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Active Nematic Ratchet in Asymmetric Obstacle Arrays
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We numerically investigate the effect of a periodic array of asymmetric obstacles in a two-
dimensional active nematic. We find that activity in conjunction with the asymmetry leads to
a ratchet effect or unidirectional flow of the fluid along the asymmetry direction. The directional
flow is still present even in the active turbulent phase when the gap between obstacles is sufficiently
small. We demonstrate that the dynamics of the topological defects transition from flow-mirroring to
smectic-like as the gap between obstacles is made smaller, and explain this transition in terms of the
pinning of negative winding number defects between obstacles. This also leads to a non-monotonic
ratchet effect magnitude as a function of obstacle size, so that there is an optimal obstacle size for
ratcheting at fixed activity.

Active nematics are anisotropic fluids that exhibit lo-
cal orientational order and generate macroscopic flows
from microscopic forces [1, 2]. In large, unconfined sys-
tems these flows are typically chaotic, leading to a phase
dubbed “active turbulence” [3–6]. Additionally, orienta-
tional order in the nematic allows the existence of topo-
logical defects, which may spontaneously nucleate in the
active turbulence phase and act as sources for the flow [7–
11]. In addition to the inherent interest in chaotic flows
and defect dynamics in active nematic turbulence, much
recent activity has focused on controlling the flows for po-
tential technological and biological applications such as
microfluidic devices, wound healing, and morphogenesis
[12–14]. Proposed flow control methods include modify-
ing the boundary geometry, employing spatially varying
activity, applying external fields, and altering substrate
properties [15–22]. There has also been experimental
work on the interaction of active nematics with fabri-
cated obstacle arrays [23, 24], where defect pinning was
observed.

A ratchet effect can be used to control flows in sys-
tems coupled to an asymmetric substrate under external
ac driving or flashing of the substrate [25–28]. Ratchet
effects have been demonstrated for colloidal particles
[29, 30] and superconducting vortices [31, 32], where ac
driving results in a net unidirectional flow of particles. In
active matter systems coupled to asymmetric substrates,
ratchet effects can arise without external driving due to
the activity [33, 34]. Particle-based active matter ratch-
ets have been studied for biological systems such as swim-
ming bacteria [35] as well as active colloids [34, 36]. An
open question is whether ratchet effects also occur for
active nematics coupled to an asymmetric substrate, and
if so, how the fluid flow and topological defects would be
modified.

Here, we numerically study a two-dimensional active
nematic interacting with a periodic array of asymmetric
obstacles of triangular shape. Topological defects, which
are known to generate flows [2, 11], spontaneously ap-
pear in the system out of geometrical necessity due to
the shape of the obstacles. We show that when the gap

between the asymmetric obstacles is sufficiently small, an
active nematic ratchet effect occurs in the form of unidi-
rectional flow along the asymmetry axis, something that
does not occur for an array of symmetric obstacles [37].
Ratcheting effects have been observed for rotational flows
in active nematics interacting with asymmetric inclusions
and boundaries [38, 39], but, to our knowledge, this is the
first realization of a translational active nematic ratchet.
We demonstrate that the ratchet effect is robust across
a wide range of obstacle gap sizes and activity levels. By
tuning the gap size, a transition in the defect dynamics
occurs, and the flow speed is optimized at the transition
point.
We model a two-dimensional active nematic using a

well-established nemato-hydrodynamics model in terms
of the tensor order parameter Q = S [n⊗ n− (1/2)I],
where S is the local degree of orientational order and
the director, n, gives the local orientation of the nematic
[2, 40, 41]. We measure lengths and times in units of
the nematic correlation length ξ and the nematic relax-
ation time τ , respectively, so the dimensionless evolution
equation for Q is given by

∂Q

∂t
+ (v · ∇)Q− S = − δF

δQ
(1)

where v is the fluid velocity, S is a generalized tensor ad-
vection, and F is a Landau-de Gennes free energy with
a single elastic constant [41–43]. We work in a free en-
ergy regime where the passive nematic is in the nematic
phase and the equilibrium defect diameter is unity. The
fluid velocity is generated from active stresses given by
inhomogeneities in the nematic, and is computed from
the Stokes equation:

∇2v = ∇p+ α∇ ·Q (2)

where p is the fluid pressure and α is the strength of
active forces, called the activity. We also assume the fluid
is incompressible and enforce the constraint ∇ · v = 0.
We discretize Eqs. (1) and (2) in space and time and

solve them using the MATLAB/C++ package FELIC-
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FIG. 1. (a) Schematic of the computational domain with
a periodic array of triangular obstacles. (b) Time snapshot
of the nematic configuration. The color represents the scalar
order parameter S while the white lines represent the director
n. (c) Time snapshot of the vorticity and velocity. The color
represents the vorticity while the black lines represent the flow
field.

