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Abstract: We investigate the role of topology in the lattice determination of the renor-

malized strong coupling via the gradient flow. This is done adopting the Parallel Tempering

on Boundary Conditions to deal with the infamous topological freezing problem that affects

standard local updating algorithms. We show that, even in the presence of severe topolog-

ical freezing, both algorithms yield the same strong coupling once projected onto a fixed

topological sector. Moreover, we show that using a non-projected definition of the coupling

leads to the same step-scaling sequence. This means that projecting the coupling onto a

fixed topological sector does not affect the determination of the dynamically-generated

scale of the theory Λ.
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1 Introduction

The limitations of the Standard Model of Particle Physics in providing satisfactory ex-

planations for various experimental observations are widely acknowledged. These include

neutrino masses, Dark Matter and strong-CP conservation, among others. As a result,

significant theoretical and experimental efforts have been focused on the search for Physics

beyond the Standard Model in recent decades. Research in this field has led to the need

for more precise and refined theoretical predictions of experimentally-measurable quantities

within the framework of the Standard Model itself.

In this respect, it has been emphasized that reducing the theoretical uncertainty on

the strong coupling constant αstrong = g2/(4π) will be crucial in the study of several

physical processes in the near future, see, e.g., Ref. [1] for a recent review. In the last two

decades, the Lattice Community has spent a huge effort to improve the precision of the

determination of the strong coupling [2–9]. As a result, the averaged lattice estimation [10]

is now among the most accurate determinations entering the world-average reported in the

PDG [11].

From the lattice perspective, determining the strong coupling constant practically

amounts to calculate the dynamically-generated scale ΛQCD. Thanks to the so-called de-

coupling method [1, 12, 13], this can be in turn traced back to the computation of the

confinement scale ΛYM of the pure-gauge theory, i.e., the pure SU(3) gluodynamics with
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no dynamical quarks. This quantity has been the target of several lattice calculations in

the last 15 years [14–23].

At first glance, the determination of ΛYM seems a simpler task compared to the calcula-

tion of ΛQCD, given that pure-Yang–Mills simulations are less computationally-demanding

than full QCD ones involving dynamical fermions. However, accurately determining this

quantity is a non-trivial numerical challenge, as it requires to keep several sources of system-

atic errors under control at the sub-percent level. The present paper aims at addressing one

of the potentially most serious sources of undesired systematic errors, namely, the strong

correlation between the coupling and the topological modes of Yang–Mills theories.

To understand the reason behind this correlation and why it can be an issue, consider

the following. A powerful and accurate technique to determine the strong coupling from

lattice simulations is to define it from the action density after the gauge fields have been

evolved under the gradient flow [24–26]. After the flow, it is well known that the action

density becomes highly correlated with the topological background of the underlying gauge

field [27]. The topological charge Q, in turn, suffers for very large auto-correlation times

if the lattice spacing is fine [28–30]. This computational problem, known as topological

freezing, is due to the loss of ergodicity of standard local updating algorithms close to

the continuum limit. Practically, it prevents to correctly sample the topological charge

distribution in affordable Monte Carlo simulations. As a matter of fact, when the lattice

spacing is sufficiently fine, very few to no fluctuations of Q are observed during typical

runs. Given the strong correlation between the topological charge and the action density

after the flow, and considering that exploring fine lattices is a necessity to pin down the

systematic error related to the continuum limit extrapolation, topological freezing can

potentially introduce an undesired bias also in the determination of the strong coupling

from the gradient flow, and thus in the Λ-parameter. So, it is extremely relevant to carefully

check if and how topology affects the gradient flow determination of the strong coupling,

which is exactly the aim of the present study.

Generally speaking, for what concerns the determination of Λ, the freezing problem is

usually circumvented in lattice computations by defining the coupling through a projection

onto the Q = 0 topological charge sector [27]. Since in perturbation theory this is the only

relevant sector, this definition is expected to amount just to a particular definition of

the regularization scheme. Thus, once properly matched to a more customary scheme

such as the MS, this choice should not introduce any systematic in the determination

of Λ. However, a priori it is not obvious that, in the presence of topological freezing,

fluctuations within each fixed topological sectors are correctly sampled.1 Moreover, it

would be reassuring to explicitly verify in an actual numerical calculation that a non-

projected definition of the coupling leads to the same determination of the dynamical

scale.

In this paper, we aim exactly at checking in a systematic way what is the impact of

topology freezing and topology projection on the determination of the coupling. To this

end we will use a novel numerical technique designed to efficiently circumvent topolog-

1For a first investigation of this issue in the 2d U(1) gauge theory see Ref. [31].
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ical freezing, the Parallel Tempering on Boundary Conditions (PTBC) algorithm. This

algorithm, initially proposed for 2d CPN−1 models by M. Hasenbusch [32], and imple-

mented for 4d SU(N) Yang–Mills theories too [33], has been widely employed in the last

few years to improve the state of the art of the lattice studies of several topological and

non-topological quantities, thanks to the impressive reduction of the auto-correlation time

of the topological charge it allows to achieve [33–38].

In a few words, the PTBC algorithm consists in simulating several replicas of the

lattice, differing among themselves for the boundary conditions imposed on a handful of

gauge links, chosen so as to interpolate among Open Boundary Conditions (OBCs) and

Periodic Boundary Conditions (PBCs). All lattice replicas are updated simultaneously and

independently, and swaps of gauge configurations among different replicas are proposed

during the Monte Carlo. The idea is that a gauge configuration, thanks to the swaps,

is able to perform a random walk among the replicas, experiencing different boundary

conditions. Since it is well known that simulations with open boundaries suffer for much

smaller auto-correlation times [39, 40], this has the beneficial effect of “transferring” the fast

decorrelation of the topological charge to the periodic replica, which is where all measures

are performed. This last point is a crucial ingredient of the PTBC algorithm, as it allows

to circumvent the unphysical effects introduced by OBCs, which require to stay sufficiently

far from the boundaries, thus allowing to keep finite size effects under control more easily.

The goal of the present investigation is twofold. First, we aim at comparing the values

of the projected coupling obtained with the standard and the PTBC algorithms, in order

to explicitly verify whether the former is able to correctly sample gauge configurations

within the Q = 0 sector regardless of topology freezing. Some preliminary results about

this point were presented at the 2023 Lattice conference [41]. Secondly, we aim at verifying

that the adoption of a non-projected coupling leads to the same result for the Λ parameter.

To this end, the most intuitive approach would be to perform the full computation of the

dynamical scale with both couplings. However, this method is not ideal as it is difficult

to disentangle the possible effects of topology freezing and of topology projection from the

other sources of systematic error. Instead, we adopted a more stringent strategy that does

not require the full computation of the Λ-parameter, as it will be explained in the following

section.

This manuscript is organized as follows. In Sec. 2 we explain in detail our strategy

to check the impact of fixed-topology-projection on the determination of Λ. In Sec. 3

we present our numerical setup, describing how we implemented the PTBC algorithm

in combination with the twisted volume-reduced setup of Ref. [22], and the techniques

employed to compute the strong coupling via the gradient flow. In Sec. 4 we discuss our

numerical results. Finally, in Sec. 5 we draw our conclusions.

