximum uncertainty across all directions, denoted as R∗.

To obtain R∗, we first calculate Riθ for every challenger,
which is the maximum Ri for challenger i in direction θ (with
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respect to geographic north). We denote γi as the angle be-
tween Ci and P̃ with respect to geographic north. Then, R∗

can be easily calculated by substituting αi with γi−θ in Equa-
tion 6.

The goal is to first find the minimum uncertainty in each
direction reported by honest challengers. It is important to
note that if a challenger is also corrupted, the assumption
in Equation (4) no longer applies. In other words, a Byzan-
tine challenger c j can report an arbitrarily small d̂ j < d j. To
prevent malicious measurements from influencing the final
uncertainty, in each direction, we exclude the βn smallest
uncertainty values calculated from different challengers. For
simplicity, we define Sk as the k-th smallest element in set S,
and k is the position of the element when the set is ordered.
Then, we get Equation (2).

We vary θ from 0 to 2π, which gives us the boundary of the
region containing all possible locations where Waldo might
be. We then take the maximum across all R∗

θ
as the final

uncertainty, R. The computation of the final R∗ is fomulated
in Equation (3).

Relation to circle intersection The trigonometry calcu-
lated above can be visualized to better derive the potential
true location of Waldo. Essentially, Equation 4 represents a
circle with radius d̂i centered at the challenger i’s location. To
understand what the outputs of our protocol capture, let’s start
by considering examples with β = 0, meaning all challengers
are honest. In this case, Equation 2 outputs the minimum
uncertainty in all directions as the boundary of the region.
It is intuitive to see that the potential region where Waldo
might be located is equivalent to the intersection of the circles
centered at each challenger with radius d̂i. Figure 3 shows
an example of PoLoc outputs and circle intersections when
n = 3 and β = 0.
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  C2:(0.28, -0.20)
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PoLoc region
PoLoc uncertainty

Figure 3: PoLoc outputs and the intersection of the circles
centred at challengers (n = 3,β = 0).

Now, considering the case when β > 0, since the first βn
smallest uncertainty values are ignored, the output region
becomes larger than in the case where β = 0. This exclusion
can be considered as that we can output all regions that are
output by at least (1−β)n challengers, in other words, the
area covered by at least (1−β)n circles. Figure (4) shows an
example of our PoLoc outputs and circle intersections when
n = 10 and β = 0.3. The malicious Waldo tries to claim a
different location with the help of three corrupted challengers
(whose region are marked in yellow).
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Figure 4: PoLoc outputs and the intersection of the circles
centred at challengers (n = 10,β = 0.3).

4.3 Protocol Guarantees

Byzantine Waldo may have incentives to claim a very different
location (for anonymity, for earning more rewards), so the
eventual uncertainty R∗ output by PoLoc protocol captures
the maximum deviation that Waldo’s true location can have
from the claimed location. We first prove the soundness of
the protocol.

Theorem 1. (Soundness) The actual location of Waldo will
not be farther away from its claimed location than the uncer-
tainty R∗ calculated in Equation 3, even if Waldo is Byzantine.

Proof. We denote θ′ as the direction in which Waldo is lo-
cated with respect to the claimed location such that |P− P̃|>
R∗ > R∗

θ′ . According to Equation 2, R∗
θ′ is the βn smallest un-

certainty measured by challengers, so Equation 4 doesn’t hold
for ≥ βn challengers. However, the adversary can corrupt less
than βn challengers, so at least one honest challenger deflates
the measurement, which contradicts the assumption. As a
result, there does not exist a direction in which the uncertainty
is larger than R∗.
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It is obvious that a larger uncertainty indicates a lower accu-
racy of the protocol. We aim to prove that our PoLoc protocol
provides the optimal uncertainty given the measurement data.

Theorem 2. (Completeness) The uncertainty R∗ calculated
in Equation 3 is optimal given Riθ,Fi for i ∈ [1,n],θ ∈ [0,2π].

Proof. We prove that uncertainty R∗ is optimal by contradic-
tion. Assume that there exists some uncertainty R′ < R∗ that
better captures the largest deviation of Waldo, i.e., in all direc-
tion θ ∈ [0,2π], the distance between the actual location and
the claimed location of Waldo ∥P− P̃∥ ≤ R′ < R∗. However,
according to Equation 3, let’s denote θ∗ = argmaxθ{Riθ|i ∈
[1,n]}βn. At direction θ∗, we calculate the uncertainty of
Waldo in terms of all challengers i as Riθ∗ , there exists a
situation where all Byzantine challengers output 0, and some
honest challenger i∗ who outputs the smallest Ri∗θ∗ = R∗ ac-
curately measures P (d̂i∗ = di∗ in Equation 4). Following
Equation 5 and 6, we have

|P− P̃∥= R∗ > R′ (7)

which contradicts to the assumption that ∥P− P̃∥ ≤ R′ holds
in any cases.

