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Abstract

This paper proposes a new optimized quantum block-ZXZ decomposition method [7, 8, 10] that
results in more optimal quantum circuits than the quantum Shannon decomposition (QSD) [27], which
was introduced in 2006 by Shende et al. The decomposition is applied recursively to generic quantum
gates, and can take advantage of existing and future small-circuit optimizations. Because our method
uses only one-qubit gates and uniformly controlled rotation-Z gates, it can easily be adapted to use other
types of multi-qubit gates. With the proposed decomposition, a general 3-qubit gate can be decomposed
using 19 CNOT gates (rather than 20). For general n-qubit gates, the proposed decomposition generates
circuits that have 22

48
4n −

3

2
2n + 5

3
CNOT gates, which is less that the best known exact decomposition

algorithm by (4n−2
− 1)/3 CNOT gates.

1 Introduction

To execute a quantum algorithm, a series of unitary operations (gates) and non-unitary operations (measure-
ments) are applied to quantum bits (qubits) in a quantum circuit. The complexity of a quantum algorithm
can be described as the number of gates, the number of qubits or the length of the critical path (depth) of
the circuit.

Physically, a qubit is a quantum-mechanical system that can store quantum information, such as super-
conducting qubits [16], trapped ions [4] or spin qubits [9]. Applying a quantum gate means manipulating
the state of the qubit in a controlled way. Exactly which gate operations are possible depends on the qubit
technology and the implementation [20].

To run arbitrary quantum operations on real quantum hardware, the unitary operator (matrix) needs to
be translated into elementary (native) gate operations. This is by no means a trivial task, and the focus of
much research over the years into methods for performing such translation using quantum gate decomposition.

An important target of gate decomposition methods is to minimize the number of two-qubit gates required
to implement a given unitary matrix. This is essential, because the two-qubit gates require qubit connectivity
and mapping, and the execution time and error-rates of two-qubit gates are an order of magnitude worse
than for single qubit gates in current quantum hardware [20].

It has been proven that any exact decomposition of an arbitrary n-qubit gate requires at least 1
4 (4

n−3n−1)
CNOT gates [29].

Approximate decomposition algorithms such as [26, 2, 36] can be used to decompose arbitrary quantum
gates with (almost) the minimum number of CNOT gates and little accuracy loss, at the cost of excessive
runtime of the search algorithm: decomposition of a five qubit gate can take at least several hours. These
methods are therefore not suitable for bigger gates or for applications where classical compile time is relevant
for the performance of the algorithm [19].

In contrast, exact decomposition methods are much faster, and for one- and two-qubit gates also achieve
the minimum CNOT count. One-qubit gates do not require any CNOTs and can be decomposed into a
sequence of three rotation gates [3]. Arbitrary two-qubit gates can be decomposed into three CNOTs using
the methods described in [33, 29, 35, 30], which also show that less CNOTs are necessary when the gate
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meets certain conditions. For arbitrary three-qubit gates, there is no algorithm that results in the minimum
14 CNOTs, but algorithms do exist that can decompose them into 64 [32], 40 [34], 26 [13] or 20 [27] CNOTs.

For quantum gates of arbitrary size, the decomposition methods have drastically improved since 1995,
when Barenco et al. [3] showed that any unitary operator on n qubits can be constructed using at most
O(n34n) two-qubit gates. This decomposition method used the standard QR decomposition based on Givens
rotations [6], and the CNOT count has been improved over the years by use of Gray codes and gate cancel-
lations to O(1/2 · 4n) CNOT gates [1, 27, 32]. Another approach to unitary decomposition has been to use
Cosine Sine Decomposition (CSD) [25, 11, 31, 23]. This was combined with Singular Value Decomposition
(SVD) in 2006 [27] to construct Quantum Shannon Decomposition (QSD). With QSD, an n-qubit unitary
gate can be decomposed into at most (23/48) · 4n − (3/2) · 2n + (4/3) CNOTs. More recently, the Khaneja-
Glaser decomposition [15] was used in [21] to construct a decomposition method that can decompose unitary
operations using (21/16) · 4n − 3(n · 2n−2 + 2n) CNOT gates.

In this paper, we show the design and construction of a new unitary decomposition method based on
block-ZXZ decomposition [7, 8, 10], that uses demultiplexing and optimizations similar to quantum Shannon
decomposition [27]. The contributions of this paper are as follows.

• We show how to decompose an arbitrary n-qubit gate into at most (22/48) · 4n − (3/2) · 2n + (5/3)
CNOT gates. This is (4n−2 − 1)/3 less than the best previously published work [27].