2 The Λ-parameter and the step-scaling method

To better explain the strategy we followed to check the impact of topology projection on

the determination of the Λ-parameter, we recall the definition of this quantity, and how it

is computed on the lattice.
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The Gell-Mann–Low β-function defined in the regularization scheme s,

βs(λs) ≡
dλs(µ)

d log(µ2)
∼

λs → 0
−λ2

s

(
b0 + b1λs + b

(s)
2 λ2

s + . . .
)
, (2.1)

defines a first-order differential equation which expresses the running of the renormalized

SU(N) ’t Hooft coupling λs(µ) ≡ Ng2s (µ), and admits a perturbative expansion which is

universal (i.e., scheme-independent) up to the 2-loop order. The equation in (2.1) can be ex-

actly integrated, and the scheme-dependent, renormalization-group-invariant, Λ-parameter

is its related integration constant:

Λs

µ
= [b0λs(µ)]

− b1
2b20 e

− 1
2b0λs(µ) exp

{
−
∫ λs(µ)

0
dx

(
1

2βs(x)
+

1

2b0x2
− b1

2b20x

)}
. (2.2)

Introducing two generic scales µ1 and µ2, the following exact relation holds:

Λs

µ1
=

Λs

µ2
exp

{
−
∫ λs(µ1)

λs(µ2)

dx

2βs(x)

}
. (2.3)

The idea behind the step-scaling method [42] is to take µ1 = µhad and µ2 = µpt sufficiently

deep in the non-perturbative and in the perturbative regimes respectively, and to connect

these two scales by a sequence of k transformations where, at each step, µ is increased by

a factor of 2: µhad −→ 2µhad −→ 22µhad −→ . . . −→ 2kµhad ≡ µpt ≫ µhad.

The key is that, thanks to step-scaling, the exponential factor appearing in Eq. (2.3)

simply becomes:

exp

{
−
∫ λs(µhad)

λs(µpt)

dx

2βs(x)

}
= exp

{
−
∫ µhad

µpt

d log(µ)

}
=

µpt

µhad
= 2k, (2.4)

as µ changes by a factor of 2 at each step. Then, assuming that µpt is sufficiently high

that perturbation theory can be trusted, one can evaluate Λs/µpt with some perturbative

truncation of Eq. (2.2). Since the second factor appearing in Eq. (2.3) is known thanks to

the step-scaling procedure, once the low-energy scale µhad is computed on the lattice, the

Λ-parameter is eventually obtained via:

Λs =

(
Λs

µpt

) ∣∣∣∣∣
pt

2kµhad. (2.5)

Clearly, to perform the whole step-scaling procedure and determine Λs, one needs to com-

pute the strong coupling constant at each step λi = λ(µi = 2iµhad). As a matter of fact,

the high-energy scales that can be typically reached on the lattice are not deep enough

in the perturbative regime that perturbation theory alone can be trusted. Thus, what is

typically done is to use Eq. (2.4), plus the lattice-determined values of λi, to perform a

parametric fit of the unknown higher-order corrections to the known perturbative behavior

of the β-function.

However, for the purpose of checking the impact of topology-projection on Λs, it is

sufficient to check whether or not the Q = 0 projected and the unprojected coupling, which
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will of course differ at low energies, lead to the same step-scaling sequence µhad → µpt.

Indeed, starting from the same µhad, if the step-scaling passes through the same energy

scales µi = 2iµhad, it will yield for both couplings the same 2k factor in Eq. (2.5). Since

also the factor of Λ/µpt appearing in Eq. (2.5) will be the same, because the two couplings

are expected to become exactly equal in the high-energy limit, when the contribution of

topological sectors becomes irrelevant, then the two definitions of the coupling will yield

the same Λ-parameter. The pleasant consequence of this observation is that, to check

that the two couplings give the same step-scaling chain, it is sufficient to just perform the

calculation of the coupling in the first step of the sequence: µhad → 2µhad.
2 This is a

much more stringent test than performing the whole calculation of Λ, as it precisely allows

to disentangle any possible systematic coming from topology from the other sources of

uncertainty.

To run the energy scale µ on the lattice, it is convenient to work in a scheme where

this is taken to be proportional to the inverse lattice size (in physical units): µ ∝ 1/l.

This approach is very powerful because it allows to exploit finite-size effects at one’s own

advantage. In order to determine the running λ(µ) for one step of the step-scaling sequence,

we practically follow these steps [42]:

1. We consider several simulations points with different values of the lattice extent

L = l/a (with a the lattice spacing) with constant l, and we define a Line of Constant

Physics (LCP) by tuning the bare coupling for each lattice to achieve the same

value of the renormalized coupling λ1 = λ(µ1), with µ1 = 1/(cl), with c some O(1)

proportionality constant. Clearly, given the 1-to-1 correspondence between λ and µ

(i.e., l), this is equivalent to tune the bare couplings so as to achieve a fixed value of

the lattice size l.

2. We calculate the renormalized coupling for the same values of the bare coupling, but

doubling the lattice size L → 2L. In principle, one expects these simulations points to

approximately constitute a LCP for the renormalized coupling up to lattice artifacts,

since the lattice size in physical units is constant and equal to 2l. Assuming there is

a 1-to-1 correspondence between the renormalized coupling and the renormalization

scale µ, the value of the coupling λ0 = λ(µ0 = µ1/2) will be defined from the

continuum extrapolation of the results obtained on these ensembles.

Clearly, by iterating these 2 steps k times, we achieve the complete step-scaling se-

quence, but, as we outlined earlier, for our purpose it will be sufficient to just perform

them once. As a matter of fact, in order to verify that the Q = 0 projected, λ(0), and

the unprojected coupling, λ(noproj), lead to the same step-scaling sequence, and thus to the

same dynamical scale, it is sufficient to perform the following check:

exp

{
−
∫ λ(0)(µ/2)

λ(0)(µ)

dx

2β0(x)

}
= exp

{
−
∫ λ(noproj)(µ/2)

λ(noproj)(µ)

dx

2βnoproj(x)

}
, (2.6)

2We thank Alberto Ramos for pointing this out.
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i.e., our goal is to check that, assuming that the projected coupling allows to correctly

define LCPs to realize the step µ/2 → µ, these also remain LCPs for the non-projected

one, as this guarantees that the same step-scaling sequence is obtained from both couplings.

How this check is performed in practice will be explained in more details in Sec. 4.

3 Numerical methods

In this section, we describe our numerical setup, namely, the lattice discretization adopted

for the gauge action, the strong coupling and the topological charge, and the practical

implementation of the PTBC algorithm we employed.

3.1 Twisted volume reduction and twisted gradient flow coupling

Concerning the lattice definition of the action and the observables, we follow the same

numerical setup of Ref. [22], which we shortly review in this section.