Though the closed-form of R∗ doesn’t exist, we have seen
that R∗ resides in one of the arcs which make up the boundary
of the region intersected by exactly (1−β)n circles. To bet-
ter understand how uncertainty changes with respect to other
system parameters such as the adversarial fraction β, the num-
ber of challengers n and the accuracy of delay-to-distance
mapping Fi, for simplicity we simulate the case where the
mapping outputs the ground truth distance with an one-sided
Gaussian noise,

Fi(ti) = di + |N (0,σ2)| (8)

where σ2 is the variance of the Gaussian noise.
We set Waldo’s actual location at the origin and ran-

domly sample n challengers within a unit circle around
this point. Figure 5 displays the simulation outcomes for
n = 10,20,40,50 challengers, with the fraction of Byzantine
challengers β varying from 0.1 to 0.5. For each parameter
set, we conduct 50 experiments to determine the average
uncertainty R∗. The results indicate that, generally, the uncer-
tainty decreases with an increasing number of challengers. A
higher β value increases the uncertainty across all scenarios.
Figure 6 examines the impact of different variances in delay-
to-distance mappings on the uncertainty, showing that less
noisy mappings lead to smaller uncertainty values, thereby
enhancing the PoLoc protocol’s performance.

5 The Geometry of Internet Protocol

As outlined in the previous section, an essential requirement
of our protocol is that the estimated distance of the honest
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Figure 5: The effect of number of challengers (n) to uncer-
tainty and Byzantine fraction (β) curve.

challenger to Waldo should be greater than the actual distance
(equation 4). Since the estimated distance is calculated from
delay-to-distance mapping, it is crucial for a challenger to
obtain a mapping that converts delay to the largest likely
possible distance that the challenger can be from any Waldo.
The mapping essentially captures the underlying geometry of
the internet.

Therefore, our PoLoc protocol includes a one-time cali-
bration phase to learn the geometry of the internet, referred
to as Proof of the Internet Geometry (PoIG) protocol. It is
conducted by each challenger before participating in PoLoc
protocol for proving any Waldo’s location. We consider two
variants of the PoIG protocol based on the availability of a
pool of trusted servers.

5.1 Partially Trusted PoIG Protocol

In the first variant, we assume the existence of a pool of
trusted network servers that respond to ping packets from
challengers. Challengers measure the ping delay to these
servers, whose locations are known. The challengers then
calculate the distance to these servers based on their reported
locations and map ping delays to distances. While Byzantine
challengers can still inflate delays, each challenger collects
their own data to learn the mapping, thereby not being affected
by Byzantine attacks from other challengers.

To ensure that for a given ping delay, the challenger outputs
the maximum possible distance that any Waldo can be from it,
we employ a a monotone mapping approach which is distinct
from those used in prior research, such as the linear or convex
hull mappings [38, 58].
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Figure 6: The effect of variances of delay-to-distance mapping
to uncertainty and Byzantine fraction (β) curve.

A challenger plots all measured delay-distance pairs on the
X-Y coordinate plane, with round-trip delay on the X-axis
and distance on the Y-axis, as shown in Figure 7. To construct
the monotone mapping, for a given delay, t1, we select the
maximum distance observed so far, d1max. For any subsequent
time instance, t2, where t2 > t1, we connect d1max to d2max,
only if d2max ≥ d1max. If d2max < d1max, then we seek a sub-
sequent time instance t3, or later, which meets this monotone
requirement. Figure 7 illustrates this monotone mapping with
a solid line, connecting points on the outer periphery to result
in a monotone map from delay to distance such that the dis-
tance is a non-decreasing function of increasing delay. This
approach provides a tighter fit than linear mappings used by
CBG [38] as we illustrate in Sec. 6.3.

Server selection We observe that the accuracy of delay
measurements increases with the distance between nodes, so
we establish an upper limit of X kms when selecting servers
for constructing the mapping. Our data indicate that an X
value of 2000 kms roduces favorable results. Figure 7 illus-
trates the significant variation in distance for a given delay;
for instance, a 30 ms delay correlates to distances ranging
from approximately 400 kilometers to 1500 kilometers. Such
disparity is attributable to various factors, including the lay-
out of fiber optic links and the peering relationships between
ISPs [36, 43].