ITY [41, 44]. We simulate on domains with a square lat-
tice of concave triangular obstacles that break the sym-
metry along the x-axis, shown in Fig. 1(a). We use
strong planar anchoring of the director on the obstacles,
as well as a no slip condition for the fluid velocity. On
the outer boundaries, we employ periodic boundary con-
ditions. The distance between obstacle centers is fixed
at a = 14 while we vary the size of the obstacles so that
the shortest gap between them, d, changes. Due to the
strong planar anchoring, the concave triangles each carry
a topological charge (winding number) of −1/2. The to-
tal topological charge of the system must be 0 due to the
periodic boundary conditions, so a defect of charge +1/2
must nucleate in the bulk nematic for each obstacle. We
show in Fig. 1(b) a time snapshot of the scalar order
parameter S and director field n for a system with α = 1
and d = 4, while Fig. 1(c) shows the corresponding time
snapshot of the velocity and vorticity field.

At α = 0, there are no flows in the system and topolog-
ical defects are pinned to the obstacles. For α > 0, topo-
logical defects unpin and move while additional defects
continuously nucleate and annihilate. For all obstacle
gap sizes, we find that the average number of defects in
the system and the average magnitude of the flow veloc-
ity increases linearly with the activity (Fig. S1). These
are traditional measures of active turbulence in active
nematic systems [8, 18, 45], indicating that the system
is in active turbulence for α > 0. This differs signifi-
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FIG. 2. (a,b,c) Distribution of velocity directions p(θv) for
varied gap width d at activity α = 1. (a) d = 8, (b) d = 6,
(c) d = 4. (c,d) Trajectories of 27 virtual particles over the
course of a simulation with varied d at α = 1. The dots on
the right side indicate the starting positions of the particles.
(c) d = 8. (d) d = 4.

cantly from our recent study on active nematics in peri-
odic arrays of symmetric obstacles, where multiple phase
transitions occurred when varying α [37].

Although the flow measurements in our system are
consistent with active turbulence, the detailed nature of
the flow differs from traditional active turbulent states,
where the flow directions are distributed randomly. We
find that the flows through our asymmetric obstacles are
distributed anisotropically, as illustrated in Fig. 2(a-c)
where we plot the distribution of fluid flow directions
p(θv) in systems with α = 1. When the obstacle gap
is large, as shown in Fig. 2(a) for d = 8, the flow direc-
tions match the three-fold symmetry directions of the ob-
stacle surfaces, suggesting that the obstacles are merely
locally modulating the flow. As d decreases, however,
p(θv) becomes strongly peaked along θv = π, as shown
in Figs. 2(b,c) for d = 6 and d = 4, respectively. This in-
dicates the emergence of a directional or rectified flow in
the absence of an external drive. To visualize the rectifi-
cation of the flow, in Figs. 2(d,e) we plot the trajectories
of 27 virtual tracer particles that are initially placed near
the right outer boundary of the domain and are advected
by the flow over the course of a simulation. In Fig. 2(d),
for the wide gap case of d = 8 where strong rectification
is not present, the tracer particles generally remain close
to their starting points and have no coordinated motion.
In contrast, for d = 4 in Fig. 2(e), the tracer particles
tend to travel towards the left side of the domain, as in-
dicated by the appearance of a gradient in the density of
the trajectories and regions of aligned flow.

To further quantify the unidirectional flow we measure
the space and time averaged x-component of the flow ve-
locity 〈vx〉. Figure 3(a) shows 〈vx〉 versus activity α for
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FIG. 3. (a) Average x velocity of the flow field 〈vx〉 vs activity
α for d = 1, 2, 4, 5, 6, 7, 8, and 10. (b) 〈vx〉 vs d for repre-
sentative α values of α = 0.5, 1, 1.5, and 2.0. (c) Heatmap of
〈vx〉 plotted as a function of α vs d.

a range of d values. When d ≥ 8, 〈vx〉 ∼ 0 for all α, in-
dicating that there is no net flow in the x-direction. For
d ≤ 7, we find that the magnitude of 〈vx〉 increases lin-
early with increasing α. Since the sign of 〈vx〉 is negative,
this indicates that there is a net flow to the left that be-
comes greater as the activity increases. Interestingly, we
find the magnitude of 〈vx〉 varies non-monotonically with
d at fixed α, as illustrated in Fig. 3(b). To identify the
overall greatest magnitude of the average flow, we plot a
heatmap of 〈vx〉 as a function of α versus d in Fig. 3(c),
and find that the maximum ratchet effect occurs for the
largest simulated value of α, α = 2, at d = 5.

