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Abstract

The evolution of Quantum Key Distribution (QKD) relies on innovative methods to enhance
its security and efficiency. Unextendible Product Bases (UPBs) hold promise in quantum cryp-
tography due to their inherent indistinguishability, yet they are underutilized in QKD protocols.
This work introduces a protocol utilizing UPBs to establish quantum keys between distant par-
ties. Specifically, we propose a protocol utilizing a 3 × 3 tile UPB, where Alice sequentially
transmits subsystem states to Bob through quantum channels. The protocol’s security is un-
derpinned by the no-cloning theorem, prohibiting the cloning of orthogonal states. We analyze
potential attacks, including intercept-resend and detector blinding attacks when quantum chan-
nels are noiseless, and discuss the challenges posed by the indistinguishability of our protocol
for eavesdroppers, thereby enhancing QKD security.

1 Introduction

In the landscape of information theory, cryptography plays a vital role in securing data and com-
munications. However, traditional cryptographic systems like RSA, AES face a grave threat from
quantum computing due to their reliance on classical computational limitations [1, 2]. Recogniz-
ing the impending threat posed by quantum computing to classical cryptosystems, the imperative
for proactive countermeasures becomes evident. One such strategy is the pursuit of post-quantum
cryptography [3], which entails the development of novel cryptographic schemes resilient to quan-
tum attacks. However, while post-quantum cryptography offers a partial solution to the problem, it
may be susceptible to undiscovered quantum algorithms, leaving its efficacy and long-term security
in question. In contrast, Quantum Key Distribution (QKD) stands out as the ultimate solution,
leveraging the unbreakable principles of quantum mechanics such as the uncertainty principle and
no-cloning theorem [4, 5, 6, 7].

Quantum cryptography has seen significant advancements in protocol development. In 1984,
Bennett and Brassard introduced the pioneering BB84 protocol, which utilizes quantum properties
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to distribute keys between distant parties securely [8]. Following the introduction of BB84, a series of
subsequent protocols surfaced, such as E91 [9], B92 [10], BBM92 [11], and the six-state protocol [12],
significantly broadening the spectrum of quantum secure communication [4, 5, 6, 13]. Recent years
witnessed the rise of variants such as Device-Independent (DI) QKD [14, 15], Measurement-Device
Independent (MDI) QKD [16, 17], and Continuous Variable (CV) QKD [18, 19], driven by both
theoretical innovations and experimental implementations [20, 21, 22, 23, 24].

Contemporary QKD primarily relies on non-orthogonal states for security. However, the adoption
of orthogonal states in cryptographic protocols emerged later, with the inception of the pioneering
protocol [25]. This groundbreaking approach introduced the concept of sending states with controlled
time delays, making it nearly impossible for eavesdroppers to intercept an entire state without detec-
tion. Moreover, several other studies facilitate the implementation of QKD protocols using orthogonal
states, as evidenced by various documented protocols [26, 27, 28, 29]. Experimental validation has
recently been conducted in the case of quantum cryptography based on orthogonal states [30, 31].
While non-orthogonal state encoding is prevalent, orthogonal state encoding offers potential ben-
efits, such as reduced quantum operation requirements. Understanding the theoretical application
of orthogonal states for coding is invaluable due to their innate ability to be distinguished without
errors.

The evolution of QKD relies on innovative methods to enhance its security and efficiency. Among
these, integrating Unextendible Product Bases (UPBs) may hold promise in quantum cryptogra-
phy due to their indistinguishability, potentially fortifying the security of quantum communication
channels. UPBs are fundamental in quantum information theory [37]. A UPB for a quantum sys-
tem is an incomplete orthogonal product basis whose complementary subspace cannot be extended
to a complete orthogonal basis. UPBs are indistinguishable in the Local Operation and Classical
Communication (LOCC) paradigm [37, 38, 46, 47, 48].

High-dimensional quantum states offer increased information capacity and noise resilience crucial
for securing QKD. Qubit-based systems exhibit a quantum bit error rate threshold of 11%, whereas
qudit-based protocols show heightened resilience to noise [40, 41, 42]. The increased noise tolerance
also impacts the final secret key rate, as the secret key rate rises with Hilbert space dimensions
for a fixed noise level [9, 43]. The no-cloning theorem underpins the security of quantum commu-
nication, increasing the input state dimension reduces cloning fidelity, emphasizing the benefits of
high-dimensional states for quantum cryptography [7, 44, 45].