This substantial variability introduces a potential attack:
challengers located within 2000 kms of Waldo’s claimed loca-
tion might, in reality, be further than 2000 kms from Waldo’s
actual location. An example is highlighted in Figure 8. If we
only consider all servers within 2000 kms of the challenger,
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Figure 7: Monotone mapping from delay to distance.
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Figure 8: A possible attack.

the greatest delay within this radius is approximately 65 ms.
Servers with delays less than 65 ms and distances larger than
2000 kms (like the one depicted in red) are excluded. We
account for this attack by adding these additional measure-
ment points. The updated protocol works as follows: Firstly,
we compute the maximum delay measured by servers with
at most X kms distance, denoted as tmax, i.e., about 65 ms in
Figure 8. Then we pick all other servers that experience a
ping delay less than tmax regardless of their distances to the
challenger. Consequently, the previously excluded red server,
depicted in Figure8, is now selected as shown in Figure7.
Indeed, servers located as far as 3500 kms away have been
incorporated into the process in Figure7.

5.2 Trustless PoIG Protocol

To adapt to a decentralized environment and further reduce
dependency on trust, we explore a trustless version of our
protocol. This version operates without relying on external
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Figure 9: Comparisons of simulated linear delay-to-distance curves derived by different variants of calibration protocols.

trusted servers, instead utilizing the challengers themselves to
construct the mapping. In this setup, each challenger obtains
RTT measurements by pinging other challengers. This ad-
justment introduces a significant challenge: since challengers
may falsify their locations and manipulate RTT measurements.
For example, Byzantine challengers can report incorrect loca-
tions that are farther than their actual positions. This falsely
suggests a larger distance to the pinging challenger, thereby
skewing the data point to appear above the actual monotone
curve.

A preliminary solution to fix the problem is to apply exclu-
sion rules similar to those used in the proving phase of the
protocol. Specifically, for each latency (or a narrow latency
range), we disregard the the β fraction of measurements with
the longest distances due to the uniform location distribu-
tion of challengers. However, adversaries could strategically
distribute Byzantine measurements across a certain distance
range. Considering the monotony of the curve, an adversarial
data point with large distance and small latency may nullify
all the following honest data points with larger latency. There-
fore, we propose calculating the distance-to-delay ratio for
each measurement and eliminating the β fraction of data with
the highest ratios.

In our simulation, we generate measurement data based
on a linear mapping with added one-sided normal random
noise (Equation 8). Figure 9 depicts the adjusted mappings
after implementing robust exclusion rules. With k = 400 chal-
lengers participating, we compare scenarios between entirely
honest challengers (Figure 9a) and a situation where 20%
(β = 0.2) of the challengers are Byzantine (Figure 9b). We

assume Byzantine challengers double their distance while
maintaining the same delay.

In these illustrations, the basic monotone curve constructed
by partially trusted PoIG protocol is shown in green. We
denote the robust curve, which excludes the βn challengers
with the highest distance-to-delay ratio in red. And the blue
curve represents the measurements after removing a β fraction
of challengers for each data set within a small delay range
(i.e., a bin containing 1/β nodes).

The findings suggest that filtering based on the distance-to-
delay ratio is exceptionally effective in countering distance
inflation attacks, causing only a minimal and acceptable de-
viation from the baseline curve. This outcome is expected
as the data with the most significant ratios tend to lift the
curve upward, thus potentially increasing the final uncertainty
in the proving phase. However, as seen in Figure 9a, when
challengers accurately report their positions, this filtering ap-
proach may inadvertently exclude honest data points, resulting
in a curve that is less conservative compared to the baseline.
This means that for a given latency, the mapped distance might
not represent the maximum possible distance.

To address this discrepancy, we propose incorporating a
correction factor η, aimed at preserving the proving phase’s
soundness with only a minor increase in uncertainty. Figure 10
demonstrates the effect of applying this correction factor to
the curve.

Accuracy from regression models To understand how
these robust filtering methods influence the accuracy of map-
ping, we start with assuming that the actual distance to delay
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Figure 10: Robust monotone mapping with ratio-based filter-
ing and correction factor 1.2.

function is a linear function with normal observation noises,
that is

ti = cdi + ε+b (9)

where b,c are the constant parameters, di is the distance to
challenger i, ε is a Gaussian noise with variance σ2. This is a
simple linear regression problem and we are looking for an
estimate ĉ that minimizes the sum of squared residuals:

ĉ =
∑

k
i=1(di − d̄)(ti − t̄)

∑
k
i=1(di − d̄)2

(10)

where d̄ and t̄ are the sample means of di and ti, respectively.
We measure the accuracy of the estimator ĉ through the

variance as below:

Acc(ĉ) =
1

Var(ĉ)
=

∑
k
i=1(di − d̄)2

σ2 (11)

Considering the uniform distribution of these k selected
challengers, the nominator can be written as the product of k
and the constant variance of distance distribution, so we have

Acc(ĉ) =
kVar(di)

σ2 (12)

Equation 12 shows that with more data samples (larger k)
and less noises (smaller σ2), we get better accuracy of the
estimated mapping.