We discretize the pure-gauge SU(3) theory using the Wilson plaquette action on a

lattice with lattice spacing a, geometry L2 × L̃2, with L̃ = L/N = L/3, and Twisted

Boundary Conditions (TBCs) along the short directions [43, 44]. These two latter peculiar

choices will be better justified shortly. In practice, the discretized action reads:

SW[U ] = −Nb
∑

x,µ>ν

Z∗
µν(x)ℜTr [Pµν(x)] , (3.1)

where b = 1/λL is the inverse bare ’t Hooft coupling and Pµν(x) = Uµ(x)Uν(x+aµ̂)U †
µ(x+

aν̂)U †
ν (x) is the plaquette operator on site x along the (µ, ν) plane. Finally, the factor

Zµν(x) is used to easily impose TBCs for some plaquettes lying along the short plane:

Zµν(x) = Z∗
νµ(x) =

{
ei2π/3, if (µ, ν) = (1, 2) and xµ = xν = 0,

1, elsewhere.
(3.2)

The choice of a lattice with reduced extents along the twisted plane is rooted on the idea

of twisted volume reduction [45–47] (see also Refs. [48, 49] for reviews on the topic), which

is a technique usually employed to study the large-N limit of SU(N) gauge theories. In the

large-N limit, indeed, it has been long known, starting from the seminal paper of Eguchi

and Kawai [50], that SU(N) Yang–Mills theories enjoy a dynamical equivalence between

color and space-time degrees of freedom, leading for N = ∞ to a volume-independence

of the theory. While this property strictly speaking holds true only in the large-N limit,

at finite values of N the presence of TBCs allows to achieve en effective increase in the

lattice size: Veff = N2V . Since our lattice has V = L2 × L̃2 = L4/N2, this means that

Veff = N2V = L4, i.e., we achieve the same dynamics of a standard hypercubic lattice with

size L. Adopting TBCs has also several advantages over fully periodic ones: it allows an

analytic expansion in the coupling in perturbation theory as opposed to PBCs [51], and it

is free of O(a) effects presents, for instance, in the Schrödinger Functional scheme [52].
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For what concerns the definition of the renormalized coupling, we make use of the

gradient flow, a smoothing procedure that evolves the gauge fields according to the flow-

time equations:

∂tBµ(x, t) = DνFνµ(x, t), Bµ(x, t = 0) = Aµ(x), (3.3)

where Dµ and Fµν stand for the covariant derivative and field strength tensor of the flowed

fields. Given that the gradient flow introduces an additional length scale in the game, the

smoothing radius rs =
√
8t, with t the flow time in physical units, it is natural in this setup

to identify the inverse of this scale as the energy scale µ of the running coupling. In turn,

as already pointed out in Sec. 2, it is natural to choose this length scale as a fraction c of

the physical size of the lattice. When combined with our asymmetric volume setup and

twisted boundary conditions, the gradient flow leads to a particular scheme to define the

coupling known as Twisted Gradient Flow (TGF) [22, 53, 54]. In more concrete terms, the

TGF renormalized coupling is defined in the continuum theory according to:

λTGF

(
µ =

1

cl

)
= N (c) ⟨t2E(t)⟩

∣∣∣∣∣√
8t= cl

, (3.4)

with E(t) the energy density evaluated on the flowed fields:

E(t) =
1

2
Tr {Fµν(x, t)Fµν(x, t)} , (3.5)

and with N (c) a normalization factor given by:

N (c) =
128π2

3NA(πc2)
, (3.6)

A(x) = x2θ23(0, ix)
[
θ23(0, ix)− θ23(0, ixN

2)
]
, (3.7)

with θ3(z, ix) = x−1/2
∑

m∈Z exp(−π(x−z)2/x) the Jacobi θ3 function, which is introduced

to ensure that, at lowest order of perturbation theory, λTGF = λMS + O(λ2
MS

). The value

of c can be freely chosen, and just amounts to define a particular regularization scheme;

here we adopt c = 0.3. Although we will not use it here, we also recall that the conversion

factor between the Λ-parameters in the TGF and in the MS scheme is known [22].

As mentioned in the introduction, it is customary to address the issue of topology

freezing by projecting the determination of the coupling into the sector of configurations

with zero topological charge [27] as follows:

λ
(n)
TGF

(
µ =

1

cl

)
=

128π2t2

3NA(πc2)

⟨E (t) δ(Q− n)⟩
⟨δ(Q− n)⟩

∣∣∣∣∣√
8t= cl

, (3.8)

Q =
1

32π2
εµνρσ

∫
d4xTr {Fµν(x)Fρσ(x)} ∈ Z , (3.9)

where δ(Q − n) stands for a δ-function that restricts the calculation to configurations

with topological charge Q = n. The unprojected coupling in Eq. (3.4), averaged over all

topological sectors, will be referred to in the following as λ
(noproj)
TGF .
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On the lattice, we use the Wilson flow combined with twisted boundary conditions to

determine the coupling, meaning that the gauge fields are evolved during the flow using

exactly the action in Eq. (3.1). As for the energy density, we used the clover-discretized

energy density given by:

Eclov(t) =
1

12NL2L̃2

∑

µ>ν

∑

x

Tr [Cµν(x, t)Cµν(x, t)] , (3.10)

with Cµν(x, t) the clover operator in the site x along the (µ, ν) plane,

Cµν(x, t) =
1

4
ℑ[Z∗

µν(x)Pµν(x, t) + Z∗
µν(x− aν̂)P−νµ(x, t)

+ Z∗
µν(x− aµ̂)Pν−µ(x, t) + Z∗

µν(x− aµ̂− aν̂)P−µ−ν(x, t)], (3.11)

where U−µ(x) = U †
µ(x − aµ̂). In order to eliminate the leading lattice artefacts in pertur-

bation theory for the Wilson flow, we also take a discretized version of the normalization

constant N :

N−1
L (c, L) =

c4

128

∑

µ ̸=ν

′∑

q

e−
1
4
c2L2q̂2 1

q̂2
sin2(qν) cos

2(qµ/2), (3.12)

where q̂µ = 2 sin(qµ/2) stands for the lattice momentum, with qµ = 2πnµ/L, nµ =

0, · · · , L − 1, and with the prime in the sum denoting the exclusion of momenta with

both components in the twisted plane satisfying Lqi ∝ 2Nπ = 6π.

The TGF technique will be also used to define the topological charge on the lattice.