No widely recognized protocol frequently incorporates UPBs in QKD protocols. In addressing
this gap, we present a protocol that showcases the utilization of UPBs to establish quantum keys
between two distant parties. In our protocol, we take the 3× 3 tile UPB [37] where Alice sends each
subsystem state of a UPB through two quantum channels successively to Bob. During the transmis-
sion of particles, there is a time gap in the particle-sending process such that no eavesdropper has
access to two particles simultaneously. The strategy involves dividing the transfer of information into
two steps, ensuring that only a portion of the information is transmitted at each step. The security of
this approach is guaranteed by the no-cloning theorem concerning orthogonal states [39]. Through-
out the work, we assume noiseless quantum channels, ensuring no information loss during particle
transmission through these channels. After Bob receives two particles, a quantum measurement is
conducted to distinguish the states. Subsequently, we analyze potential attacks on our protocol,
including an efficient intercept-resend attack and detector blinding attacks. We show theoretically
that even if an adversary can perfectly blind each single-photon detector, there remains a 50% chance
for the eavesdropper to blind the detectors. In our protocol, the indistinguishability of UPBs poses
challenges for eavesdroppers attempting to discern between quantum states exchanged during the
QKD process, particularly when LOCC is employed by Eve. We also demonstrate that the sequen-
tial transmission of the two particles comprising a UPB state through quantum channels hinders
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the eavesdropper from perfectly distinguishing the transmitted state, even when the eavesdropper
employs entanglement as a resource. This inherent indistinguishability of our protocol enhances the
security of QKD. The rest of the paper is organized as follows: In Section 2, we describe the protocol,
and in Section 3, we analyze different attacks. Finally, in the last section (Section 4), we conclude
our results and discuss some future works.

2 Protocol

In the context of the quantum key distribution protocol, we focus on a 3 × 3 dimensional bipartite
tiles UPB as outlined in the paper by Bennett et al. [38]. These bases are represented by:

|ψ1〉 =
1√
2
|0〉A(|0〉 − |1〉)B

|ψ2〉 =
1√
2
(|0〉 − |1〉)A|2〉B

|ψ3〉 =
1√
2
|2〉A(|1〉 − |2〉)B

|ψ4〉 =
1√
2
(|1〉 − |2〉)A|0〉B

|ψ5〉 =
1

3
(|0〉+ |1〉+ |2〉)A(|0〉+ |1〉+ |2〉)B (1)

where A and B represent the states of particles A and B, respectively. The bases given by Eq.1 are
not complete, indicating that

∑5
i=1 |ψi〉〈ψi| 6= I, where I represents the identity matrix. However,

it’s important to note that these bases are orthogonal to each other, meaning that 〈ψi|ψj〉 = 0 for
all i 6= j within the set {1, 2, ..., 5}. Additionally, they exhibit a degree of nonlocality even in the
absence of entanglement. Notably, these bases are indistinguishable under the framework of LOCC
[37, 38, 46, 47, 48, 49].

Therefore, using Eq. 1 as the measurement basis, it seems that we cannot form a valid quantum
measurement. To construct a valid quantum measurement, we need to ensure that the operators
satisfy the completeness relation

∑n

i=1MiM
†
i = I.

To form a quantum measurement along with Eq. 1, we apply the Gram-Schmidt decomposition.
First, we begin by constructing four orthogonal states represented as

|hk〉 starting (for k = 6, 7, 8, 9) from |ψ1〉 to |ψ4〉.

|h6〉 =
1√
2
|0〉A(|0〉+ |1〉)B

|h7〉 =
1√
2
(|0〉+ |1〉)A|2〉B

|h8〉 =
1√
2
|2〉A(|1〉+ |2〉)B

|h9〉 =
1√
2
(|1〉+ |2〉)A|0〉B (2)

i.e. 〈hk|ψi〉 = 0 for i = 1, ..., 4 and k = 6, ..., 9. That means |hk〉 and |ψi〉 are orthogonal to each
other for i = 1, 2, .., 4 and k = 6, ..., 9. Next, we formulate:
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|ψ6〉 = α6(|h6〉 −
5

∑

i=1

〈ψi|h6〉|ψi〉)

|ψk〉 = αk(|hk〉 −
5

∑

i=1

〈ψi|hk〉|ψi〉 −
k−1
∑

j=6

〈ψj|hk〉|ψj〉) for k = 7, 8, 9 (3)

where αk is the normalization constant of the k-th state that can be easily evaluated, and these

values are α6 =
√

9
7
, α7 =

√

7
5
, α8 =

√

5
3
, and α9 =

√
3.