Now consider the constraints that βk data samples are
Byzantine and removed by some robust filtering method,
since Byzantine challengers are also distributed uniformly
randomly in locations, it doesn’t change the variance of dis-
tance to the given challenger, only the number of data samples

decreases to (1−β)k. When Byzantine challengers try to cir-
cumvent the detection, honest challengers with small delay
are more likely to be removed. As a result, the accuracy with
robust protocol is

Accβ(ĉ)≃
(1−β)kVar(di)

σ2 (13)

The above model assumes the Gaussian noise (two-sided)
which may not be the best fit of observation errors for RTT.
Now we assume the error ε follows an exponential distribu-
tion with mean 1/λ. Since exponential distribution is always
positive, our estimated delay with additive noise shows the
conservative curve for delay-to-distance mapping, which is
consistent with our implemented protocol. Then we solve the
maximum likelihood estimation (MLE) by setting the deriva-
tive of the log-likelihood function with respect to λ and we
get for the conservative estimator ĉ as follows

ĉ = min
(

ti
di

)
The distribution of ti/di combines the exponential noise

term and the uniformly sampled distance term as denominator,
hence we can not provide the direct accuracy. However, given
the form of the estimator, the adversarial challengers can
easily violate the accuracy by reporting smaller delay/distance
ratio. In this case, our ratio-based filtering method effectively
filter out these outliers.

5.3 Delay Matrix Completion
So far, both partially trusted and trustless PoIG protocols re-
quire each challenger to ping other servers or challengers
independently, which yields a total of O(Nk) measurements,
where N is the total number of challengers and k is the number
of selected nearby servers or challengers within X kilometers.
To improve the efficiency of calibration protocols, challengers
can utilize the measurements conducted by other challengers
to construct their own curves through matrix completion meth-
ods, the problem is formally described as follows.

Consider we have m challengers, all challengers are within
X kms of others and we denote their m×m squared delay
matrix as M, where

Mi j = t2
i j (14)

for (i, j) ∈ E, ti j is the RTT measured by challenger i to j,
E is the index set of measurements. We assume that M is
a noisy observation of some linear transformation from the
squared distance matrix among challengers whose rank is at
most 4 [50], hence it has a low-rank structure, we denote the
rank as r. Due to the existence of Byzantine challengers, a
fraction β columns (and its corresponding rows) are arbitrarily
corrupted. The goal of matrix completion is to infer the delay
measurements of non-corrupted challengers and the identities
of the corrupted challengers.
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Existing works have explored the robust matrix completion
problem with noises and corrupted entries [26], with a specific
class of work focusing on column-wise corruption [27, 28].
In our model an adversarial challenger i participates in all the
active measurements it issues and receives, it can corrupt the
entire row and column Mi∗ and M∗i. We follow the paradigm
in [27, 28] and decompose M into two parts

M = L+C (15)

where L is the matrix with non-corrupted columns whose rank
is r. At most (1−β)m of the columns of L are non-zero. C
is the matrix for corrupted columns and at most βn columns
are non-zero. The observed entries of M are sampled by a
Bernoulli model with uniform probability p. Note that for
a given C, we will remove all the rows with index of non-
zero columns in C in L,C,M to make sure that L is fully
uncorrupted.

The main idea to recover L0 and identify the set of cor-
rupted challengers is to solve a convex program to find an
optimal pair (L∗,C∗) minimizing the weighted sum of the
nuclear norm of L (the sum of singular values of L) and the
matrix ℓ1,2 norm of C (column ℓ2 norm). The conditions of
successful completion require (1) enough observed entries
( p ≳ r log2 m

m ) and (2) limited number of corrupted columns
(β ≲ p

r
√

r log3 m
). We implement Algorithm 2 in [28] which

applies the Augmented Lagrangian Multiplier (ALM) to the
solve the optimization problem. We evaluate the matrix com-
pletion results on a 100× 100 RTT matrix (m = 100) with
different faction of β ∈ [0.1,0.2,0.3,0.4] columns and differ-
ent sample probability p ∈ [0.3,0.4,0.5,0.6]. Other parame-
ters are chosen according to the conditions that ensures high
completion successful probability. Figure 11 demonstrates
that more sampling and less corruptions improve on detection
accuracy. Figure 12 gives an example output of the detection
results in comparison with the actual corruptions.
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Figure 11: Detection accuracy of robust matrix completion
under different β and p.
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Figure 12: Detection results of robust matrix completion with
β = 0.3 and p = 0.6.