In particular, we will adopt the simplest parity-defined clover discretization,

Qclov =
1

32π2

∑

x

∑

µ,ν,ρ,σ

εµνρσTr [Cµν(x)Cρσ(x)] , (3.13)

and define our physical topological charge and topological susceptibility after the flow, at

the same flow time employed to define the coupling:

Q = Qclov(
√
8t = cl), a4χ =

⟨Q2⟩
L̃2L2

. (3.14)

In our simulations, this amount of flow turned out to be in all cases well within the observed

plateau in Q as a function of t for large enough flow times, and the flowed clover charge

at
√
8t = cl always turned out to be extremely close to an integer number. Therefore, one

can safely define the projected coupling onto the topological sector Q = n as follows:

λ
(n)
TGF

(
µ =

1

cl

)
= NL(c, L)

⟨t2Eclov(t)δ̂(Q− n)⟩
⟨δ̂(Q− n)⟩

∣∣∣∣∣√
8t= cl

, (3.15)

where

δ̂(Q− n) =

{
1, |Q− n| < 0.5

0, otherwise.
(3.16)
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3.2 The PTBC algorithm in the presence of twisted boundary conditions

In order to circumvent topological freezing for fine lattice spacings, we adopt the SU(N)

PTBC algorithm of Ref. [33], which can be easily generalized to the current setup with

TBCs. In practice, we considerNr replicas of the lattice, each one differing for the boundary

conditions imposed on a small sub-region, which in the following will be addressed as the

defect. In this work, we choose the defect D to be an Ld × Ld × Ld cube, and place it

on the time boundary, so that no plaquette affected by the twist has links that cross D

orthogonally. This way, the tempering will always affect links that, in the physical replica

(i.e., the one on which observables are computed), enjoy PBCs. Concerning the unphysical

replicas, the idea is to choose their boundary conditions on the defect in such a way to

interpolate between PBCs and OBCs. This can in practice be easily achieved by taking

the action of the replica r of the form:

S
(r)
W [Ur] = −Nb

∑

x,µ>ν

K(r)
µν (x)Z

∗
µν(x)ℜTr

[
P (r)
µν (x)

]
, (3.17)

where Ur denotes the gauge links of the replica r, and where the factor K
(r)
µν (x), which

comes attached to each plaquette, is used to change the boundary conditions on the defect,

similarly to the action of the twist factor Zµν(x):

K(r)
µν (x) ≡ K(r)

µ (x)K(r)
ν (x+ aµ̂)K(r)

µ (x+ aν̂)K(r)
ν (x), (3.18)

K(r)
µ (x) ≡

{
c(r), µ = 0, x0 = L− 1, 0 ≤ x1, x2, x3 < Ld

1, elsewhere,
(3.19)

with 0 ≤ c(r) ≤ 1, where the edge cases 0 and 1 correspond, respectively, to open and

periodic boundaries. In the following, all observables will be computed in the physical

replica r = 0 with c(r = 0) = 1.

For what concerns the Monte Carlo PTBC sampling algorithm, each replica is updated

simultaneously and independently by performing 1 lattice sweep of the standard local heat-

bath algorithm [55, 56], followed by nov lattice sweeps of the standard local over-relaxation

algorithm [57]. Then swaps among two adjacent replicas (r, s = r + 1) are proposed, and

accepted via a standard Metropolis step:

p(r, s) = min
{
1, e−∆S

(r,s)
swap

}
, (3.20)

∆S(r,s)
swap = S

(r)
W [Us] + S

(s)
W [Ur]− S

(r)
W [Ur]− S

(s)
W [Us]. (3.21)

Note that, for the purpose of calculating ∆S
(r,s)
swap, one does not need to iterate over the whole

lattice, as the only non-vanishing contributions to it come from the links found at most at a

one lattice spacing distance from the defect. Given that the optimal setup is achieved when

the mean acceptances Pr ≡ ⟨p(r, r + 1)⟩ are roughly constant, so that a given configuration

can perform a sort of random walk among different replicas, we performed short test runs
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in order to tune the c(r) tempering parameters in order to achieve Pr ≈ P ≈ 20%. With

this choice, the number of replicas necessary to achieve a given constant mean acceptance

P becomes just a function of the defect size in lattice units Ld.

Between two full updating sweeps involving the whole lattice, we performed several

hierarchical updates on small sub-lattices centered around the defect, in order to update

more frequently the links with tempered boundary conditions. This is done to improve

the efficiency of the algorithm, as this is the region where new topological excitations are

more likely to be created/destroyed. Moreover, after each swap is proposed, we translate

the links of the periodic replica by one lattice spacing in a random direction, moving also

consistently the position of the twisted plaquettes. This step is done to effectively move

the position of the defect around the lattice, which is expected to improve the efficiency

of the algorithm, as in this way topological excitations are created/destroyed in different

space-time points.

In a few words, given that the numerical effort required by hierarchical udpates, trans-

lations and swaps is negligible compared to the full sweeps of the lattice, one full parallel

tempering updating step requires a numerical effort which is of the order of Nr×nov. This

observation will be crucial to compare the efficiency of this algorithm with the standard

one.

4 Results

This section is devoted to discuss the impact of topology on the determination of the strong

coupling by comparing results obtained using the standard and the PTBC algorithms.

Following the strategy described in Sec. 2, we aim at performing the first step in the scaling

sequence connecting µhad with 2µhad using both the projected and unprojected couplings,

as determined with PTBC and with the standard algorithms. This first step reproduces

the one used in Ref. [22] to determine the Λ-parameter. The idea is the following:

(A) First, using simulations performed with the standard algorithm, we select the bare

couplings b so as to have an approximately fixed value of the Q = 0 projected coupling

λ
(0)
TGF(2µhad) on the L = 12, 18, 24 lattices.3 Assuming that this algorithm samples

correctly the Q = 0 sector, this set corresponds to a LCP with fixed physical volume

l = aL ≃ 0.55 fm, which we dub LCP1. Then, we perform simulations for these very

same values of b, but on doubled lattices with sizes L = 24, 36, 48. The corresponding

values of the lattice step scaling functions, extrapolated to the continuum limit, give

λ
(0)
TGF(µhad). These results are discussed in Sec. 4.1.

(B) Finally, on lattices with L = 24, 36, 48, we determine the bare couplings b for which

the Q = 0 projected coupling takes the value λ
(0)
TGF(µhad) determined in (A); details

on how to do the tuning are provided in Ref. [22]. This last set of simulation points

should correspond to a LCP with fixed physical volume l = aL = 1/µhad ∼ 1.1 fm,

3A possible small mismatch in the target couplings can be easily corrected for later on, as will be

described in Sec. 4.2.
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LCP1 (l = 0.55 fm)

L 3× b Nr Ld n
(PTBC)
ov n

(std)
ov

12 6.4881 10 2 12 12

18 6.7790 17 3 12 18

24 7.0000 24 4 12 24

Scale setting

β a/
√
t0

6.4881 0.2770(35)

6.7790 0.1846(24)

7.0000 0.1385(18)

LCP1 with doubled L

L 3× b Nr Ld n
(PTBC)
ov n

(std)
ov

24 6.4881 18 4 12 24

36 6.7790 34 6 12 36

48 7.0000 54 8 12 48

LCP2 (l = 1.1 fm)

L 3× b Nr Ld n
(PTBC)
ov n

(std)
ov

24 6.459 18 4 12 24

36 6.765 34 6 12 36

48 6.992 54 8 12 48

Table 1. Summary of simulation parameters, where the number of replicas Nr and the defect

size Ld only refer to runs with the PTBC algorithm. The numbers n
(PTBC)
ov and n

(std)
ov refer to the

number of over-relaxation lattice sweep per over-heat lattice sweep for, respectively, the PTBC and

the standard algorithm. The scale setting was taken from Refs. [58–60] or from a spline interpolation

of data thereof. The defect size in lattice units Ld was scaled in order to keep its length constant

in physical units: Ld/L = 1/6. The number of replicas was scaled as a function of Ld in order to

achieve in all cases an almost uniform swap acceptance rate of ∼ 20% among adjacent replicas.

which we dub as LCP2. These simulations, whose results will be used to assess the

impact of topology freezing and topology projection on the step-scaling sequence

µhad → 2µhad, are discussed in Sec. 4.2.