There are previous studies that have shown that break-
ing rotational symmetry in a circular or annular domain
or along a circular inclusion may induce unidirectional
azimuthal flows [38, 39]. Further, it has been shown in
channel geometries for small values of the activity that
unidirectional flows may occur [46]; however, the flow di-
rection is a spontaneously broken symmetry, and may be
in either direction along the channel. Additionally, at
higher activities, the emergence of either vortex lattices
or active turbulence destroy the unidirectional flow [46].
For the triangular obstacles studied here, the direction of
the active nematic ratchet flow is set by the asymmetry of
the obstacle. To our knowledge, this is the first observa-
tion of translational active nematic ratcheting behavior.
Further, below a critical gap size, the ratchet effect is
robust to activity level and obstacle gap size, indicating
that it would not be necessary to extensively tune the
system parameters to obtain ratcheting motion for mi-
crofluidic applications.

We also find that the defect dynamics change depend-
ing on the obstacle gap size. For large d, the plot of the
distribution p(θ+) of the velocities of +1/2 winding de-
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FIG. 4. Defect velocity direction distributions (a-c) p(θ+) for
+1/2 defects and (d-f) p(θ−) for −1/2 defects at α = 1.5 for
(a,d) d = 8, (b,e) d = 5, and (c,f) d = 2.

fects in Fig. 4(a) for d = 8 and α = 1.5 indicates that the
+1/2 winding defects move in the same direction as the
flow. At the same time, Fig. 4(d) indicates that the −1/2
winding defect velocity distribution, p(θ−), is much more
isotropic. As the gap size decreases, the ratchet effect
emerges and the net flow velocity is primarily along the
−x direction, but for d = 5 the +1/2 defect velocities
break the up-down symmetry of the domain, as shown
by the plot of p(θ+) in Fig. 4(b). In this intermediate
regime, the −1/2 defects also break up-down symmetry
and tend to move in the direction opposite to the primary
flow direction of the +1/2 defects, as illustrated by the
plot of p(θ−) in Fig. 4(e). In the limit of small d, shown
in the plots of p(θ+) and p(θ−) in Figs. 4(c) and (f) at
d = 2, the +1/2 defects tend to move either up or down
with equal frequency, restoring the up-down symmetry
of the domain, while the −1/2 defects primarily move
to the left, in the direction of the ratcheting flow. We
note that in this regime, the +1/2 defects tend to move
transverse to the fluid flow direction.

To better understand the defect dynamics, in Fig. 5(a–
c) we construct defect density plots N/Nmax as a func-
tion of position relative to the obstacle for the +1/2 de-
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fects at different values of d, and show the corresponding
N/Nmax plots for the −1/2 defects in Fig. 5(d–f). Here,
we first accumulate N , the local defect density around
each obstacle, on a grid surrounding the obstacle during
the entire simulation. We then sum this quantity over all
obstacles and normalize it by the maximum value Nmax

on the grid [41]. For d = 8 in Figs. 5(a,d), both the posi-
tive and negative defects are distributed throughout the
interdefect region, with peak values ofN/Nmax appearing
close to the obstacle for the +1/2 defects. Thus, for large
gap sizes, defects of both signs are freely moving in the
domain, but the +1/2 defects can become briefly pinned
by the obstacles. For d = 5 in Figs. 5(b,e), N/Nmax for
the +1/2 defects breaks the up-down symmetry of the
obstacle and is largest along a line in interstitial space
connecting the left and right sides of the obstacle, indi-
cating that the defects are flowing horizontally. Further,
there are no longer strong peaks in N/Nmax near the
obstacle, indicating that the +1/2 defects no longer be-
come pinned (see Fig. S2 for the distribution of radial
distances of defects). At the same time, the distribution
of negative defects becomes highly concentrated in the re-
gion between the upper and lower sides of the obstacles,
indicating defect localization in this area. At d = 2 in
Figs. 4(c,f), N/Nmax for positive defects mirrors the sym-
metry of the obstacles but drops nearly to zero partway
across the region connecting the left and right sides of
the obstacles, indicating that +1/2 defects are no longer
flowing horizontally. Meanwhile, the −1/2 defects be-
come even more strongly localized in the region between
obstacles.

We find that at large gap sizes, the motion of the de-
fects tends to mirror the flow of the system, but that
the defects may become pinned for a period of time, re-
ducing their flow speed. As the gap size decreases, the
likelihood of pinning diminishes and the defects can move
more freely. At a critical gap size of d = 5, the negative
defects become strongly localized in the vertical gap be-
tween obstacles. At first this allows the positive defects
to travel more efficiently in the −x direction by skirt-
ing the negative defects, but as the gap size diminishes
further, the positive defects begin to annihilate with the
negative defects and the x-direction flow is lost. Instead,
the +1/2 defects begin to travel transverse to the flow in
lanes along the y-direction, forming a smectic-like defect
state. In Supplemental Movies 1–3 we show the nematic
configuration and flow velocities for simulations in these
three regimes.

