
depyf: Open the Opaque Box of PyTorch Compiler for
Machine Learning Researchers

Kaichao You† * youkaichao@gmail.com

Runsheng Bai† brs21@mails.tsinghua.edu.cn

Meng Cao§ mengcao@apple.com

Jianmin Wang† jimwang@tsinghua.edu.cn

Ion Stoica‡ istoica@cs.berkeley.edu

Mingsheng Long† B mingsheng@tsinghua.edu.cn
† School of Software, BNRist, Tsinghua University, Beijing 100084, China
§ AIML, Apple ‡ Division of Computer Science, UC Berkeley, CA 94720-1776, USA

Abstract

PyTorch 2.x introduces a compiler designed to accelerate deep learning programs. How-
ever, for machine learning researchers, adapting to the PyTorch compiler to full potential
can be challenging. The compiler operates at the Python bytecode level, making it appear
as an opaque box. To address this, we introduce depyf, a tool designed to demystify the
inner workings of the PyTorch compiler. depyf decompiles bytecode generated by Py-
Torch back into equivalent source code, and establishes connections between in-memory
code objects and their on-disk source code counterparts. This feature enables users to step
through the source code line by line using debuggers, thus enhancing their understanding
of the underlying processes. Notably, depyf is non-intrusive and user-friendly, primarily
relying on two convenient context managers for its core functionality. The project is openly
available and is recognized as a PyTorch ecosystem project.
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1 Introduction

Deep learning has profoundly impacted our daily lives, especially with the recent advance-
ments in Large Language Models (LLMs) like ChatGPT (Schulman et al., 2022). These
models demand considerable computational resources, prompting the swift development of
specialized hardware (LeCun, 2019), such as GPUs (Markidis et al., 2018) and TPUs (Jouppi
et al., 2020). However, fully leveraging the capabilities of these advanced hardware is chal-
lenging. It requires in-depth knowledge of hardware-specific programming, exemplified by
technologies like FlashAttention (Dao et al., 2022). Such expertise often extends beyond
the focus of machine learning researchers who concentrate on algorithm development. To
bridge this gap, domain-specific deep learning compilers have been introduced (Li et al.,
2020). These compilers are crafted to optimize deep learning programs for efficient operation
on modern hardware. While these compilers simplify the optimization process, adapting
them to maximize benefits remains a complex endeavor. This complexity highlights the
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ongoing tension between hardware advancements and software optimization in the rapidly
evolving field of deep learning.

PyTorch (Paszke et al., 2019), a widely-used deep learning framework among machine
learning researchers, was traditionally imperative and user-friendly. To keep pace with re-
cent hardware advancements and to enable better optimization for large-scale distributed
training (Rasley et al., 2020; Shoeybi et al., 2020), PyTorch recently underwent a signifi-
cant update, transitioning from PyTorch 1.x to PyTorch 2.x. This update included the
integration of a built-in deep learning compiler, the torch.compile 1 function. This addi-
tion narrows the gap for machine learning researchers in utilizing modern hardware, but a
notable gap remains and is still challenging to bridge.

This paper first describes the challenges machine learning researchers face in under-
standing the PyTorch compiler, illustrated through a concrete example. It then discusses
how the proposed tool addresses these challenges, concluding with practical usage examples
and experimental results.

2 Challenges in Understanding the PyTorch Compiler

2.1 Dynamo: The Frontend of the PyTorch Compiler

The most complex component of the PyTorch compiler is its frontend named Dynamo.
Dynamo’s key functionality is to separate user code into distinct segments: pure Python
code and pure PyTorch code, which forms the computation graph. Figure 1 (left) provides
a detailed example of Dynamo’s operation. This process involves three primary steps:

• Identifying the first operation that cannot be represented in the computation graph
but requires the value of a previously computed tensor in the graph. Examples include
operations like printing a tensor’s value or using a tensor’s value to determine the
control flow in Python if statements.

• Dividing preceding operations into two segments: a computation graph focused solely
on tensor computations and Python code dedicated to manipulating Python objects.

• Handling the subsequent operations as one or more new functions (referred to as
resume functions) and recursively reinitiating the analysis described above.

Dynamo functions at the Python bytecode level (see LOAD, JUMP, CALL instructions in Fig-
ure 1), which is a more fundamental level than Python source code. It’s important to note
that very few machine learning researchers are proficient in interpreting this bytecode.

