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ABSTRACT 

The radiation efficiency from simple vibrating planar 

surfaces is often used as a basis to describe the sound 

radiation from more complex structures, having important 

applications in various fields of acoustics. The low-frequency 

radiation efficiency of a baffled piston can easily be 

represented by a simple monopole source. Notably, the 

equivalent source strength is dependent on the piston surface 

area. However, the unbaffled case presents additional 

difficulties as the so-called “edge effects” significantly alter 

the piston radiation impedance. Consequently, a low-

frequency equivalence between dipoles and an unbaffled 

pistons is not as straight forward, since not only the piston 

area but also its shape will have an effect on the radiated 

sound. In this work, the search for a simple and generic, 

equivalence between dipoles and unbaffled pistons is 

pursued. A finite element model is used to calculate the 

radiation efficiency from unbaffled pistons with the same 

surface area but different shapes. A broad set of results 

indicate that the “edge effects” can be accurately represented 

by a simple term dependent on the piston compactness (ratio 

of area to perimeter). Effectively, pistons with smaller area to 

perimeter ratio will be less efficient radiators. Such term 

allows the definition of an equivalent dipole source strength 

that approximates the low-frequency behavior of an 

unbaffled piston of arbitrary shape. 

Keywords: Acoustic radiation, dipoles, unbaffled, planar 

radiators, radiation efficiency. 

 

1. INTRODUCTION  

Unbaffled pistons of any shape, vibrating at a frequency , 

will radiate approximately as dipoles when the wavelength  

is much larger than a characteristic dimension of the piston 
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a  [1]. The same analogy can be made with respect to baffled 

pistons and monopoles. At low-frequencies, the equivalent 

monopole source strength representing a baffled piston is 

dependent on the piston area S . However, the overall shape 

of the piston has no influence on the amount of radiated 

power. Hence, representing the low-frequency radiative 

behavior of a baffled piston (of any shape) using a monopole 

becomes a fairly straight forward task.  

Attempting to define an equivalence between a dipole and an 

unbaffled piston is, however, not as trivial. Difficulties arise 

because the same independence on the piston shape does not 

hold for the case of an unbaffled piston. That is, pistons with 

the same surface area S  but different shapes will not radiate 

the same amount of acoustic power. This is related to the 

effects along the piston edges, which present large tangential 

velocities and significantly influence the force applied on the 

fluid by the vibrating piston [2]. In this study we explore how 

the shape of an unbaffled piston can influence its radiation 

efficiency.  

1.1 The monopole 

A monopole source, with harmonically varying source 

strength ( ) Re( ),i tq t Qe  generates a pressure field given 

by [1] 
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where k c , c  is the speed of sound and r  is the 

distance between the monopole and the observation point. 

The total radiated sound power is given by 
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where  is the fluid density. If we consider a baffled piston 

of area S , vibrating vertically with velocity ( ) i tu t Ue , the 

equivalent monopole strength is given simply by 

 Q i SU  (3) 

The radiated power of such piston is then given by 
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where a factor of 2 is considered to account for the effect of 

the baffle. At low frequencies, its radiation efficiency 

(normalized radiated power) is given by [1] 
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A baffled piston at low-frequencies, like a monopole source, 

radiates sound by forcing an unsteady volume outflow from 

a region that is very small compared to the wavelength. Any 

vibrating body undergoing a change in volume (e.g. pulsating 

bubble, baffled loudspeaker, etc.) falls within this category. 

Consequently, the shape of a baffled piston does not influence 

its total radiated power, and its radiation efficiency is 

dependent solely on the surface area S  and frequency k . 