• More specifically, we can construct a general three-qubit operator with at most 19 qubits, which is
currently the least known for any exact decomposition method.

An overview of the CNOT count for the proposed method compared to previously published unitary
decomposition algorithms is given in Table 1.

Table 1: Number of CNOT gates resulting from unitary decomposition by the proposed decomposition
compared to previously published algorithms and the theoretical lower bound. The results of this paper are
shown in bold.

Number of qubits 1 2 3 4 5 6 n

Original QR decomp. [3, 6] O(n3 · 4n)
Improved QR decomp. [17] O(n · 4n)
Palindrome transform [1, 27] O(n · 4n)

Givens rotations (QR) [32] 0 4 64 536 4156 22618 ≈ 8.7 · 4n

Iterative disentangling (QR) [27] 0 8 62 344 1642 7244 2 · 4n − (2n+ 3) · 2n + 2n

KG Cartan decomp. [21] 0 3 42 240 1128 4896 (21/16) · 4n − 3(n · 2n−2 + 2n)
Original CSD [31, 18] 0 14 92 504 2544 12256 (1/2) · n · 4n − (1/2) · 2n

CSD [23] 0 8 48 224 960 3968 4n − 2 · 2n

CSD (optimized) [22] 0 4 26 118 494 2014 (1/2) · 4n − (1/2) · 2n − 2
QSD (base) [27] 0 6 36 168 720 2976 (3/4) · 4n − (3/2) · 2n

Block-ZXZ [7] 0 6 36 168 720 2976 (3/4) · 4n − (3/2) · 2n

QSD (optimized) [27] 0 3 20 100 444 1868 (23/48) · 4n − (3/2) · 2n + (4/3)
Proposed decomposition 0 3 19 95 423 1783 (22/48) · 4n − (3/2) · 2n + (5/3)

Theoretical lower bounds 0 3 14 61 252 1020 (1/4) · (4n − 3n− 1)

The rest of the paper is organized as follows. We start with the notation and gate definitions in Section 2.
Then in Section 3, we show the decomposition of uniformly controlled rotations. Section 4 continues with
the full decomposition. The optimizations and the resulting gate count are shown in Section 5. The paper
ends with the conclusion in Section 6.

2 Notation and gate definitions

This section introduces the mathematical notation and gate definitions used in this paper.
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2.1 Mathematical operations

The conjugate transpose of a matrix is represented with † (i.e. the conjugate transpose of matrix U is
U †). Reversible quantum operations (gates) can be fully represented as unitary matrices, for which U † =
U−1, UU † = I, where I is the identity matrix.

The Kronecker product of two matrices is written as ⊗. The Kronecker product of (n×m) matrix A and
(p× q) matrix B is the (pm× qn) block matrix:

A⊗B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB







The Kronecker sum of two matrices is written as ⊕. The Kronecker sum of (n × m) matrix A and (p × q)
matrix B is the ((m+ p)× (n+ q)) block matrix:

A⊕B =

[

A 0
0 B

]

where the zeros are zero matrices.

2.2 Elementary gates

The elementary quantum operations used in this paper are listed below. These are part of the well-established
and widely used set presented in [3]. The definition for the Rz gate is the same as the one used in the quantum
Shannon decomposition [27].

• Identity gate: I = I =

[

1 0
0 1

]

• Rotation-X gate:

Rx(θ) = Rx =

[

cos(θ/2) i · sin(θ/2)
i · sin(θ/2) cos(θ/2)

]

• Rotation-Y gate:

Ry(θ) = Ry =

[

cos(θ/2) sin(θ/2)
−sin(θ/2) cos(θ/2)

]

• Rotation-Z gate:

Rz(θ) = Rz =

[

e−iθ/2 0
0 eiθ/2

]

• Hadamard gate: H = H = 1√
2

[

1 1
1 −1

]

• Controlled-not gate:

CNOT =
•

=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









• Z-gate: Z = Z =

[

1 0
0 −1

]

• Controlled-Z gate:

CZ =
•

Z
= •

•
=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1
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2.3 Generic gates

The following generic gates are used in the decomposition and their circuit representation are listed below.

• Generic single-qubit unitary gate:
U(2) = U

• Generic multi-qubit unitary gate:
U(n) = \ U where the backslash is used to show that the wire carries an arbitrary number of
qubits.