2.2 The Backend of the PyTorch Compiler

After the frontend extracts a computation graph, the backend optimizes this graph and
ultimately generates binary executables suitable for CPU, GPU, and TPU hardware. A
computation graph in Python is a dynamically generated function, meaning it must be
executed in its entirety. Consequently, users are unable to employ debuggers for a step-by-
step analysis of the function. This becomes particularly challenging when the computation
results in a NaN (Not a Number) error, as it precludes the possibility of tracing through the
code line by line to identify the operation responsible for the numeric issue.

1. https://pytorch.org/docs/stable/torch.compiler.html
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debuggable source code

Source Code
def function(inputs):

x = inputs["x"]
y = inputs["y"]
x = x.cos().cos()
if x.mean() > 0.5:

x = x / 1.1
return x * y

Python Bytecode Analysis

The first operation that
requires the value of a
tensor, but cannot be
represented in graph.

Python operation
(not related to

tensor computation)

PyTorch operations
(pure tensor computation)

resume function 1

0 LOAD_FAST                    0 (inputs)
2 LOAD_CONST       1 ('x')
4 BINARY_SUBSCR
6 STORE_FAST         1 (x)

8 LOAD_FAST                    0 (inputs)
10 LOAD_CONST      2 ('y')
12 BINARY_SUBSCR
14 STORE_FAST        2 (y)

16 LOAD_FAST                  1 (x)
18 LOAD_METHOD     0 (cos)
20 CALL_METHOD      0
22 LOAD_METHOD    0 (cos)
24 CALL_METHOD     0
26 STORE_FAST        1 (x)

28 LOAD_FAST                  1 (x)
30 LOAD_METHOD      1 (mean)
32 CALL_METHOD   0
34 LOAD_CONST          3 (0.5)
36 COMPARE_OP        4 (>)
38 POP_JUMP_IF_FALSE 24 (to 48)

40 LOAD_FAST                  1 (x)
42 LOAD_CONST        4 (1.1)
44 BINARY_TRUE_DIVIDE
46 STORE_FAST         1 (x)
48 LOAD_FAST                  1 (x)
50 LOAD_FAST      2 (y)
52 BINARY_MULTIPLY
54 RETURN_VALUE

5

resume function 2

def __compiled_fn_0(x, y):
cos = x.cos()
x_1 = cos.cos()
mean = x_1.mean()
gt = mean > 0.5
return y, x_1, gt

Captured Computation Graph

recursively trigger bytecode analysis

PyTorch Compiler Workflow

call resume 
functions

0 LOAD_GLOBAL      2 (__compiled_fn_0)
2 LOAD_FAST                     0 (inputs)
4 LOAD_CONST        1 ('x')
6 BINARY_SUBSCR
8 LOAD_FAST                     0 (inputs)
10 LOAD_CONST         2 ('y')
12 BINARY_SUBSCR
14 CALL_FUNCTION   2
16 UNPACK_SEQUENCE 3
18 STORE_FAST          2 (y)
20 STORE_FAST        1 (x)
22 POP_JUMP_IF_FALSE 17 (to 34)
24 LOAD_GLOBAL 3 (__resume_at_40_1)
26 LOAD_FAST                   1 (x)
28 LOAD_FAST                   2 (y)
30 CALL_FUNCTION   2
32 RETURN_VALUE
34 LOAD_GLOBAL     4 (__resume_at_48_2)
36 LOAD_FAST                   1 (x)
38 LOAD_FAST                   2 (y)
40 CALL_FUNCTION   2
42 RETURN_VALUE

Transformed Bytecode

execute python
operation and call
computation graph

>>

>>

Resume Functions

0 JUMP_ABSOLUTE  25 (to 50)
2 LOAD_FAST                2 (inputs)
4 LOAD_CONST                  1 ('x')
6 BINARY_SUBSCR
........