Now,
∑9

i=1 |ψi〉〈ψi| = I (identity matrix). Therefore, we form a valid quantum measurement by
using |ψ1〉 to |ψ9〉 as the basis. Additionally, it’s important to note that each of these basis states is
orthogonal to the others, meaning that 〈ψi|ψj〉 = 0 for all i 6= j within the set {|ψ1〉, ..., |ψ9〉}. This
specific set of quantum states |ψ1〉, . . . , |ψ5〉 are product bases and |ψ6〉, . . . , |ψ9〉 are entangled bases.

The protocol is as follows:
Step 1: Alice begins by preparing two quantum particles, labeled as A and B, randomly in one

of five quantum states using Eq.1.
Step 2: After randomly preparing the state in one of the five quantum states using Eq.1, Alice

sends either particle A or B randomly to Bob through quantum channel number 1. Upon receiving
the particle, Bob informs Alice through an open classical communication channel.

Step 3: Alice then sends the second particle to Bob through channel 2. Importantly, she only
sends the second particle after receiving confirmation that the first particle has reached Bob. This
sequential transmission prevents potential eavesdroppers from having simultaneous access to both
particles, ensuring security. We assume that both quantum channels are noiseless.

For example, if Alice wants to send the state |ψi〉 to Bob, she may send the second particle B
through channel 1 and then A through channel 2, creating the sequence BA. Alternatively, she may
send particle A first through channel 1 and then B through channel 2, resulting in the sequence
AB. Alice will keep a record of which path she is sending each particle. In the AB sequence, the
two-qutrit state received by Bob will be given by Eq.1. In the BA sequence, after the two-qutrit
state reaches Bob, he will obtain the state described by Eq.4, thus forming another tile UPB.

|ξ1〉 =
1√
2
(|0〉 − |1〉)B|0〉A

|ξ2〉 =
1√
2
|2〉B(|0〉 − |1〉)A

|ξ3〉 =
1√
2
(|1〉 − |2〉)B|2〉A

|ξ4〉 =
1√
2
|0〉B(|1〉 − |2〉)A

|ξ5〉 =
1

3
(|0〉+ |1〉+ |2〉)B(|0〉+ |1〉+ |2〉)A (4)

It is essential to note that |ξi〉 for all i ∈ {1, ..., 5} are not orthogonal to the set |ψ1〉, . . . , |ψ9〉.
Therefore, it is impossible to distinguish all states of Eq.4 using |ψ1〉, . . . , |ψ9〉 as measurement bases.

In the context of Quantum Key Distribution (QKD), the principle of sequential sending, where
Alice transmits the second particle to Bob only after receiving confirmation of the safe arrival of the
first particle, aligns with the fundamental prerequisites for employing a set of orthogonal product
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states in five state composite systems where each subsystem are nonidentical and non-orthogonal to
each other (for detail see table 1). These prerequisites, as established in the QKD scheme, demand
that within the density matrix of any subsystem (represented as ρS|i, with S being either subsystem
A or B), there must exist at least one ρS|j that differs from ρS|i and lacks orthogonality with it. This
condition, grounded in the laws of quantum mechanics [39], upholds the standard no-cloning theorem
[7], which is a cornerstone of quantum security. Therefore, the sequential sending of particles, a vital
element of the QKD protocol, serves as a practical implementation of the quantum principles that
safeguard the security of quantum communication.

Step 4: Upon receiving both particles A and B, Bob performs a collective measurement on them.
This measurement is carried out using the basis of the nine quantum bases described earlier (|ψ1〉 to
|ψ9〉) in Eq.1 and Eq.3. It helps Bob determine the quantum state in which the two-particle system
has been prepared.

If Alice sends the AB sequence, Bob can successfully distinguish the state with certainty by
forming a quantum measurement with the bases Eq.1 and Eq.3 (|ψ1〉,. . . ,|ψ9〉). However, when Alice
sends the BA sequence to Bob, he will not be able to distinguish the state with certainty, but Bob
will register a click on one of his measurement bases. For both sequences, Bob will record all the
clicks made by his measurements. Since Alice randomly prepares and sends the state in either the
AB or BA sequence, both ways introduce randomness in these two situations; one is during the state
preparation process, and the other is during the sequential particle-sending process.

Step 5: After the measurement process, Bob will communicate with Alice through classical
channels to know the sequence of the particle-sending process. If Alice sends the AB sequence, Bob
will retain the measurement results and record the information about which state he distinguished. If
Alice sends the BA sequence, Bob will discard the results. Alice and Bob have a predefined agreement
on how to assign bit values based on the measured quantum states

Repeating the entire procedure multiple times, Alice and Bob generate a random bit string. This
bit string serves as the raw key for encryption purposes.