6 Implementation and Evaluation

In this section, we describe the implementation of our protocol
and discuss the measurement results in detail. The source code
of our system is available at [7].

6.1 Protocol Implementation
We implement the challengers and Waldo components in the
PoLoc protocol as a Dart [3] program. We selected Dart as
the programming language for its robust support for multiple
platforms [4], allowing crowdsourced challengers to run the
program on their preferred platforms.

Challenge
Co-ordinator

Challenger
1

Challenger
2

Challenger
n

Prover 1 Prover 2 Prover m

Ping and Calibrate

Maintain list of challengers 
and provers via periodic
heartbeat

Figure 13: Implementation architecture with challenge coor-
dinator.

Figure 13 illustrates the implementation architecture. A
microservice, named challenge coordinator, has been imple-
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mented in Python at the backend, who maintains a list of all
active challengers. The program of challengers and Waldo
continuously send heartbeats to the challenge coordinator,
indicating their active status. The challengers periodically
conduct the trusted PoIG protocol, measuring delays among
themselves to construct a monotone delay-distance mapping,
as mentioned in Section 5. After mapping construction, each
challenger commits this information to the challenge coordi-
nator, who then uses the mappings to compute distances and
output the final uncertainty.

We deploy our BFT-PoLoc system on top of the Solana
and Ethereum blockchains for challenge coordination and
proof generation. To initiate a challenge, we develop a user
interface accessible via a web browser [15]. A payer with a
blockchain account can initiate a challenge through the UI by
paying the appropriate amount of tokens. Once initiated, the
challenge coordinator informs the selected challengers and
Waldo about the challenge. All challengers within X = 2000
km of Waldo’s claimed location are selected for the challenge.

The selected challengers initiate communication with
Waldo. The challengers and Waldo authenticate each other
using their respective public-private key pairs from the under-
lying blockchain the challenge was initiated on. After authen-
tication, the challenger measures the delay to Waldo using 20
packets exchanged over UDP. We measure delays over UDP
to avoid the overhead associated with TCP acknowledgments.

After measuring the delay, the challengers report it to the
challenge coordinator. If a challenger’s delay to Waldo ex-
ceeds the maximum delay measured during the PoIG phase,
as outlined in Section 5, that challenger is not considered for
validating Waldo. The challenge coordinator has the delay-
distance mapping for each challenger. Using this mapping, it
can compute the final R∗ for Waldo following Algorithm 1.

6.2 Evaluation Results

Experimental setup. We use 450 RIPE Atlas [16] nodes
to simulate different Waldos. And we deploy our own set
of challengers in public clouds [1, 14, 19, 20]. Since RIPE
Atlas nodes cannot run the custom program, we measure
ICMP ping delays from challengers to RIPE Atlas Waldos
instead. The challengers deployed in public clouds run the
custom challenger program. We focus specifically on the task
of determining whether a Waldo is in the US. Therefore, all
challengers and Waldos are distributed in the US and neigh-
boring countries. Figure 14a and 14b show the distribution
of these nodes, 34 challengers are deployed in the US, 2 are
in Canada, and 1 is in Mexico. We investigate how the un-
certainty R∗ varies when certain system parameters change,
these parameters includes: (1) the number of challengers, (2)
whether Waldo is Byzantine, (3) whether Waldos uses VPNs,
and (4) the existence of Byzantine challengers. The results
are discussed below.

Number of challengers. To examine the effect of the num-
ber of challengers, we use 22 and 37 challengers to evaluate
the uncertainty of Waldos. To test the performance of larger
number of challengers, we further utilize 450 RIPE Atlas
nodes as challengers. We consider two different situations: (1)
honest Waldos located in the US proving their locations, (2)
Byzantine Waldos outside the US claiming a location within
the US.

As is shown in Figure 15, with 37 challengers in place, the
system could verify the location of Waldos with significantly
reduced uncertainty compared to using only 22 challengers.
Specifically, when using 22 challengers about 20% of the Wal-
dos can be validated with uncertainty less than 100 kms, while
using 37 challengers the fraction increases to about 25%. 450
challengers can further improve the fraction to 45%. Alterna-
tively, the percentage of Waldos that achieves uncertainty less
than 1000 km for 22, 37, 450 challengers are about 80%, 85%
and 95%, respectively. This reduction in uncertainty directly
correlates with the system’s ability to authenticate the location
of Waldos more precisely, showcasing the importance of a
large and diverse set of challengers in enhancing the system’s
effectiveness.