1.2 The dipole 

Similarly, a dipole radiating harmonically generates a 

pressure field given by [1] 

 ( )1( , ) cos 1
4
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where  is the elevation angle and the source strength here is 

( ) i tf t Fe  and represents a point force. Unlike the cases of 

the monopole and baffled pistons, a dipole produces no net 

volume outflow. However, it exerts a force ( )f t  on the 

surrounding fluid. A rigid sphere or planar surface oscillating 

in free space will behave as a dipole when their characteristic 

dimensions are small compared to the wavelength. The total 

sound power radiated by this dipole is given by 
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1.2.1 Dipole as a superposition of monopoles 

A dipole can also be described by a pair of nearby monopoles 

radiating in phase opposition, separated by a small distance 

d . In this analogy, the pair of monopoles is equivalent to a 

dipole source provided that d  and the following 

equivalence between the dipole and monopole strengths can 

be made 

 ( ) i tf t Qde F Qd  (8) 

Similar to the above analogy between monopoles and baffled 

pistons, an unbaffled piston will radiate as a dipole. The 

radiated power is given by 
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while the radiation efficiency is 
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Notice how radiation efficiency of the unbaffled case depends 

on 
4k  compared to the baffled case 

2k , i.e. the presence of 

the baffle will increase the radiation efficiency of a vibrating 

piston, particularly at low frequencies. More importantly 

however, unlike the case of the baffled piston, the shape of 

the piston will have an important effect on its radiation 

efficiency. In the analogy to the pair of monopoles, the “edge 

effects” are represented here by the distance d , whose 

physical significance when dealing with real systems (with 

characteristic dimensions) is not evident. The equivalence of 

this distance d  for the case of physical systems, is not 

straight forward, particularly since very few analytical 

examples provide a basis for comparison. Nevertheless, a 

known example is that of a vibrating sphere [1] of radius a  

which, at low frequencies, radiates as a dipole whose 

equivalent distance is 2d a . Another example is that of a 

rigid disk oscillating in free-space [3], which gives an 

equivalent distance (8 / 3 ) .d a Explicit expressions for 

these two examples are given in the appendix.  

 
Figure 1. Radiation efficiency by a rigid disk of radius a  

oscillating in free-space (blue) and a low-frequency 

approximation using a dipole source equivalence (red). The 

role of the parameter d  is highlighted.  



 

The main goal of this study is to provide a simple way to 

describe the radiation efficiency of an unbaffled piston of 

arbitrary shape using a point dipole. This aim can be 

summarised as finding an equivalent distance d , dependent 

on the piston geometry, that allows a reasonable 

approximation of the radiation efficiency at low-frequencies. 

To graphically illustrate the effect of the distance d , Figure 

1 shows the radiation efficiency of a disk in free-space 

alongside the low-frequency approximation based on the 

dipole expression (10). 

To this aim, a finite-element model was used to calculate the 

radiation efficiency of unbaffled pistons of various shapes. 

Based on the obtained results, we derive a generic expression 

for the equivalent distance d , dependent on the compactness 

(ratio of area to perimeter) of the planar surface, which 

provides accurate approximations for the radiation efficiency 

of unbaffled pistons of arbitrary shape. 

 

2. NUMERICAL MODEL 

The conducted numerical experiments aimed at calculating 

the radiated power and radiation efficiency of pistons with the 

same surface area S  but different perimeters, in an attempt 

to characterise/quantify the “edge effects”. Three distinct 

shapes, illustrated in Figure 2, were considered: a rectangle, 

an isosceles triangle and an ellipse. In this way, similar shapes 

with different ratios of area to perimeter were calculated. 

Note that in all three cases, a maximum in the area/perimeter 

ratio is reached when the aspect ratio equals one ( / 1),a b  

leading to a square, an equilateral triangle and a circle, 

respectively.  

 
Figure 2. Three piston shapes considered in this study.  

The used finite element model is illustrated in Figure 3. It 

consisted of a spherical domain with the unbaffled piston 

located at the centre of the sphere. A perfectly matched layer 

is placed in the outer surface of the sphere to simulate 

anechoic conditions. Note that the spherical domain can be 

reduced to a quarter of a hemisphere (one eighth of the 

sphere) by considering the symmetric properties of the 

problem. Firstly, by the nature of the unbaffled problem, the 

plane in which the piston is placed will have zero pressure 

(sound waves in each side cancel out), hence only the upper 

hemisphere is considered (the pressure in the lower 

hemisphere will be the same, with opposite sign). 