Step 6: To check for potential eavesdropping, Alice and Bob randomly sample and compare bits
from their raw key. If the correlations between their bits remain intact with exact values, they can
conclude that there is no eavesdropper. If the raw key remains unaltered and secure, Alice and Bob
can confidently use the rest of the results as a cryptographic key for secure communication. However,
if they suspect eavesdropping or find discrepancies during the random bit comparisons, they take
security precautions by discarding the entire key and redistributing it.

In the forthcoming section, we delve into a comprehensive analysis of our protocol, shedding light
on both the intercept-resend attack and the detector blinding attack, pertinent to our innovative
patent-pending device.

3 Protocol analysis

Here, we explore two potential security vulnerabilities: the intercept-resend attack and the detector
blinding attack. Initially, we delve into the intercept-resend attack, where an eavesdropper intercepts
the quantum channel, measures the first particle, and sends a particle to Bob based on this mea-
surement outcome. Subsequently, during the transmission of the second particle, the eavesdropper
measures it and sends another particle to Bob based on the measurement results of the first particle.
Additionally, we conduct an analysis of the detector blinding attack on the protocol in the subsequent
section.
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3.1 Intercept resend attack

The resend-intercept attack is one of the most significant threats to the security of quantum key
distribution (QKD) protocols [50]. This attack allows an eavesdropper to intercept and measure the
quantum states transmitted by Alice, then resend them to Bob while pretending to be Alice. If
Eve is successful, she can obtain the shared secret key between Alice and Bob, compromising the
security of their communication. In our protocol, two particles labeled A and B are sent through a
quantum channel but with a time delay. Importantly, Eve, the potential eavesdropper, does not have
simultaneous access to both particles. There are two types of resend intercept attack strategies in
our protocol.

First: Eve intercepts the first particle sent by Alice through path 1. She performs a measurement
on the particle to determine its quantum state. Based on the measurement outcome, Eve prepares
a new particle in the same quantum state. Eve sends the prepared particle to Bob through path 1,
pretending to be Alice.

Next, Eve intercepts the second particle sent by Alice through path 2. She analyzes the measure-
ment outcome of the first particle to determine the basis (measurement reference) used by Alice for
the second particle. Based on this information, Eve performs a specific measurement on the second
particle to determine its quantum state. Using the basis information from the first particle and the
new measurement outcome of the second particle, Eve prepares a new particle in the corresponding
state. Eve sends the prepared particle to Bob through path 2, again mimicking Alice.

In our protocol, Alice randomly prepares a UPB state from Eq.1 and sends the particles through
two different paths, randomly selecting either path 1 or path 2. If Alice sends the two particles in
the AB sequence through these channels, then the state observed by Eve would follow Eq.1. On
the other hand, if Alice sends the BA sequence, then the two-particle state observed by Eve would
align with Eq.4. Eve does not know which specific state is transmitted through these channels, but
she is aware that the intercepted state belongs to the set of 10 states {|ψ1〉, . . . , |ψ5〉, |ξ1〉, . . . , |ξ5〉}
represented by Eq.1 and Eq.4. For Eve, all the 10 states are equally probable. In this particular
eavesdropping scenario, Eve employs a sequential approach.

When the first particle is intercepted in path 1, she conducts an orthogonal measurement using
the basis {|0〉〈0|, |1〉〈1|, |2〉〈2|}. If she gets the first particle in the state |0〉〈0|, she infers the possible
two-particle states for A and B, which are |ψ1〉, |ψ2〉, |ψ5〉, |ξ1〉, |ξ4〉 and |ξ5〉 with 1/10, 1/20, 1/30,
1/20, 1/10, 1/30 probabilities of each. Eve sends the first particle, having measured it, to Bob with
the results of her measurement. When the second particle arrives, Eve intercepts it as well. She
measures the second particle by using the bases {|0 − 1〉〈0 − 1|, |0 + 1〉〈0 + 1|, |2〉〈2|}. Based on
this measurement, she sends the second particle to Bob. Eve’s measurement results on the second
particle, particularly if she observes |0 − 1〉〈0 − 1|, then the two-particle state is either |ψ1〉 with
1/10 probability or |ξ1〉 with 1/80 probability or |ξ4〉 with 1/40 probability, which has collapsed
to |0〉|0 − 1〉. If the second particle is observed in the state |0 + 1〉〈0 + 1|, the two-particle state
collapses to |0〉|0 + 1〉. Bob then has a partial probability of 2/270 or 1/80 or 1/40 or 2/270 to
find the two-particle state in either |ψ5〉 or |ξ1〉 or |ξ4〉 or |ξ5〉 respectively. If the second particle
is observed in the state |2〉〈2|, the two-particle state collapses to |0〉|2〉. Bob then has a partial
probability of 1/40 or 1/270 or 1/20 or 1/270 to find the two-particle state in either |ψ2〉 or |ψ5〉 or
|ξ4〉 or |ξ5〉 respectively. So, when Eve gets the 1st particle in |0〉 and after getting the information
of the first particle if Bob does a second measurement on the second particle with the measurement
{|0− 1〉〈0− 1|, |0 + 1〉〈0 + 1|, |2〉〈2|}, then the probability for Eve to eavesdrop without detection is
1
10