These results demonstrate that as the number of challengers
increases, the uncertainty in validation decreases. This is be-
cause an increase in the number of challengers leads to more
challengers with different ISPs. The increase in ISP diversity
makes the PoIG of the delay-distance mapping outlined in
more robust, resulting in performance gains. Moreover, our
results suggest that some Waldos, despite high challenger
diversity, can still exhibit higher uncertainty if they have a
poor internet connection to neighboring ISPs. However, the
number of such Waldos is small, with only 5% having an
uncertainty of more than 1000 km with 450 challengers.

Byzantine Waldos. A critical aspect of our evaluation is
assessing the system’s robustness against Byzantine behav-
iors, including Waldos attempting to falsify their location and
challengers providing misleading measurements. Our experi-
ments with Byzantine Waldos, who claimed a location within
the US but were actually positioned outside, highlighted the
system’s capacity to identify such discrepancies. We use an
uncertainty threshold to effectively distinguish honest Waldos
from Byzantine ones, with a trade-off between the accuracy
of detection and the potential for false positives among honest
Waldos.

We chose 206 RIPE Atlas nodes serving as Waldos outside
US in Mexico, Canada, Puerto Rico and Cuba. Fig. 16a shows
the true location of the byzantine Waldos, while Fig. 16b
shows the claimed location of the Waldos in the US. We
measure the uncertainty of their claimed location in the US
with different number of challengers.

Figure 17 illustrates the CDF of uncertainty for the exam-
ined Byzantine Waldos. Notably, the level of uncertainty ex-
hibits minor variations across three distinct sets of challengers.
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Figure 14: (a) 37 challengers deployed in different public
clouds in US, Canada and Mexico. (b) 450 RIPE Atlas Waldos
in US.

The results evaluated by 37 challengers display marginally
lower uncertainty. In each scenario, the minimum uncertainty
exceeded 1000 kilometers. Consequently, employing a 1000-
kilometer threshold as the criterion for distinguishing Byzan-
tine Waldos enables the accurate identification of such false
location claims. Nonetheless, adopting this threshold comes
with a caveat; as depicted in Figure 15, applying it results in
a misclassification rate where 5% of honest Waldos within
the US, are inaccurately deemed to be outside when utilizing
450 challengers. Similarly, this misclassification rate esca-
lates to 15% with 37 challengers and further to 20% with
22 challengers. We can reduce the misclassification rate by
increasing the uncertainty threshold, but not all Byzantine
Waldos can be detected. For example, with a threshold of
1500 km, we can identify 90% of byzantine Waldos, and re-
duce the rate of misclassfication of valid Waldos to 2%, with
number of challengers as 450. It demonstrates the trade-off
in balancing false positives against the accurate detection of
Byzantine behaviors.

The use of VPNs. We conducted a series of experiments
to assess the impact of using a VPN server located in the
US on the uncertainty associated with Byzantine Waldos sit-
uated outside the US. The protocol measures the end-to-end
delay between the challenger and Waldo, ensuring authentic-
ity through public-private key validation. This measurement
approach implies that employing a VPN server would intro-
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Figure 15: CDF of uncertainty for different number of chal-
lengers.

duce additional delay beyond the natural latency between the
challenger and Waldo.

To validate this, we carried out experiments with 8 Waldos,
with 5 of the Waldos in Europe and 3 in South America as
shown in Fig. 18. The European Waldos were using a VPN
in Virginia, in the east coast of US which is closer to them,
while the South American Waldos were using a VPN in Texas,
which is closer to them.

To investigate this effect, we analyzed the performance
of 8 Waldos: 5 in Europe and 3 in South America, utilizing
VPN servers in Virginia and Texas, respectively, due to their
geographical proximity. Figure 18 depicts the CDF of un-
certainty for these Waldos, contrasting scenarios with and
without VPN usage. Notably, two South American Waldos
were disqualified as their delays exceeded the benchmarks
established during the PoIG phase, automatically categorizing
them as Byzantine under our protocol. The analysis revealed
that Waldos not using VPNs exhibited a minimum uncertainty
of approximately 5000 km, whereas VPN usage inflated this
uncertainty to over 9000 km in the worst-case scenarios.

These findings highlight a significant disparity compared to
the 1000 or 1500 km uncertainty thresholds used for Byzan-
tine Waldo identification. Consequently, our protocol demon-
strates robustness against attempts to falsify location via VPN,
as these strategies markedly increase the uncertainty, facilitat-
ing the identification of Byzantine Waldos located outside the
US continent. In essence, Waldos attempting to manipulate
their location through VPN inadvertently compromise their
deception by exacerbating the detectable delay discrepancies,
thereby reinforcing the protocol’s efficacy in distinguishing
malicious behaviors.