Furthermore, the rectangle and ellipse have a two symmetry 

lines, hence, symmetric boundary conditions are imposed and 

only one quarter of the hemisphere needs to be considered. 

For the triangle, which has only one symmetry line, half the 

hemisphere needs to be considered. The model solve the 

Helmholtz equation and relies on forcing the piston surface 

to oscillate vertically at a given velocity (taken as 

1 m/sU ) and frequency k , and then calculating the total 

radiated sound power  via integration over the entire 

spherical outer surface. Subsequently, the radiation 

efficiency is given simply by 2cSU .  

 
Figure 3. Illustration of the used FE model. 

 

3. RESULTS: RADIATION EFFICIENCY OF 

UNBAFFLED PISTONS OF VARIOUS SHAPES  

In the search for an equivalent dipole formulation of an 

unbaffled piston we are naturally interested in the low-

frequency behaviour only, i.e. 1ka . The dipole point 

source cannot, by default, reproduce the radiative behaviour 

when the wavelength is comparable with the dimensions of 

the piston (the dipole does not have a characteristic 

dimension). We proceeded with numerical simulations for all 

piston shapes (with the same surface area )S  at a single low-

frequency, fixed at 0.01kl , where l  was defined as  

/l S  (Note: this definition is equivalent to say l a  

for the case of a circular piston). Figure 4 shows the radiation 

efficiency at 0.01kl  for the three base shapes with 

different aspect ratios /a b .  



 

The results in Figure 4 illustrate how pistons with the same 

surface area and different shapes can have very different 

radiative capacity. Firstly, we note that the radiation 

efficiency tends to zero at the limiting cases: / 0a b , 

/a b  and / 2a b  for the triangle. This seems 

physically plausible since an infinite “string” will radiate no 

sound. Secondly, for all three cases, the maximum in 

radiation efficiency occurs at / 1a b . Note that it is at this 

point ( / 1)a b  that the perimeter of each shape is 

minimum.  

 
Figure 4. Radiation efficiency at low-frequency 0.01kl  

as a function of the aspect ratio for the three base shapes 

(rectangle, triangle and ellipse). Note: the radiation efficiency 

was normalized by that of a rigid disk in free-space (see 

appendix A.1). 

Another important observation is that all shapes have 

different values for the maximum of . Notably, the circle is 

the most efficient, followed by the square and lastly the 

equilateral triangle. These results strongly suggest that the 

“compactness” (ratio of area to perimeter /S P ) is an 

important parameter in defining the radiation efficiency. This 

is illustrated clearly in Figure 5, where the compactness 

parameter /S P  of all shapes is plotted as a function of the 

aspect ratio. Perhaps not so surprisingly, this relation is 

almost identical to the plot shown in Figure 4. Notice also 

how this parameter also has units of meters, much like the 

equivalent distance d . Analytical expressions for the areas, 

perimeters and their ratio for all three shapes are presented in 

the appendix. 

 
Figure 5. Variation of the area to perimeter ratio as a function 

of the aspect ratio for all three shapes. In these results, the 

surface area was fixed for all cases at S . 

4. A GENERIC APPROXIMATION OF THE 

EQUIVALENT DISTANCE 

We now present the same results in a different perspective. 

Firstly, instead of underlining the role of the aspect ratio 

/a b , we plot the results in terms of the compactness (ratio 

of area to perimeter /S P ). Notice however that the ratio 

/S P  is not independent of scale and, in our simulations, 

both dimensions a  and b  were modified to ensure a constant  

surface area S . Then, a more pertinent parameter is the 

normalized compactness /S Pb , which is dimensionless and 

depends solely on the aspect ratio and the type of shape (see 

the expressions in the appendix, which highlight the 

appearance of this dimensionless parameter). Secondly, we 

normalize the radiation efficiency results to that of the dipole 
4

0 / 24s k S , to emphasize how the equivalent distance 

d  can be retrieved, that is 
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Once again, the distance d  is not independent of scale and a 

more generic representation is given when normalized by a 

characteristic dimension of the piston * /d d b . 