+ 1
80

+ 1
40

+ 2
270

+ 1
80

+ 1
40

+ 2
270

+ 1
40

+ 1
270

+ 1
20

+ 1
270

= 0.2722.
Instead of performing the measurement {|0−1〉〈0−1|, |0+1〉〈0+1|, |2〉〈2|} on the second particle,

Eve might choose alternative measurements like {|0〉〈0|, |1〉〈1|, |2〉〈2|} or {|1− 2〉〈1− 2|, |1 + 2〉〈1 +
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2|, |0〉〈0|}. However, regardless of the measurement she chooses, the total probability of her success-
fully eavesdropping without detection remains the same, which is 0.2722, when the first particle is in
the state |0〉.

Similarly in the same way, when Eve gets the 1st particle in |1〉〈1| and after getting the information
of the first particle if Bob does a second measurement on the second particle with the measurement
{|0〉〈0|, |1〉〈1|, |2〉〈2|}, then the probability for Eve to eavesdrop without detection is = 0.1222.

Now, when Eve intercepts the 1st particle in |2〉〈2|, and if Bob performs a second measurement on
the second particle with the measurement {|1− 2〉〈1− 2|, |1+ 2〉〈1 + 2|, |0〉〈0|}, then the probability
for Eve to eavesdrop without detection is calculated to be 0.2722. Regardless of Eve’s choice of
alternative measurements, such as {|0〉〈0|, |1〉〈1|, |2〉〈2|} or {|0− 1〉〈0− 1|, |0 + 1〉〈0 + 1|, |2〉〈2|}, the
total probability of her successfully eavesdropping without detection remains the same at 0.2722
when the first particle is in the state |2〉〈2|.

So the total probability that Eve eavesdrops on the key information without being detected is
0.2722 + 0.1222 + 0.2722 = 0.6666.

Second: The second eavesdropping strategy involves Eve focusing on the second particle, in
path 2. Unlike the first strategy, this approach could lead to disruptions in particles in path 2. The
motivation for this strategy is driven by the inherent symmetry between particles A and B within
our subsystem. As our UPB state’s subsystems are symmetric in this strategy, the resend intercept
attack probability remains the same as the initial probability of 0.6666.

The calculation of the intercept-resend attack is based on LOCC. Cohen’s paper [56] demonstrated
that using LOCC and one ebit of entanglement resource, perfect distinction of the 3×3 UPB is achiev-
able. However, in our scenario, if Eve attempts to distinguish the transmitted UPB states using LOCC
with the entanglement resource, perfect distinction isn’t possible. This is due to the random sequen-
tial transmission of the particles of each UPB state through the quantum channels, which makes her
aware that the intercepted state belongs to the set of 10 states {|ψ1〉, . . . , |ψ5〉, |ξ1〉, . . . , |ξ5〉}. Among
this set, some states are non-orthogonal, preventing perfect distinguishability. To determine the
maximum success probability of unambiguous state discrimination, even if Eve employs two-particle
measurements on each UPB state, we utilize a principle outlined in [55]. In this scenario, where a
quantum system is prepared in one of the n states |φi〉, . . . , |φn〉 in a d-dimensional Hilbert space
with probabilities p1, . . . , pn, the upper bound for the maximal success probability of unambiguous
discrimination among n states using any measurement {Mm} is given by:

Dm(p1, . . . , pn, |φ1〉, . . . , |φn〉, {Mm}) ≤ 1− 1

(n− 1)

∑

i 6=j

√
pipj |〈φi|φj〉| (5)

Here, n represents the number of states to be distinguished, |φi〉 denotes each state to be discrim-
inated, and pi indicates the prior probability of the |φi〉 state. In our specific system, if Eve aims
to discriminate the transmitted state unambiguously among the set {|ψ1〉, . . . , |ψ5〉, |ξ1〉, . . . , |ξ5〉}
where each state is equally probable, the maximum success probability would be 8

9
. Thus the perfect

discrimination of state in this set is not possible.