Byzantine challengers. Our evaluation so far assumes all
challengers are trustworthy. However, the introduction of
Byzantine challengers, who may either inflate or deflate the
delay to manipulate Waldo’s perceived location, necessitates
an evaluation of our protocol’s resilience to such adversarial
behavior.
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Figure 16: Byzantine Waldos ouside US (a) True location
outside US. (b) Claimed location in US.

A method to mitigate the impact of Byzantine challengers
involves disregarding the most extreme uncertainty measure-
ments, effectively eliminating data points that could skew the
results due to malicious intent. To quantify the protocol’s
tolerance for Byzantine behavior, we analyzed the effect of
excluding the top q percentile of uncertainty measurements,
exploring the system’s performance across varying levels of
adversary presence.

Figure 20 illustrates the uncertainty distribution for a sce-
nario with 450 challengers, including cases with no Byzantine
challengers and with 2%, 5%, and 10% Byzantine participa-
tion. By excluding the highest 2% of uncertainty values for
the scenario with 2% Byzantine challengers, and similarly
for 5% and 10%, we observed a notable differentiation in the
system’s ability to accurately identify Waldo’s location. In
the absence of Byzantine challengers, 95% of Waldos were
correctly validated within a 1000 km uncertainty threshold.
This accuracy decreases as the percentage of Byzantine chal-
lengers increases, highlighting the need for a substantial pool
of challengers to dilute the effect of malicious actors effec-
tively.

Furthermore, we explored the potential for enhanced tol-
erance to Byzantine challengers by adjusting the protocol’s
angular coverage requirements. Specifically, we examined
scenarios where uncertainties within a 60-degree angular re-
gion around the maximum uncertainty angle were disregarded,
effectively focusing on a 300-degree coverage area.

The modified approach, as depicted in Figure 21, revealed
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Figure 17: CDF of uncertainty for byzantine Waldos outside
US.

Figure 18: Byzantine Waldos using VPN in USA.

an improved ability to maintain accuracy despite Byzantine
interference. For instance, excluding a 60-degree angular re-
gion increased the percentage of Waldos correctly identified
within the 1000 km threshold by approximately 2% to 6%,
depending on the percentage of Byzantine challengers present.
This adjustment demonstrates that by relaxing the coverage
requirements slightly, the system can afford a higher tolerance
for Byzantine behavior, potentially accommodating up to 10%
Byzantine challengers with an acceptable level of accuracy.

In summary, our findings suggest that while the presence of
Byzantine challengers poses a significant challenge, strategic
adjustments to the protocol’s evaluation criteria can enhance
resilience, enabling it to withstand a higher proportion of
adversarial participation without compromising the integrity
of location verification.

6.3 Comparison with CBG

In this analysis, we explore whether a monotone mapping ap-
proach enhances performance compared to a linear mapping
method, exemplified by the CBG model [38], which employs
a best-fit line to correlate delay with distance. In the CBG
model, a given delay is translated into the maximum possible
distance between the Waldo and a challenger through linear
regression.

Figure 22 compares the uncertainty distributions for our
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Figure 19: CDF of uncertainty for byzantine Waldos with and
without VPN.
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Figure 20: CDF of uncertainty with byzantine challengers.

monotone mapping strategy, the CBG approach, and the theo-
retical uncertainty based on the speed of information transmis-
sion in fiber optic cables, represented as 2

3 c or approximately
200 km/s, where c is the speed of light. The analysis is con-
ducted with a scenario involving 450 challengers.

The data reveal that, at the 95th percentile, the uncertainty
threshold of 1000 km—which we adopt for identifying Byzan-
tine Waldos—is met by our monotone mapping approach,
whereas the CBG method reaches this threshold at approxi-
mately the 85th percentile, and the theoretical model based on
the speed of information in fiber achieves it at merely the 67th
percentile. This disparity indicates that the CBG model, with
its linear mapping, tends to overestimate distances, thereby
increasing the uncertainty in comparison to our monotone
mapping method.

The comparative analysis highlights the potential for mono-
tone mapping to refine the accuracy of delay-to-distance func-
tions, reducing the margin of error and bolstering the system’s
overall performance in identifying location spoofing attempts.