All the simulations outlined in (A) and (B) will be performed both with the standard

and the PTBC algorithms. All simulation parameters are summarized in Tab. 1, where we

also report the employed scale setting, which in this paper was done using the standard

gradient flow scale t0 [58]. For brevity, we moved all obtained lattice results in App. A.

Concerning simulations with parallel tempering, following the prescription advocated

in the original references [32, 33], we kept the defect size fixed in physical units as we

approached the continuum limit. This of course requires to scale the defect size Ld as 1/a.

Since we also kept the mean acceptance swap rate fixed to ≈ 20% for each adjacent replica

couple (cf. Fig. 1), the number of replicas Nr is just a function of Ld, and is empirically

found to scale approximately as Nr ∼ L
3/2
d ∼ 1/a3/2, in agreement with the findings of

Refs. [32, 33]. As already pointed out in the previous section, the numerical cost of one

parallel tempering updating step is of the order of Nr × n
(PTBC)
ov , while the computational

cost of one standard updating step is of the order of n
(std)
ov , where nov stands for the number

of over-relaxation lattice sweeps per heat-bath lattice sweep. Thus, in the following, it will

be more convenient to just compare the two algorithms expressing their Monte Carlo times

in terms of a common scale, the number of lattice sweeps nsweeps = Nr × nov × nsteps, with

nsteps the number of updating steps (of course Nr = 1 for the standard algorithm).
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Figure 1. Figure refers to the PTBC run with L = 48, 3b = 6.992, Nr = 48, Ld = 8. Top panel:

tuned values of c(r) compared with a simple linear behavior c(r) = 1− r/(Nr − 1). Bottom panel:

corresponding mean swap acceptance rates Pr = ⟨p(r, r + 1)⟩ ≈ 22(2)%.

4.1 Impact of topology projection on the strong coupling

We start our investigation from the LCP1, where the values of the bare couplings were

chosen in Ref. [22] to achieve an approximately constant value of the projected coupling

λ
(0)
TGF ≈ 13.93(5). This corresponds to an almost constant lattice size l = aL ∼ 0.55 fm,

and to an energy scale µ = 2µhad = 1/(cl) = 1/(0.3l) ∼ 1.2 GeV.

Since in the thermodynamic limit the topological susceptibility of the pure SU(3) gauge

theory is t20χ = 6.67(4) ·10−4 [61], and since for our simulations points l/
√
t0 ≃ 3.32, we can

set the following (very loose) upper bound for these runs: ⟨Q2⟩ ≲ l̃2l2χ = (l/
√
t0)

4t20χ/N
2 ∼

0.009 ≪ 1. This means that in this case topological fluctuations are not only inhibited by

topology freezing, i.e., by the loss of ergodicity of the updating algorithm on fine lattices,

but they are also strongly suppressed by the smallness of the lattice volume, which yields

a very small value of ⟨Q2⟩, i.e., of the variance of the topological charge distribution. More

precisely, assuming P0 ≫ P1 ≫ P2 ≫ ..., where Pn is the probability of visiting the

topological sector with Q = n, and using that P−n = Pn, the following approximation

⟨Q2⟩ ≃ 2P1 + . . .

P0 + 2P1 + . . .
≃ 2P1

P0
≲ 9 · 10−3 (4.1)

shows that we can expect the probability of visiting the topological sector with |Q| = 1 to

be at least two orders of magnitude smaller than the probability of visiting Q = 0. This

problem is well known in the finite-temperature QCD literature, as sufficiently above the

QCD chiral crossover Tc ≃ 155 MeV the topological susceptibility is rapidly suppressed as

χ ∼ (T/Tc)
−8 [62–70], meaning that, on typically-employed volumes and for sufficiently

large temperatures, ⟨Q2⟩ = V χ ≪ 1, as in the present case.

Being the damping of topological fluctuations in this case mainly due to a physical

dynamical effect, and not to a consequence of topology freezing, we expect to see a small

number of topological fluctuations even when running with the parallel tempering. More-
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Figure 2. Comparison of the Monte Carlo evolutions of the topological charge obtained with the

standard and the PTBC algorithm for the 3 simulations points corresponding to a LCP with fixed

lattice size l ≃ 0.55 fm and fixed projected coupling λ
(0)
TGF ≈ 13.93(5). In both cases, the horizontal

Monte Carlo time was expressed in units of lattice sweeps in order to make a fair comparison among

the two algorithms. This means that the number of updating steps in both cases was multiplied by

the number of over-relaxation sweeps per heat-bath sweep, nov, and, in the case of PTBC, also by

the number of replicas Nr.

over, one also expects λ
(0)
TGF ≃ λ

(noproj)
TGF , given that the contribution from higher-charge

sectors is very suppressed.4 This is perfectly reasonable, as in our setup smaller volumes

mean larger energy scales, and closer to the perturbative regime we expect the Q = 0 sector

to largely dominate over the others.

Our expectations are fully confirmed by our results for the Monte Carlo evolution of the

flowed lattice topological charge, shown in Fig. 2, as well as those obtained for the coupling,

shown in Fig. 3. As it can be observed, the Monte Carlo evolutions of the topological charge

4Actually, to definitively conclude that λ
(0)
TGF ≃ λ

(noproj)
TGF , in principle one should also check that

λ
(0)
TGF/λ

(1)
TGF ≫ P1/P0, which we are currently unable to do with the current setup for these simulation

points with small volumes, as we cannot reliably measure λ
(1)
TGF. To this end, one should employ one of the

several strategies that have been devised in the literature to sample rare events, such as the multicanonic

algorithm [66, 67, 70, 71], or the density of states method [69, 72].
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Figure 3. Comparison of the Q = 0 projected and unprojected couplings obtained with the

standard algorithm in Ref. [22] with those obtained in the present work with the PTBC algorithm

for the 3 simulations points corresponding to a LCP with l = 0.55 fm, tuned to achieve a constant

value of λ
(0)
TGF.
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Figure 4. Comparison of the Q = 0 projected and unprojected couplings obtained with the

standard algorithm and the PTBC algorithm for the 3 simulations points corresponding to the

same bare couplings of the LCP with l = 0.55 fm, but on lattices with doubled sizes.

are very look-alike with both algorithms, as the suppression of topological fluctuations has a

physical origin, and the Q = 0 sector dominates the actual topological charge distribution.