• Controlled arbitrary (multi-qubit) gates:
•

\ U
=

[

I 0
0 U

]

, gate U is only applied if the control qubit is in state |1〉.

• Quantum multiplexor:
\ U

= U1 ⊕ U2 =

[

U1 0
0 U2

]

, gate U1 is applied if the control qubit is

in state |0〉, gate U2 is applied if the control qubit is in state |1〉.

• Uniformly controlled rotation gate:
\

Ra

, a different rotation around axis a is applied depending on the state of the control qubits.

3 Decomposing uniformly controlled rotations

This section shows the decomposition for one of the main building blocks resulting from our method; the
uniformly controlled rotation gates. These gates will be decomposed using the method from [23].

The uniformly controlled rotation gates that are used in our decomposition method are always uniformly
controlled Rz gates applied to the first qubit. The matrix representation of such a gate follows from the
general matrix representation of a uniformly controlled Rz gate with k controlling qubits, that is applied to
the last qubit (k + 1). The matrix representation of such a gate is:

F k
k+1 (Rz(αj)) =







Rz(α1)
. . .

Rz(α2k)






(1)

The matrix corresponding to a uniformly controlled Rz gate applied to the first qubit is F k
1 (Rz) =

(D⊕D†), where D is a (2k × 2k) diagonal matrix [27] consisting of the upper left entries of the matrices for
Rz(αj). With Rz defined as in Section 2, the angles αj can be calculated as:

e−i/2·αj = diag(Dj), j = 1, · · · , 2k (2)

where diag(Dj) is the jth diagonal element of D and αj is the jth angle α in Eq. (1).
This gate can be implemented by an alternating sequence consisting of 2k CNOTs and 2k single qubit

rotation gates applied to the target qubit. The CNOT controls are determined using a sequence based on the
binary reflected Gray code [12], calculated as follows: the position of the control for the lth CNOT matches
the position where the lth and the (l + 1)th bit strings of the Gray code differ.

The structure of the decomposition of a uniformly controlled Rz gate with three control qubits is shown
in Fig. 1.

The 2k rotation gates in the circuit each apply a rotation by some angle θj to the target qubit. The Gray
code sequence means each control qubit is the control of a CNOT an even number of times, which negates
some of the angles. At the same time, subsequent rotations about the same axis are additive. This means
the quantum circuit is equivalent to F k

k+1(Rz(αj)) if the angles θj are a solution to:
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=

• •

• •

• • • •

Rz Rz(θ1) Rz(θ2) Rz(θ3) Rz(θ4) Rz(θ5) Rz(θ6) Rz(θ7) Rz(θ8)

bit 1
bit 2
bit 3

g1 g2 g3 g4 g5 g6 g7 g8

Figure 1: Decomposition of a uniformly controlled Rz gate with three control qubits with the three-bit Gray
code that is used to find the control nodes of the CNOTs.

Mk







θ1
...

θ2k






=







α1

...
α2k






(3)

where the elements of matrix Mk correspond to

Mk
ij = (−1)bi−1·gj−1 (4)

where bi is the standard binary code representation of the integer i, and gj corresponds to the binary
representation of the jth Gray code number. The dot denotes the bitwise inner product between the binary
vectors.

4 Full decomposition

In this section, we first introduce the basis of our decomposition: the block-ZXZ decomposition [7]. Then
we show how to decompose the circuit into elementary gates [27]. This decomposition method results in the
same number of CNOT gates as the unoptimized quantum Shannon decomposition [7].

4.1 Block-ZXZ decomposition

The proposed decomposition is based on the block-ZXZ decomposition presented in [7], which shows how the
method presented in [10] can be used to decompose a general unitary gate into the following structure:

U =
1

2

[

A1 0
0 A2

] [

I +B I −B
I −B I +B

] [

I 0
0 C

]

(5)

=
1

2

[

A1 0
0 A2

]

(H ⊗ I)

[

I 0
0 B

]

(H ⊗ I)

[

I 0
0 C

]

(6)

This can be represented as the following quantum circuit:

U =
• H • H

\ \ C B A

To construct this circuit, we need to solve Eq. (5), which requires that [10]:

U

[

I
C†

]

=

[

A1

A2

]

(7)
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To find matrices A1, A2 and C, we first divide the starting matrix U into four equal blocks. We call
the upper left block X , the upper right block Y and the lower two blocks U21 and U22. This makes U =
[

X Y
U21 U22

]

and then use singular value decomposition to decompose X and Y .