3.2 Detector blinding attack:

A detector blinding attack targets quantum key distribution (QKD) protocols, exploiting vulnerabil-
ities in quantum signal detection to gain unauthorized access to sensitive information without raising
the quantum bit error rate (QBER). In protocols like BB84, Eve intercepts Alice’s qubits, measures
them, and blinds Bob’s detectors with intense light, controlling their firing to match her measure-
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ments. Success relies on manipulating Bob’s random number generator, rendering detectors blind.
Without control, blinding alone wouldn’t reveal the key, making detection challenging. Thus, the
attack primarily hinges on controlling Bob’s base selection, highlighting the importance of random
number generator security in QKD [51].

Our protocol needs a two-particle joint measurement to distinguish the state, Eve cannot access
both particles simultaneously during transmission. Hence, for eavesdropping, Eve needs to perform
a single-particle measurement on the first particle and then choose the second-particle measurement
based on the outcome of the first measurement. We assume that Eve can successfully blind the
single-photon detectors.

In a linear optics setup, if Eve employs a faked-state attack, she intercepts the first particle, caus-
ing detector clicks based on her chosen measurement basis. Subsequently, based on the outcome of
the first measurement, she selects which state to fake from the set {|ψ1〉, . . . , |ψ5〉, |ξ1〉, . . . , |ξ5〉}. She
then sends the first particle’s polarization state to Bob, accompanied by intense circularly polarized
light. After intercepting the second particle sent by Alice, Eve performs a specific measurement on it
to determine its quantum state. Depending on the predetermined state she intends to send after the
first measurement, Eve forwards the polarization state of the second particle to Bob, again accom-
panied by intense circularly polarized light. Eve manipulates Bob’s detectors to fire as she desires,
aligning with her measurement results.

In our protocol, Alice randomly prepares and sends particles through quantum channels. After
the measurement, Bob receives confirmation via a classical channel regarding the sequence (AB or
BA) in which Alice sent the state. During this confirmation process, Bob can detect the presence of
an eavesdropper. For instance, if Alice sends an AB sequence state but Eve decides to send a BA
sequence state based on the first measurement outcome, Bob’s detectors will not click any of the AB
sequence states (Eq.1) but instead detect a different sequence, indicating interference. Therefore,
Bob becomes aware of the eavesdropper. However, Eve has a 50% chance of blinding Bob’s detectors
successfully since her decision will align with either the AB or BA sequence half of the time.

As an example, let’s consider Alice sending a state |ψ1〉 in the AB sequence. Eve intercepts the
first particle and measures it in the {|0〉〈0|, |1〉〈1|, |2〉〈2|} bases, obtaining a click in the |0〉〈0| basis.
Based on this measurement outcome, Eve infers that the two-particle state could be one among the
set {|ψ1〉, |ψ2〉, |ψ5〉, |ξ1〉, |ξ4〉, |ξ5〉}. Suppose Eve decides to send a fake state |ξ1〉 and transmits the
subsystem states to Bob sequentially. Due to the fake state sent by Eve, Bob’s detector will not click
any of the AB sequence states (Eq.1). When Bob communicates with Alice to confirm the sequence
via the classical channel, he realizes that eavesdropping has occurred, even if Eve can intercept and
listen to the classical messages.

Lastly, the security amplification process is also present, where Alice and Bob will compare their
certain shared bits, right or wrong, during that process to identify the attack.

4 Conclusion:

A primary contribution of our research lies in the investigation of orthogonal state encoding and the
incorporation of UPB into QKD protocols. Through theoretical analysis, we have demonstrated the
viability of employing 3 × 3 tile UPB [37, 38] to establish secure quantum communication channels
between distant parties.

Furthermore, our study has provided insights into the vulnerabilities of QKD protocols through
the analysis of intercept-resend [50] and detector blinding attacks [51]. An intercept-resend attack
is a cybernetic attack on quantum key distribution systems, where the attacker, often referred to as
Eve, intercepts quantum signals intended for the recipient, Bob, without being detected. In the BB84
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protocol, there is a 75% chance for an eavesdropper to remain undetected. By quantifying the prob-
abilities and outcomes associated with these attacks within the framework of our protocol, we have
identified an efficient intercept-resend attack, resulting in a 66% chance of successful eavesdropping
without detection. There is a paper [56] that demonstrated how one ebit of entanglement enables
perfect discrimination of 3× 3 UPB states via LOCC. However, our protocol incorporates sequential
particle transmission, complicating the eavesdropper’s ability to distinguish the UPB state. Upon
observing the transmitted UPB state, the eavesdropper encounters a set {|ψ1〉, . . . , |ψ5〉, |ξ1〉, . . . , |ξ5〉}
containing non-orthogonal states. This non-orthogonality hinders perfect state discrimination, result-
ing in imperfect discrimination even if she uses entanglement. Furthermore, we showed that even
if an eavesdropper employs any measurement, she would only be able to unambiguously distinguish
the transmitted state with a maximum success probability of 8

9
.