Figure 6 shows the influence of the piston compactness on its 

radiation efficiency (represented here by the dimensionless 

equivalent distance 
*d . Results in the two plots are the same: 

the top-plot has linear y-axis while the bottom-plot has 

logarithmic y-axis. From Figure 6 there is no doubt that the 

compactness of the piston is directly related to the equivalent 

distance d . Considering this parameter, the numerical results 

for all three cases collapse almost perfectly. Taking the pivot 

point (known result for the disk, * 8 / 3d ) we can easily 

fit the numerical results by 
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This curve is shown in Figure 6 as a dotted black line. Note 

that this expression is exact for the case of the disk and fits 

almost perfectly to the numerical results of the ellipse (error 

<2% for aspect ratios 
* 0.1a ). Slight deviations are seen 

compared to the rectangle and triangle, but these are no larger 

than 6%  for reasonable aspect ratios 
*0.1 10a . 

 
Figure 6. Influence of the piston (dimensionless) 

compactness /S Pb  on the radiation efficiency (here 

represented by the equivalent dimensionless distance 
* /d d b ). The two plots show the same results with either 

a linear (top) and logarithmic (bottom) scale for the y-axis. 

Results for all three shapes collapse in terms of the 

compactness parameter /S Pb . 

5. CONCLUSIONS 

The radiation efficiency of an unbaffled piston with arbitrary 

shape was studied. Focus was given on providing a simple 

and generic formulation allowing the description of its low-

frequency behavior using a point dipole. A 3D finite-element 

model was used to calculate the radiation efficiency of 

various pistons with simple shapes (ellipse, rectangle and 

triangle) at different aspect ratios. Numerical results strongly 

suggest that the piston compactness parameter (area to 

perimeter ratio) is an excellent descriptor of the typical “edge 

effects” of unbaffled configurations, as numerical results for 

all shapes collapse as a function of this parameter. 

Consequently, an expression for the source strength of an 

equivalent dipole, dependent on the compactness parameter, 

was provided. This allows for an accurate description of the 

low-frequency behavior of an unbaffled piston of arbitrary 

shape, using a simple dipole formulation. The results 

presented here can be useful in the description of more 

complex unbaffled structures (e.g. loudspeakers, vibrating 

plates, radiating elements in musical instruments, etc.), that 

are often difficult to calculate [4], in a very simple manner. 

Notably, this could serve as a basis for formulations relying 

on the use of a minimal number of elementary sources to 

describe the radiation from arbitrarily shaped plates, as done 

recently for the baffled case using circular pistons [5]. 
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APPENDICES 

A.1 Radiation of an oscillating rigid disk in free-space 

At low frequencies, the radiation impedance of a rigid disk in 

free-space is given by [3] 
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and the radiated power is retrieved by 
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Re-formulating this expression to emphasize its equivalence 

to the dipole leads to 
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Then the equivalent distance d  becomes evident 
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The curious reader might note that the factor 8 / 3  is rather 

familiar. It appears also in the low-frequency reactance of a 

baffled circular piston [2]. The low-frequency radiation 

efficiency of a free-disk oscillating in free space is then given 

by 
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A.2 Radiation of an oscillating rigid sphere in free-space 

The impedance of a rigid sphere vibrating in free-space is 

given by [1] 
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and the radiated power is retrieved by 
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with the associated low-frequency approximation 

 2 2 4( ) 1
6
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In this case, the equivalent dipole would have a distance 

2d a .  

A.3 Areas, perimeters and compactness of simple shapes 

For a rectangle, the area, perimeter and their respective ratio 

are given by 
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where * /a a b . Similarly, for an isosceles triangle we 

have 
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The perimeter of an ellipse has no exact formula. However, a 

good approximation is given by Ramanujan, leading to 
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