For X , with singular value decomposition we get X = VXΣW †
X with unitary matrices VX ,WX ∈ U and

Σ is a diagonal matrix with non-negative real numbers on the diagonal. We define SX = VXΣV †
X , a positive

semi-definite matrix and unitary matrix UX = VXW †
X . Then we have the polar decomposition of X = SXUX .

The same method can be used to find SY and UY so that Y = SY UY .
Then we can write

U =

[

SXUX SY UY

U21 U22

]

(8)

and define C† = iU †
Y UX so that Eq. (7) becomes

U

[

I

iU †
Y UX

]

=

[

A1

A2

]

(9)

We can find A1 = (SX + iSY )UX and A2 = U21 +U22(iU
†
Y UX). Finally, we rewrite Eq. (5) and solve for the

upper left corner to get B = 2A†
1X − I.

4.2 Demultiplexing

A gate U = U1 ⊕U2 can be decomposed into unitary matrices V and W and a unitary diagonal matrix D so
that U = (I ⊗ V )(D ⊕D†)(I ⊗W ) using the method described in theorem 12 of [27]:

[

U1 0
0 U2

]

=

[

V 0
0 V

] [

D 0
0 D†

] [

W 0
0 W

]

(10)

To find the values for V , D and W , we first use diagonalization of U1U
†
2 to get U1U

†
2 = V D2V †, where

V is a square matrix with columns representing the eigenvalues of U1U
†
2 and D a diagonal matrix whose

diagonal entries are the corresponding eigenvalues. Then we can find W as W = DV †U2. The matrix D⊕D†

corresponds to a multiplexed Rz gate acting on the most significant qubit in the circuit.
In a quantum circuit, demultiplexing looks like this:

=
Rz

\ U \ W V

We can use this method to demultiplex gates A, B and C from the circuit in Section 4.1, which gives the
following circuit:

U =
Rz H Rz H Rz

\ \ WC VC WB VB WA VA

It is clear from the circuit that gate VC can be merged with WB , and that VB can be merged with
WA. This means we now have a circuit decomposition of an initial n-qubit gate into four (n-1)-qubit gates,
three uniformly controlled Rz gates and two Hadamard gates. The uniformly controlled Rz gates can be
decomposed as in Section 3. The decomposition is applied recursively to each (n-1)-qubit gate until only
one-qubit gates are left, which can be decomposed using ZYZ-decomposition [3].

This leads to a total CNOT count that is the same as the unoptimized quantum Shannon decomposi-
tion [27]: (3/4) · 4n − (3/2) · 2n.
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5 Optimization

Because the circuit resulting from the block-ZXZ decomposition is very similar to that of the quantum
Shannon decomposition [27], it can be optimized using the same methods. But where QSD can merge one
CNOT gate from the central Ry gate, we can merge two CNOT gates into the central multiplexor. This
results in a total CNOT count of 22

484
n− 3

22
n+ 5

3 = 11
244

n − 3
22

n+ 5
3 CNOT gates for decomposing an n-qubit

unitary gate.

5.1 Decomposition of two-qubit operators

The decomposition can be applied recursively until the biggest blocks are the generic 2-qubit unitary gates.
These can be decomposed using the optimal 3-CNOT circuit, which can be done using one of several meth-
ods [28, 29, 30]. This reduces the CNOT count to (9/16) · 4n − (3/2) · 2n [27].

The CNOT count can be further reduced using the technique described in appendix A2 of [27]. The
right-most two-qubit gate can be decomposed up to the diagonal into the following circuit, which requires
only two qubits [28]:

U = D
U • Ry • U

U Ry U

The diagonal matrix can be migrated through the circuit and merged with the next two-qubit gate, which
can then be decomposed and its diagonal joined with the next, until only one two-qubit gate is left. This
reduces the CNOT count by 4n−2 − 1 gates to (8/16) · 4n − (3/2) · 2n − 1.

5.2 Merging two CNOT gates into the central multiplexor

After the block-ZXZ decomposition, we first decompose only the left and right multiplexors (A and C). We
now have a circuit with two uniformly controlled Rz gates. Using the decomposition of a three-qubit unitary
as an example, the circuit now looks like this:

Rz H • H Rz

WC VC B WA VA

When decomposing the uniformly controlled Rz gates, we can modify one of the decompositions so that both
of the Hadamard gates are next to a CNOT:

Rz Rz Rz Rz H • H Rz Rz Rz Rz

WC

• •
VC B WA

• •
VA

• • • •

The Hadamard gates can be moved to the other side of two CNOTs, making them into CZ gates:

H
=

H • H H
=

H •

• • •

This makes the circuit:

Rz Rz Rz Rz H • • • H Rz Rz Rz Rz

WC

• •
VC B WA

• •
VA

• • • •

The two CZ gates can be merged into the middle controlled gate B together with the two (n-1)-qubit gates
VC and WA, similar to the optimization in appendix A1 of [27].