This of course means that no difference can be appreciated between theQ = 0 projected and

the unprojected couplings. As a matter of fact, in all cases we observe at most differences

at the level of one standard deviation within the per mil accuracy with which we have

determined the coupling. We thus conclude that, for the purpose of calibrating the LCP,

both the projected and the unprojected coupling lead to perfectly consistent results.
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Figure 5. Comparison of the Monte Carlo evolutions of the topological charge obtained with

the standard and the PTBC algorithm for the 3 simulations points corresponding to a LCP with

l = 1.1 fm. In both cases, the horizontal Monte Carlo time was expressed in units of lattice sweeps

in order to make a fair comparison among the two algorithms. This means that the number of

updating steps in both cases was multiplied by the number of over-relaxation sweeps per heat-bath

sweep, nov, and, in the case of PTBC, also by the number of replicas Nr.

We nowmove to the computation of the lattice step-scaling function λTGF(µhad)
∣∣∣
λTGF(2µhad)

using the same bare couplings of LCP1 on the doubled lattices. Given that we have now

doubled the lattice sizes, we expect ⟨Q2⟩ ∼ O(0.1), thus we foresee topological fluctuations

to start to become important. This in turn implies that λ
(noproj)
TGF and λ

(0)
TGF now will differ

sizably. Results for the projected and the unprojected couplings, obtained both with the

PTBC and the standard algorithms, are shown in Fig. 4. As expected, we now observe a

sizeable difference between the projected and the unprojected couplings, due to the contri-

bution of higher-charge sectors, which are now much less suppressed. However, concerning

the projected couplings, we observe that the results obtained with the standard algorithms

are in perfect agreement with those obtained with PTBC, as at most we observe 1 − 2

standard deviation differences within our per mil accuracy. This is a very non-trivial check
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Parallel Tempering

L 3× b τ
(
λ
(0)
TGF

)
τ
(
λ
(1)
TGF

)
τ
(
λ
(noproj)
TGF

)
τ
(
Q2

)

24 6.459 260(65) 156(26) 1040(260) 1430(260)

36 6.765 980(250) 610(120) 4200(1100) 7350(2500)

48 6.992 1950(580) 1170(390) 11700(4700) 31100(11700)

Standard

L 3× b τ
(
λ
(0)
TGF

)
τ
(
λ
(1)
TGF

)
τ
(
λ
(noproj)
TGF

)
τ
(
Q2

)

24 6.459 800(120) 288(58) 5760(1150) 20200(2900)

36 6.765 2070(450) 840(320) 1.10(32)·105 5.1(1.5)·105
48 6.992 4600(1200) 2300(580) ≳ 5.8(2.4) · 106 ≳ 5.8(2.4) · 106

Table 2. Integrated auto-correlation time, obtained from a standard binned jack-knife analysis, of

the projected and unprojected definitions of the couplings, and of the squared topological charge,

obtained with the standard and the PTBC algorithm for the 3 simulations points corresponding to

a LCP with l = 1.1 fm. For the finest lattice spacing explored, only an upper bound on the auto-

correlation time of Q2 and of λ
(noproj)
TGF could be set for the simulation with the standard algorithm,

since no fluctuation of the topological charge was observed. In both cases, the auto-correlation

time was expressed in units of lattice sweeps in order to make a fair comparison among the two

algorithms. This means that the auto-correlation time was in both cases multiplied by the number

of over-relaxation sweeps per heat-bath sweep, nov, and, in the case of PTBC, also by the number

of replicas Nr.

that projection works even in the presence of severe topological freezing.

Finally, let us conclude our discussion by comparing the performances of the standard

and the PTBC algorithms. For that we will use long-run simulations performed on the lat-

tice corresponding to the LCP2 in Tab. 1. While the standard algorithm exhibits significant

topological freezing, especially at the two finest lattice spacings explored, the PTBC one

allows to achieve an impressive improvement in the observed number of topological fluc-

tuations at fixed parameters. Such improvement can be clearly seen by inspecting Fig. 5,

where we compare the Monte Carlo evolutions of Q obtained with the two algorithms,

after expressing the Monte Carlo time in the same units in both cases. Note that for the

finest lattice spacing we observed no fluctuations of Q with the standard algorithm, and

two independent stories started from configurations with Q = 0 and Q = 1 both remained

stuck in the initial topological sector.

The algorithmic improvement obtained with PTBC can be quantified from the compar-

ison of the obtained auto-correlation times, again expressed in terms of number of lattice

sweeps in order to keep into account the different number of over-relaxation sweeps per

heat-bath sweeps used in the two cases, as well as the numerical over-head introduced by

the simulation of the unphysical replicas. Numerical results are reported in Tab. 2, and

shown in Fig. 6. For what concerns the squared topological charge, we observe a reduc-

tion of the auto-correlation time τ by more than one order of magnitude for the coarsest
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Figure 6. Comparison of the integrated auto-correlation time of the projected and unprojected

definitions of the couplings, and of the squared topological charge, obtained with the standard and

the PTBC algorithms for the 3 simulations points corresponding to a LCP with l = 1.1 fm. For

the finest lattice spacing explored, only an upper bound on the auto-correlation time of Q2 and of

λ
(noproj)
TGF could be set for the simulation with the standard algorithm, since no fluctuation of the

topological charge was observed. In both cases, the auto-correlation time was expressed in units

of lattice sweeps in order to make a fair comparison among the two algorithms. This means that

the auto-correlation time was in both cases multiplied by the number of over-relaxation sweeps per

heat-bath sweep, nov, and, in the case of PTBC, also by the number of replicas Nr.

lattice spacing, and by more than two orders of magnitude for the finest one. Concerning

the auto-correlation time of the unprojected coupling, we observe that the gain attained

with PTBC is essentially of the same order of magnitude, while for projected couplings

is much smaller, as it is about a factor of ∼ 2 − 3. Being the PTBC algorithm tailored

to improve the evolution of the topological charge, this is a further indication, in addition

to our results for the coupling, that the fluctuations of the global topological charge seem

rather decoupled from those of the coupling once projected onto a fixed topological sector.
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4.2 Impact of topology projection on the step-scaling function

We now aim at probing the impact of topology on step scaling following the strategy earlier

outlined in Sec. 2, which will be now spelled out in more detail.

• We fix a target value for λ
(0)
TGF(µ = 2µhad) = utg on the LCP1. Since we have shown

that the projected and the unprojected couplings give consistent results using both

algorithms, we can choose any of the determinations of the previous section to fix

utg. We chose:

utg = λ
(0)
TGF(3b = 7, L = 24)

∣∣∣∣
Standard

= 13.9063406. (4.2)

This point corresponds to take step 1 described in Sec. 2.

• We now consider the results for the renormalized coupling obtained for the same bare

couplings of LCP1, but on doubled lattices, our goal being to compute the continuum

step-scaling function at µhad:

σtg ≡ σ(utg) = λTGF (µ = µhad)

∣∣∣∣
λTGF(µ=2µhad)=utg

. (4.3)

This is done following the same procedure put forward in Ref. [22], spelled out here

for clarity. Since the tuning of the lattices is not perfect, there is a small mismatch in

the lattice determined values of utg. To correct for that, we slightly shift the values of

the lattice step-scaling function taking into account the shifts in u required to match

utg, this is done according to the formula:

Σ (utg, L) = Σ (u, L)− Σ2 (u, L)

u2
(u− utg) , (4.4)

where Σ(u, L) stands for the value of the coupling obtained for the simulation point

(b, L) and corresponding to the coupling u obtained for the simulation point (b, L/2).