Other eavesdropping strategies include Eve storing the first particle in a quantum memory and
sending a random state to Bob, followed by a joint measurement on both particles. However, success
in this scenario is limited to 1

3
. In orthogonal state quantum cryptography, each subsystem of the

orthogonal bipartite state is successively sent through the two quantum channels, dividing information
transmission into two stages. This ensures that only a fraction of information is conveyed at any
given moment. Additionally, quantum memories have limited storage time, and once this time limit is
reached, extracting information becomes impossible [32, 33, 34, 35, 36]. Furthermore, the delay time
in our scenario exceeds the time taken by particles to travel from Alice to Bob, enhancing security
due to the no-cloning theorem applicable to orthogonal states [39].

While quantum key distribution (QKD) protocols are renowned for their unconditional secrecy,
the security of QKD hardware hinges significantly on the intricacies of its implementation. A detector
blinding attack poses a security threat in quantum cryptography, allowing an eavesdropper to ma-
nipulate quantum detectors to intercept communication without detection [51]. Even if we consider
the possibility of an adversary successfully blinding the single-photon detectors, our protocol has a
50% chance for an eavesdropper to achieve successful detector blinding. It’s worth noting that our
protocol involves the transmission of two-particle states, which are product states.

Recent advancements in hardware and protocols offer robust countermeasures against detector-
blinding attacks [52, 53, 54]. Enhancing the integrity of Bob’s detectors is crucial, potentially achieved
through incorporating randomized control mechanisms into their operation. By introducing random-
ness, it becomes more challenging for adversaries to predict and manipulate the detector’s behavior,
thus bolstering its resilience against manipulation attempts.

Our investigation into utilizing 3 × 3 tile UPBs for establishing secure quantum keys highlights
their indistinguishability under the LOCC paradigm. While our protocol restricts eavesdroppers’
access to two-particle states, a time gap between transmissions limits adversaries to LOCC tools
for eavesdropping. We acknowledge the potential existence of better protocols for utilizing UPBs
in QKD and generalizing them for d × d dimensions. To extend our protocol, one may follow the
same steps and formulate a quantum measurement. Let |ψ1〉, . . . , |ψl〉 form the UPB in Cd ⊗ Cd

[57, 58], where
∑l

i=1 |ψi〉〈ψi| 6= I and |ψl〉 is the stopper basis. Construct complete measurement
bases by first forming orthogonal bases |hl+1〉, . . . , |hd2〉 orthogonal to each basis of |ψ1〉, . . . , |ψl−1〉,
with 〈hk|ψi〉 = 0 for i = 1, . . . , l − 1 and k = l + 1, . . . , d2 and then, formulate:

|ψl+1〉 = αl+1

(

|hl+1〉 −
l

∑

i=1

〈ψi|hl+1〉|ψi〉
)

|ψk〉 = αk

(

|hk〉 −
l

∑

i=1

〈ψi|hk〉|ψi〉 −
k−1
∑

j=l+1

〈ψj|hk〉|ψj〉
)

for k = l + 2, . . . , d2 (6)
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such that
∑d2

i=1 |ψi〉〈ψi| = I. Here, αk is the normalization constant of the state |ψk〉. Let’s say, if the
number of UPB in a d × d system is d2 − 2d+ 1, then one has to form 2d − 1 number of entangled
bases to construct a complete set of measurement bases [57]. Using our protocol, one can distribute
the quantum key between distant parties using the d × d UPBs. Exploring the optimal intercept
resend attack probability would be a compelling avenue for future research.

In conclusion, our study advances quantum cryptography by elucidating orthogonal state encoding
principles, UPBs, and their role in fortifying quantum communication. Rigorous analysis of intercept-
resend and detector blinding attacks provides valuable insights for establishing secure communication
channels in the quantum technology era.

Acknowledgements:

This work is for the organization ExamRoom.AI. The authors are also thankful to Priti Kumari, and
Ritobroto Mohanta for the helpful discussions.

References

[1] P. Shor, Algorithms for quantum computation: discrete logarithms and factoring,
In Proceedings of 35th Annual Symposium on the Foundations of Computer Science, IEEE Computer Societ

[2] L. K. Grover, A fast quantum mechanical algorithm for database search,
Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing, Pages 212-219, (1996).