7 Conclusion

We develop a proof system to validate the geographical lo-
cations of Internet participants in a trustless environment,
without relying on any trusted service. The system comprises
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Figure 21: CDF of uncertainty with byzantine challengers
with 60 degree angular region uncovered.
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Figure 22: CDF of uncertainty for different delay to distance
mappings.

two parts: a Proof of Internet Geometry protocol that robustly
converts delay measurements into distance estimates, and
a Proof of Location protocol which leverages signed ping
delays and a Byzantine-fortified trigonometry framework to
limit the uncertainty in geolocation. Essentially, our study
utilizes internet delay measurements combined with cryp-
tographic techniques and Byzantine-resistant data analysis
within geometric constraints to securely verify locations.

We implement a fully functional location verification sys-
tem and integrate it into major blockchains. Through com-
prehensive testing on distributed nodes across the US, we
evaluate the system’s accuracy and robustness and examine
how various system parameters affect them. Our findings re-
veal that the protocol effectively identifies Byzantine Waldos
claiming a U.S. location while actually being outside the
country, with an uncertainty margin of 1000 km. The results
further indicate that Byzantine Waldos attempting to mas-
querade as being in the U.S. by using VPNs from another
continent are at a disadvantage. The protocol withstands up
to 2% Byzantine challengers while maintaining a 12% error
rate in the classification of Byzantine Waldos. Additionally,
we demonstrate that our approach of monotonically mapping
delay to distance yields considerable improvements over tra-
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ditional linear mapping methods.
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G. Vattay, “Spotter: A model based active geolocation
service,” in Proceedings IEEE INFOCOM, 2011.

[47] Y. Lee, H. Park, and Y. Lee, “Ip geolocation with a
crowd-sourcing broadband performance tool,” in ACM
SIGCOMM Computer Communication Review, 2016.

[48] Y. Mao and L. K. Saul, “Modeling distances in large-
scale networks by matrix factorization,” in Proceedings
of the 4th ACM SIGCOMM conference on Internet Mea-
surement, 2004, pp. 278–287.

[49] D. Maram, I. Bentov, M. Kelkar, and A. Juels, “Goat:
File geolocation via anchor timestamping,” Cryptology
ePrint Archive, 2021.

[50] A. Montanari and S. Oh, “On positioning via distributed
matrix completion,” in 2010 IEEE Sensor Array and
Multichannel Signal Processing Workshop. IEEE, 2010,
pp. 197–200.

[51] J. Muir and P. Oorschot, “Internet geolocation: Evasion
and counterevasion,” in Acm computing surveys (csur),
2009.

[52] V. Padamanabban and L. Subramanian, “Determining
the geographic location of internet hosts,” in Proceed-
ing of ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, 2001.

[53] V. Padmanabhan and L. Subramanian, “An investigation
of geographic mapping techniques for internet hosts,”
in Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer
communications, 2001.

17



[54] I. Poese, S. Uhlig, M. Kaafar, B. Donnet, and B. Gu-
eye, “Ip geolocation databases: Unreliable?” in ACM
SIGCOMM Computer Communication Review, 2011.

[55] Q. Scheitle, O. Gasser, P. Sattler, and G. Carle, “Hloc:
Hints-based geolocation leveraging multiple measure-
ment frameworks,” in Network Traffic Measurement and
Analysis Conference (TMA), 2017.

[56] Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and
C. Huang, “Towards Street-LevelClient-IndependentIP
geolocation,” in USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 11), 2011.

[57] Z. Weinberg, S. Cho, N. Christin, V. Sekar, and P. Gill,
“How to catch when proxies lie: Verifying the physical
locations of network proxies with active geolocation,”
in Proceedings of the Internet Measurement Conference,
2018.

[58] B. Wong, I. Stoyanov, and E. Sirer, “Octant: A compre-
hensive framework for the geolocalization of internet
hosts,” in Proceedings of NSDI, 2007.

[59] I. Youn, B. Mark, and D. Richards, “Statistical geoloca-
tion of internet hosts,” in Proceedings of 18th Interna-
tional Conference on Computer Communications and
Networks, 2009.

[60] A. Ziviani, S. Fdida, J. De Rezende, and O. Duarte, “Im-
proving the accuracy of measurement-based geographic
location of internet hosts,” in Computer Networks, 2005.

18


	Introduction
	Related Work
	Delay Based Geolocation
	Other Approaches
	Byzantine Geolocation

	Security Model
	Problem Setting
	Threat model

	Proof of Location Protocol 
	Protocol Overview
	The Trigonometry in Proof of Location
	Protocol Guarantees

	The Geometry of Internet Protocol
	Partially Trusted PoIG Protocol
	Trustless PoIG Protocol
	Delay Matrix Completion

	Implementation and Evaluation
	Protocol Implementation
	Evaluation Results
	Comparison with CBG

	Conclusion