The relation used to determine Σ (utg, L) follows from the fact that, at leading order

of perturbation theory, one expects 1/Σ(u) − 1/u = constant. Finally, the values of

Σ(utg, L) are extrapolated to the continuum limit, defining:

σtg = lim
1/L→ 0

Σ(utg, L) (4.5)

This point corresponds to take step 2 described in Sec. 2. In Fig. 7 we report the

continuum extrapolations of Σ(utg, L) obtained using the data shown in Sec. 4.1 for

the Q = 0 projected couplings, and obtained from the two different algorithms. As

it can be observed, we obtain perfectly consistent values between them:

σ
(0)
tg = 34.43(24), (Standard), (4.6)

σ
(0)
tg = 34.61(29), (PTBC) . (4.7)
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Figure 7. Continuum limit extrapolation of Σtg ≡ Σ(utg, L) calculated using Eq. (4.5) from

a projected and an unprojected definition of the coupling. In the former case, we show results

obtained both using the PTBC and the standard algorithms.

Applying the same procedure to the unprojected coupling, which could only be reli-

ably computed using the PTBC algorithm, one would obtain a continuum extrapo-

lated step-scaling function:

σ
(noproj)
tg = 36.31(26), (PTBC) . (4.8)

• As already discussed, topological fluctuations start to be important on this lattice

volume, leading to different projected and unprojected couplings. It is therefore at

this point where topology freezing and topology projection could have an effect on the

determination of the step-scaling sequence. What we now want to check is precisely

if, when λ
(0)
TGF is used to perform one step of the step-scaling sequence, a consistent

change in the renormalization scale is obtained for the non-projected coupling too.

With this purpose in mind, we determined the bare couplings b that lead to a value of

the renormalized coupling λ
(0)
TGF = σ

(0)
tg = 34.43, cf. Eq. (4.6).5 This defines the line of

constant physics dubbed as LCP2 in Tab. 1. If the projection of the coupling does not

introduce a bias, and thus it is a legitimate and consistent way of defining an LCP, this

should also be a proper LCP for the unprojected renormalized coupling, leading to a

value that agrees with what we have earlier found for the continuum extrapolation

of the unprojected step scaling function: σ
(noproj)
tg = 36.31(26), cf. Eq. (4.8)

5The tuning of the bare couplings b is done as indicated in Sec. 3.4 of Ref. [22].
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Figure 8. Extrapolation towards the continuum limit of the projected and unprojected couplings

obtained with the PTBC algorithm for the 3 simulations points corresponding to a LCP with

l = 1.1 fm, tuned to achieve a constant value of λ
(0)
TGF = σ

(0)
tg = 34.42(24) (uniform shaded band),

compared with the results obtained with the standard algorithm. The dashed shaded area represents

σ
(noproj)
tg = 36.31(26) obtained with the PTBC algorithm.

Finally, let us present the results of this test. The determination of the projected and

unprojected couplings obtained on the LCP2 is shown in Fig. 8. The results obtained with

parallel tempering for the unprojected coupling show no visible dependence on L within

the achieved per mil accuracy, and agree perfectly with the continuum-extrapolated target

value σ
(noproj)
tg = 36.31(26) earlier obtained in Eq. (4.8), represented by the dashed shaded

area in the plot. Moreover, also in this case we find perfect agreement between the results

obtained with the PTBC and the standard algorithms as far as the projected couplings

are concerned. This piece of evidence completes the plan outlined at the beginning of

this section, and fully confirms the reliability of topology projection for the purpose of

calculating the step-scaling function, and hence the Λ-parameter.

As a by-product of our investigation, by virtue of the adoption of the parallel tempering

algorithm, we were also able to reliably compute two topological observables, namely, the

topological susceptibility,

t20χ =

(√
t0
a

)4 ⟨Q2⟩
L̃2L2

, (4.9)
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Figure 9. Continuum limit of the topological susceptibility t20χ and of the quartic coefficient

B2 obtained with the PTBC algorithm for the 3 simulations points corresponding to a LCP with

l = 1.1 fm. The infinite-volume estimates of t20χ and of B2, displayed as uniform shaded areas,

are taken from Refs. [61, 73]. The dashed shaded area and the solid line represent instead the

predictions for B2 obtained using, respectively, the FDIGA and the DIGA.

and the dimensionless quartic coefficient B2,
6

B2 =
⟨Q4⟩ − 3 ⟨Q2⟩2

⟨Q2⟩ . (4.10)

Remarkably, we observe that both quantities show extremely mild lattice artifacts when

computed along the LCP2, as it can be seen from Fig. 9. This is yet a further confirmation

that the calibration of the LCP done according to the Q = 0 projected coupling is a

legitimate LCP also for topology-related quantities. This is actually not surprising, as, of

course, ⟨Q2⟩ and λ
(noproj)
TGF are not unrelated. In particular, recalling that we are working

in a regime where ⟨Q2⟩ is small, the following approximate relation holds:

λ
(noproj)
TGF ≃ P0λ

(0)
TGF + 2P1λ

(1)
TGF

P0 + 2P1

≃ 1

1 + ⟨Q2⟩λ
(0)
TGF + ⟨Q2⟩λ(1)

TGF, ⟨Q2⟩ ≃ 2
P1

P0
.

(4.11)

As a side note, we observe that our continuum determination of the topological sus-

ceptibility t20χ = 9.66(88) · 10−4 differs from the one obtained in Ref. [61] on a much larger

volume, t20χ = 6.67(7)·10−4, see Fig. 9 on the left. This is expected, and it is a finite-volume

effect, which are known to be important for lattice sizes below ∼ 1.4 fm. Finite-volume ef-

fects can be also seen in our continuum determination of B2 = 0.497(54), which also differs

from the large-volume result of Ref. [73], B2 = 0.259(30), see Fig. 9 on the right. Remark-

ably, in this case we observe that our value is in perfect agreement with the one that can

be obtained from the so-called Fractional Dilute Instanton Gas Approximation (FDIGA),

6Sometimes, the different definition b2 = −B2/12 is employed in the literature.
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B
(FDIGA)
2 = 0.504(19) (see App. B for more details). The ordinary Dilute Instanton Gas

Approximation (DIGA) [74, 75], instead, does not clearly work in this regime, as it would

yield B
(DIGA)
2 = 1. This result perfectly matches other theoretical and numerical evidence

pointing out that, in the presence of TBCs, the semi-classical regime of SU(N) Yang–Mills

theories can be accurately described in terms of fractional instantons, see Ref. [82] for a

recent review and for further references.

5 Conclusions

We have presented a new investigation of the role played by topology in the determination

of the renormalized strong coupling from lattice simulations, with the goal of assessing the

possible systematic effects introduced by topological freezing in the determination of the

SU(3) pure-Yang–Mills Λ-parameter.