[3] D. J. Bernstein and T. Lange, Post-quantum cryptography,, Nature, 549, 188–194, (2017).

[4] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography,
Rev. Mod. Phys. 74, 145, (2002).

[5] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, M. Peev, The

Security of Practical Quantum Key Distribution, Rev. Mod. Phys. 81, 1301, (2009).

[6] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T.
Gehring, C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko,
G. Vallone, P. Villoresi, and P. Wallden, The Security of Practical Quantum Key Distribution,
Adv. Opt. Photon. 12, 1012-1236, (2020).

[7] W. K. Wootters and W. H. Zurek , A single quantum cannot be cloned,
Nature 299, 802-803 (1982).

[8] C. H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing,
Theoretical Computer Science, 560, 2014, pp. 7-11, (1984).

[9] Artur K. Ekert, Quantum Cryptography Based on Bell’s Theorem,
Phys. Rev. lett. 67, 661 (1991).

[10] C. H. Bennett, Quantum cryptography using any two nonorthogonal states,
Phys. Rev. lett. 68, 3121 (1992).

[11] C. H. Bennett, G. Brassard, and N. David Mermin, Quantum cryptography without Bell’s theo-

rem, Phys. Rev. lett. 68, 557 (1992).

10

https://examroom.ai/
10.1109/SFCS.1994.365700
https://doi.org/10.1145/237814.237866
https://doi.org/10.1038/nature23461
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1364/AOP.361502
https://doi.org/10.1038/299802a0
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.68.3121
https://doi.org/10.1103/PhysRevLett.68.557


[12] Dagmar Bruß, Optimal Eavesdropping in Quantum Cryptography with Six States,
Phys. Rev. lett. 81, 3018 (1998).

[13] H.K Lo AND H. F. Chau, Unconditional Security of Quantum Key Distribution over Arbitrarily

Long Distances, SCIENCE 283, 283, Issue 5410, 2050-2056 (1999).

[14] D. Mayers, A. Yao, Quantum cryptography with imperfect apparatus,
Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280), Palo Alto,
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Appendix:

A Reduced states:

The reduced subsystems of Eq.1 and Eq.3 for A and B are evaluated by using the relation ρA(B)|i =
TrB(A)(|ψi〉AB〈ψi|), where ρA(B) represents the reduced state of A and B for the i-th state |ψi〉.

Table 1: Reduced density matrices of individual subsystems

ρA|i ρB|i

ρA|1 = |0〉〈0| ρB|1 =
1
2
|0− 1〉〈0− 1|

ρA|2 =
1
2
|0− 1〉〈0− 1| ρB|2 = |2〉〈2|

ρA|3 = |2〉〈2| ρB|3 =
1
2
|1− 2〉〈1− 2|

ρA|4 =
1
2
|1− 2〉〈1− 2| ρB|4 = |0〉〈0|

ρA|5 =
1
3
|0 + 1 + 2〉〈0 + 1 + 2| ρB|5 =

1
3
|0 + 1 + 2〉〈0 + 1 + 2|

ρA|6 =
1
21
(4|0− 1〉〈0− 1|+ 4|0− 2〉〈0− 2| − 2|1−

2〉〈1− 2|+ 9|0〉〈0|)
ρB|6 =

1
42
(19|0+ 1〉〈0+ 1|+2|0− 2〉〈0− 2|+2|1−

2〉〈1− 2| − 2|0〉〈0| − 2|1〉〈1|)
ρA|7 =

1
70
(25|0+1〉〈0+1|+2|1−2〉〈1−2|+10|0−

2〉〈0− 2| − 10|0〉〈0|+ 6|1〉〈1|)
ρB|7 =

1
35
(4|0 + 1〉〈0 + 1|+ 3|0− 2〉〈0− 2|+ 3|1−

2〉〈1− 2| − 3|0〉〈0| − 3|1〉〈1|+ 21|2〉〈2|)
ρA|8 =

1
15
(|1− 2〉〈1− 2|+ 3|1〉〈1|+ 10|2〉〈2|) ρB|8 =

1
30
(9|1 + 2〉〈1 + 2|+ 2|0− 1〉〈0− 1|+ 6|0−

2〉〈0− 2|+ 2|1〉〈1| − 6|2〉〈2|)
ρA|9 =

1
6
|1 + 2〉〈1 + 2|+ 4

6
|1〉〈1| ρB|9 =

1
3
|0− 1〉〈0− 1|+ 1

3
|1〉〈1|
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