Since we find maximal −x direction flow at d = 5 for
all values of α, the maximum does not result from a com-
mensuration effect between d and the active length scale
ξa ∝ 1/

√
α. Instead, the commensuration occurs be-

tween d and the characteristic size of topological defects
ξd, which we hold fixed in this study. It appears when d
reaches a length for which −1/2 defects become localized
between the obstacles, enhancing the overall flow.
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FIG. 5. Distribution of defects around obstacles. The distri-
bution around each obstacle in a simulation is computed and
then all are added together to form the plots. (a–c) Distri-
bution of +1/2 defects and (d–f) distribution of −1/2 defects
for simulations with (a,d) d = 8, (b,e) d = 5, (c,f) d = 2 and
α = 1.5.

Conclusion— We showed numerically that a periodic
array of asymmetric obstacles can produce translational
ratchet flows in an active nematic. As the gap distance
between obstacles decreases, the flow velocity directions
become peaked along the asymmetry direction, but the
average flow velocity varies non-monotonically. The ob-
stacle asymmetry induces a translational active nematic
ratchet that has not been described previously. The
ratcheting effect is robust over a large range of obstacle
gap sizes and activity levels. We also observed a transi-
tion in defect dynamics that is correlated with the flow
speed non-monotonicity. Positive winding defects follow
the fluid flow for large gap sizes, while for small gap sizes,
pinned negative defects inhibit the movement of positive
defects along the flow and cause the positive defects to
travel transverse to the flow.

This work opens a variety of future directions for steer-
ing or patterning active nematic flows and defect struc-
tures using ratchet geometries. Such effects have poten-
tial microfluidic applications, including logic gate design
[12] or the creation of complex patterns [47]. It would
be interesting to explore other asymmetric obstacle ge-
ometries or lattice arrangements. Different obstacle ge-
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ometries may produce distinct topological defect arrange-
ments, while different lattices may generate novel flow
patterns.
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I. ACTIVE NEMATIC MODEL AND NUMERICAL METHOD

For details on the continuum model and numerical method, see the Supplemental Material

for Ref. [1].

II. DEFECT STATISTICS

To measure the number of defects in the system at a given time we integrate the magnitude

of the two-dimensional topological defect density |D| [2, 3]:

N =

∫
|εkℓεµν∂kQµα∂ℓQνα| dr (1)

where ε is the two-dimensional Levi-Civita tensor and summation on repeated indices is

assumed. The averages shown in Fig. S1 are averaged over the simulation after it has

reached a dynamical steady state. To get the positional distribution of defects shown in

Figs. 5 and S2, we first find locations with nematic scalar order parameter S < 0.1SN and

then find the locations of maximal |D| within that subset. To determine whether a defect

is +1/2 or −1/2 winding number, we measure sign(D) at the defect location. For each type

of defect, we first collect the number of defects at each point relative to each obstacle, then

sum over all obstacles. The data presented in Fig. 5 is normalized by the maximum count,

Nmax, after summing over all obstacles.

To get the distribution of defect velocity directions shown in Fig. 4, we measure the

topological current J [3, 4] at the location of defects:

Ji = εikεµν∂tQµα∂kQνα. (2)

To ensure we only count defects that are moving, the statistics in Fig. 4 only include defects

for which |J| > 0.1|J|max.

III. SUPPLEMENTAL MOVIES

• Supplemental Movie 1: (left) Nematic configuration and (right) velocity and vorticity

for a simulation with d = 8 and α = 1.5. The color in the left movie represent the

∗ cschim@lanl.gov
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scalar order parameter S and the white lines represent the director n. The color in

the right movie represents the vorticity ω while the black arrows represent the velocity

field v.

• Supplemental Movie 2: (left) Nematic configuration and (right) velocity and vorticity

for a simulation with d = 5 and α = 1.5. The color in the left movie represent the

scalar order parameter S and the white lines represent the director n. The color in

the right movie represents the vorticity ω while the black arrows represent the velocity

field v.

• Supplemental Movie 3: (left) Nematic configuration and (right) velocity and vorticity

for a simulation with d = 2 and α = 1.5. The color in the left movie represent the

scalar order parameter S and the white lines represent the director n. The color in

the right movie represents the vorticity ω while the black arrows represent the velocity

field v.
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IV. SUPPLEMENTAL FIGURES
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FIG. S1. (a) Average number of topological defects 〈N〉 versus activity α for simulations with

d = 1, d = 6, and d = 10. (b) Average flow speed 〈|v|〉

versus α for simulations with d = 1, d = 6, and d = 10. Both quantities scale roughly linearly

with activity, indicating systems in active turbulence.
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FIG. S2. Distribution of radial distance of defects from the center of an obstacle for (a–c) +1/2

defects and (d–f) −1/2 defects. Shown for simulations with (a,d) d = 8, (b,e) d = 5, and (c,f)

d = 2.
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