Our investigation combines twisted volume reduction and the gradient flow according

to the setup of Ref. [22], with the SU(N) Parallel Tempering on Boundary Conditions

algorithm implementation of Ref. [33], suitably generalized to include TBCs, to accurately

determine the step-scaling function, corresponding to the sequence µhad → 2µhad, avoiding

the effects of topological freezing. As a matter of fact, the PTBC algorithm allows to

achieve a reduction of the auto-correlation time of the topological charge by up to two

orders of magnitude compared to the standard algorithm.

Results obtained with parallel tempering show that topology projection works for the

strong coupling even in the presence of severe topological freezing, as results obtained for

the Q = 0 projected coupling with both algorithms always turn out to be in perfect agree-

ment among themselves at the per mil accuracy we reached. Moreover, we showed that

when results obtained with topology projection and the standard algorithm are employed

to calibrate the parameters of an LCP with fixed projected renormalized coupling, this

procedure also yields an LCP for the unprojected coupling, and for other topology-related

quantities such as the topological susceptibility, computed using the PTBC algorithm.

These findings imply that topology projection in the presence of topological freezing leads

to the same step-scaling sequence that would have been otherwise obtained with the un-

projected coupling, and thus ultimately to the same Λ-parameter.

Our current results can be expanded in several directions. For instance, it would

be interesting to further investigate topology projection on small volumes by combining

our twisted PTBC setup with the multicanonical algorithm, which can largely improve

the sampling of rare volume-suppressed topological fluctuations. It would also be very

interesting to extend our investigation to larger values of N in order to study the large-N

limit of the Λ-parameter, which is an extremely interesting theoretical topic. To this end,

it is crucial to check the effects of topology freezing on the scale setting procedure at large

N , which can be efficiently achieved adopting the PTBC algorithm.
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Appendix

A Raw data

In this appendix we report in Tabs. 3 and 4 all the numerical results shown in the plots

in the main text. These two tables refer, respectively, to the PTBC and to the standard

algorithms.

B Dependence on θ with Fractional Dilute Instanton Gas Approximation

In this appendix we show how to derive the semiclassical expressions for the topological

susceptibility and the quartic coefficient B2 in the Fractional Dilute Instanton Gas Approx-

imation (FDIGA). The main difference with the standard DIGA is the fact that the dilute

gas is composed of instantons with fractional charge Q = ±1/N = ±1/3, as opposed to

ordinary Q = ±1 instantons. These objects arise in a natural way on a torus with twisted

boundary conditions and non-orthogonal twist (nµν ñµν ̸= 0 (mod N)) [43] and have been

the basis of the instanton liquid model of confinement put forward by González-Arroyo

and collaborators; for a recent review and further references see [82]. Although our setup

corresponds to an orthogonal twist, fractional instantons may still arise, provided that

their total contribution to the topological charge amounts to an integer. In this context,

Ref. [22] showed how the correlations observed in their small-to-intermediate volume TBC

simulations between topological charge and coupling were quantitatively well described in

this approximation. In this work, we have extended the analysis to the determination of

the B2 coefficient, showing that the prediction also works very well for this quantity in the

appropriate regime.

The starting point for extracting the desired quantities is the dilute gas approximation

for SU(N) fractional instantons. As we have chosen an orthogonal twist, the total topo-
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Parallel Tempering

LCP1 (l = 0.55 fm)

L 3× b λ
(noproj)
TGF λ

(0)
TGF

12 6.4881 13.9679(44) 13.9503(47)

18 6.7790 13.945(18) 13.936(20)

24 7.0000 13.945(25) 13.953(29)

LCP1 with doubled L

L 3× b λ
(noproj)
TGF λ

(0)
TGF λ

(1)
TGF

24 6.459 34.128(90) 32.31(12) 42.78(18)

36 6.765 35.46(11) 33.80(15) 43.10(23)

48 6.992 35.81(36) 33.94(30) 43.35(18)

LCP2 (l = 1.1 fm)

L 3× b λ
(noproj)
TGF λ

(0)
TGF λ

(1)
TGF ⟨Q2⟩ B2

24 6.459 36.520(96) 34.426(81) 44.41(12) 0.1997(46) 0.460(21)

36 6.765 36.57(14) 34.45(10) 44.67(16) 0.2050(78) 0.481(36)

48 6.992 36.37(21) 34.26(12) 44.36(21) 0.207(16) 0.485(66)

Table 3. Summary of the obtained results using the PTBC algorithm.

logical charge remains quantized in integer units. This constraint must be applied when

formulating the dilute gas fractional instanton partition function, which, when restricted

to the sector of topological charge Q, reads as follows:

ZQ = C
∑

n,n

1

n!n!
(RV )n+nδ(n− n−NQ) , (B.1)

where R stands for the probability of creating a fractional instanton per unit volume V .

From this expression, the θ-dependent FDIGA partition function can be easily derived to

be [22, 76, 83]:

Z(θ) ≡
∑

Q∈Z
eiQθZQ =

C
N

N∑

k=1

exp

{
x cos

(
θ + 2πk

N

)}
, (B.2)

where x = 2RV ; the reader is referred to Ref. [22] for more details on how to derive this

expression. Taking derivatives of Z(θ) with respect to θ, it is now trivial to derive the ex-

pressions for ⟨Q2⟩ and ⟨Q4⟩ in this approximation. For the SU(3) topological susceptibility,

one obtains for instance:

V χ(x) = ⟨Q2⟩ (x) = x

18

(
2− 3(2 + x)

2 + e3x/2

)
, (B.3)
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Standard

LCP1 (l = 0.55 fm)

L 3× b λ
(noproj)
TGF λ

(0)
TGF

12 6.4881 13.971(13) 13.948(11)

18 6.7790 13.939(13) 13.938(11)

24 7.0000 13.903(26) 13.906(22)

LCP1 with doubled L

L 3× b λ
(noproj)
TGF λ

(0)
TGF λ

(1)
TGF

24 6.4881 33.94(21) 32.17(11) 42.96(23)

36 6.7990 35.19(99) 33.29(19) 43.85(41)

48 7.0000 - 34.00(20) 43.94(90)

LCP2 (l = 1.1 fm)

L 3× b λ
(noproj)
TGF λ

(0)
TGF λ

(1)
TGF

24 6.459 36.88(23) 34.501(98) 44.50(11)

36 6.765 37.00(33) 34.39(13) 44.44(11)

48 6.992 - 34.31(17) 44.72(20)

Table 4. Summary of the obtained results using the standard algorithm.

while the result for B2 in SU(3) is given by:

B2(x) =
1

9
+

x(2 + x)

2(2 + e3x/2)
− x2(8 + x)

8− 8e3x/2 + 12x
. (B.4)

To determine B2 from Eq. (B.4), it is necessary to first determine the input quantity

x = 2RV . Given the unreliability of the semi-classical approximation to this end, this can

be done by inverting Eq. (B.3), using the value of the topological susceptibility measured

on the lattice as input. More precisely, we found ⟨Q2⟩ = 0.209(12), leading to x = 2.322(82)

and to B2 = 0.504(19).
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