7



The new central gate B̃ can be calculated as:

B̃ =

[

WAVC 0
0 (Z ⊗ I)WA B VC(Z ⊗ I)

]

= (CZ ⊗ I)

[

WA 0
0 WA

] [

I 0
0 B

] [

VC 0
0 VC

]

(CZ ⊗ I) (11)

and decomposed as a regular multiplexor, using the methods described in Section 4.2.

Rz Rz Rz Rz H • H Rz Rz Rz Rz

WC

•
B̃

•
VA

• • • •

This saves two CNOTs for every step of the recursion, for a total savings of 2 · (4n−2 − 1)/3 CNOT gates
when stopping the recursion at generic two-qubit gates.

5.3 Gate count

For a generic three-qubit unitary, the decomposition results in four generic two-qubit gates. Three of these
require two CNOTs to implement, while the last one requires three CNOTs. The left and right controlled
Rz gates both need three CNOTs and the middle uniformly controlled Rz gate requires four CNOTs to
decompose. That makes the total CNOT count for the decomposition of a three-qubit unitary: 3 · 2+ 3+ 2 ·
3 + 4 = 19 CNOT gates.

To find the number of CNOT gates required for implementing bigger operators, we start with the recursive
relation below. An n-qubit unitary requires cn CNOTs, which are at most:

cn ≤ 4 · cn−1 − 3 + 3 · 2n−1 − 2 = 4 · cn−1 + 3 · 2n−1 − 5

This breaks down as follows: at each level of the recursion, the CNOT count is the sum of the CNOTs
required for the decompositions of the four smaller unitaries (cn−1) and the CNOTs required by the three
quantum multiplexors (2n−1). Three of the smaller unitaries can be implemented using one CNOT less by
applying the optimization presented in Section 5.1, and two of the multiplexors can be implemented using
one less CNOT using the method in Section 5.2.

A two-qubit unitary operator can be decomposed using at most three CNOTs (c2 ≤ 3), the recursive
relations for 3, 4 and 5 qubit unitary operators are given below.

c3 ≤ 4 · c2 + 3 · 23−1 − 5

c4 ≤ 4 · c3 + 3 · 24−1 − 5

≤ 4 · 4 · c2 + 4 · 3 · 24−2 − 4 · 5 + 3 · 24−1 − 5

≤ 42 · c2 + 3 · 24−1(4 · 2−1 + 1)− 5 · (4 + 1)

c5 ≤ 43 · c2 + 3 · 25−1(42 · 2−2 + 4 · 2−1 + 1)− 5 · (42 + 4 + 1)

≤ 43 · c2 + 3 · 25−1(22 + 21 + 1)− 5 · (42 + 4 + 1)

We can recognize the following structure [5]:

1 + x+ x2 + · · ·+ xn =
xn+1 − 1

x− 1

We can use this to derive the following relation for the CNOT count for the decomposition of an n-qubit
unitary gate:

cn ≤ 4n−2 · c2 + 3 · 2n−1

(

2(n−3)+1 − 1

2− 1

)

− 5

(

4(n−3)+1 − 1

4− 1

)

cn ≤ 4n−2 · c2 + 3 · 2n−1(2n−2 − 1)−
5

3
(4n−2 − 1)

cn ≤

(

4−2 · c2 + 3 · 2−3 −
5

3
· 4−2

)

· 4n − 3 · 2−1 · 2n +
5

3

8



With c2 ≤ 3, we get the following CNOT count for the decomposition of an n-qubit unitary gate:

cn ≤

(

3

16
+

3

8
−

5

48

)

· 4n −
3

2
· 2n +

5

3

cn ≤
22

48
· 4n −

3

2
· 2n +

5

3

6 Conclusion

In this paper, we presented a novel quantum decomposition method that is able to produce circuits with
a gate count that is lower than existing state-of-the-art quantum decomposition methods. We used the
optimizations presented by [27], gate commutation and gate merging to optimize the block-ZXZ decomposi-
tion [7]. The decomposition follows the same structure of the well-known quantum Shannon decomposition,
and has the same benefit of using recursion on generic quantum gates. This means that the decomposition
can take advantage of the known optimal decompositions for two-qubit unitary gates, and other small-circuit
optimizations, heuristic methods or optimal decompositions for three or more qubit gates when these become
available.

Other than general unitary gates, the decomposition uses only single qubit gates and diagonal gates. This
simplifies the structure and presents further opportunity for optimizations, such as accounting for specific
hardware constraints like connectivity.

The circuit output of the decomposition can be compiled to any universal gateset. The resulting circuit
will have an equal number of two-qubit gates when the gateset includes a two-qubit gate that is equivalent to
the CNOT gate up to single qubit gates. This is the case for, among others, the CZ gate (part of the native
gateset of the IBM Heron) [3], the ECR gate (IBM Eagle) [14] and the XX gate (trapped ions) [4]. If these
circuits are executed on a quantum execution platform which has a more permissive gateset, the diagonal
gates can also be implemented with uniformly controlled Z-gates [24] instead of CNOTs.

As can be seen in Table 1, our approach improves upon the previous record holder by (4n−2−1)/3 CNOT
gates to achieve the best-known CNOT count for any generic quantum gate of size three or more qubits.

References

[1] Alfred V. Aho and Krysta M. Svore. Compiling Quantum Circuits using the Palindrome Transform.
2003. arXiv: quant-ph/0311008 [quant-ph].

[2] Sahel Ashhab et al. “Numerical analysis of quantum circuits for state preparation and unitary operator
synthesis”. In: Phys. Rev. A 106 (2 Aug. 2022), p. 022426. doi: 10.1103/PhysRevA.106.022426. url:
https://link.aps.org/doi/10.1103/PhysRevA.106.022426.

[3] Adriano Barenco et al. “Elementary gates for quantum computation”. In: Phys. Rev. A 52 (5 Nov. 1995),
pp. 3457–3467.doi: 10.1103/PhysRevA.52.3457. url: https://link.aps.org/doi/10.1103/PhysRevA.52.3457.

[4] Colin D. Bruzewicz et al. “Trapped-ion quantum computing: Progress and challenges”. In: Applied
Physics Reviews 6.2 (May 2019), p. 021314. issn: 1931-9401.doi: 10.1063/1.5088164. eprint: https://pubs.aip.org/ai
url: https://doi.org/10.1063/1.5088164.

[5] J. M. Cargal. “Chapter 31: Geometric series”. In: Discrete Mathematics for Neophytes: Number Theory,
Probability, Algorithms, and Other Stuff. 1991. url: http://www.cargalmathbooks.com/lectures.htm.

[6] G. Cybenko. “Reducing quantum computations to elementary unitary operations”. In: Computing in
Science & Engineering 3.2 (2001), pp. 27–32. doi: 10.1109/5992.908999.

[7] A. De Vos and S. De Baerdemacker. “Block-ZXZ synthesis of an arbitrary quantum circuit”. In: Phys.
Rev. A 94 (5 Nov. 2016), p. 052317. doi: 10.1103/PhysRevA.94.052317. url: https://link.aps.org/doi/10.1103/Phy

[8] Alexis De Vos and Stijn De Baerdemacker. “A Unified Approach to Quantum Computation and Clas-
sical Reversible Computation”. In: Reversible Computation. Ed. by Jarkko Kari and Irek Ulidowski.
Cham: Springer International Publishing, 2018, pp. 133–143. isbn: 978-3-319-99498-7.

9

https://arxiv.org/abs/quant-ph/0311008
https://doi.org/10.1103/PhysRevA.106.022426
https://link.aps.org/doi/10.1103/PhysRevA.106.022426
https://doi.org/10.1103/PhysRevA.52.3457
https://link.aps.org/doi/10.1103/PhysRevA.52.3457
https://doi.org/10.1063/1.5088164
https://pubs.aip.org/aip/apr/article-pdf/doi/10.1063/1.5088164/19742554/021314\_1\_online.pdf
https://doi.org/10.1063/1.5088164
http://www.cargalmathbooks.com/lectures.htm
https://doi.org/10.1109/5992.908999
https://doi.org/10.1103/PhysRevA.94.052317
https://link.aps.org/doi/10.1103/PhysRevA.94.052317


[9] M. V. Gurudev Dutt et al. “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits
in Diamond”. In: Science 316.5829 (2007), pp. 1312–1316. doi: 10.1126/science.1139831. eprint:
https://www.science.org/doi/pdf/10.1126/science.1139831. url: https://www.science.org/doi/abs/10.1126
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