50 LOAD_FAST            0 (x)
52 LOAD_FAST            1 (y)
54 BINARY_MULTIPLY
56 RETURN_VALUE

__resume_at_48_2
0 JUMP_ABSOLUTE   21 (to 42)
2 LOAD_FAST         2 (inputs)
4 LOAD_CONST                  1 ('x')
6 BINARY_SUBSCR
...…

42 LOAD_FAST            0 (x)
44 LOAD_CONST       4 (1.1)
46 BINARY_TRUE_DIVIDE
48 STORE_FAST           0 (x)

50 LOAD_FAST         0 (x)
52 LOAD_FAST         1 (y)
54 BINARY_MULTIPLY
56 RETURN_VALUE

__resume_at_40_1

>>

>>

>>

Input
inputs:

x: torch.Tensor

y: torch.Tensor

generate guard based on
bytecode and input

def guard(inputs): 
return conditions

Guard

guard on device/dtype
shape of x and y
if guard(inputs): 

def function(inputs):
__temp_1 = __compiled_fn_0(inputs['x'], 

inputs['y‘])
y = __temp_1[0]
x = __temp_1[1]
if __temp_1[2]:

return __resume_at_40_1(x, y)
return __resume_at_48_2(x, y)

Decompiled Source Code
for Transformed Bytecode

Decompiled Source Code for
Resume Functions

def __resume_at_40_1(x, y):
x = x / 1.1
return x * y

def __resume_at_48_2(x, y):
return x * y

def __compiled_fn_0(x, y):
cos = x.cos()
x_1 = cos.cos()
mean = x_1.mean()
gt = mean > 0.5
return y, x_1, gt

Captured Computation Graph

How depyf helps

Dynamo Workflow depyf Workflow explanation

Figure 1: The workflow of the PyTorch compiler (left), and how depyf helps (right).

3 Solution

Bytecode Decompilation: The primary goal is to free machine learning researchers from
the complexities of bytecode. The process of converting bytecode back into source code is
called “decompilation”. Before depyf, existing Python decompilers could transform Python
bytecode into source code, but they have significant limitations:

• They typically support only old versions of Python with limited compatibility.

• Designed for decompiling bytecode compiled from source code, they struggle with
program-generated bytecode like that from PyTorch.

To overcome these issues, we created a new Python bytecode decompiler 2 through symbolic
execution of the bytecode. This approach requires handling only about two hundred types
of Python bytecode, ensuring compatibility with all Python versions supported by PyTorch.

Moreover, the core component of the PyTorch compiler, written in C, is replicated in
Python within depyf to elaborate the underlying mechanisms for users.

Function Execution Hijacking: To facilitate line-by-line code execution with debuggers,
the bytecode executed by Python must originate from an on-disk source code file. We
utilize advanced Python features to intercept and replace critical function calls in PyTorch.
This replacement involves dynamically generated functions with counterparts that include
debugging information.

2. The name depyf stands for: decompile Python functions. We focus on function bytecodes, which is also
the main focus of the PyTorch compiler.
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Decompiler Python 3.8 Python 3.9 Python 3.10 Python 3.11 PyTorch

decompyle3 90.6%(77/85) ✗ ✗ ✗ ✗

uncompyle6 91.8%(78/85) ✗ ✗ ✗ ✗

pycdc 74.1%(63/85) 74.1%(63/85) 74.1%(63/85) 67.1%(57/85) 19.3%(27/140)

depyf 100%(85/85) 100%(85/85) 100%(85/85) 100%(85/85) 100%(140/140)

Table 1: Correctness of decompilers in Python and PyTorch tests.

Usage: Using depyf is straightforward and non-intrusive. Users simply need to enclose
their code within the context manager with depyf.prepare debug(). This action enables
depyf to capture all internal PyTorch details in that context, including decompiled source
code and the computation graph. For those wishing to step through decompiled code with
debuggers, an additional context manager, with depyf.debug(), is available. Appendix A
gives more details about the usage.

Overview: Figure 1 provides an overview of the depyf process. More comprehensive
details can be found on our documentation page 3. The advantages of depyf are threefold:

• It offers a Python implementation analogous to PyTorch’s C implementation, aiding
users in grasping the PyTorch compiler’s logic. (See full code xxx.py in Figure 2)

• It includes a Python bytecode decompiler that transforms bytecode into equivalent
source code, helping users understand the transformed bytecode from PyTorch. (See
transformed xxx.py in Figure 2)

• It hijacks critical functions in PyTorch, enabling users to step through computation
graph functions line by line using debuggers. (See compiled xxx.py in Figure 2)

4 Experiments

Table 1 presents the compatibility status of various existing decompilers with Python and
PyTorch. Detailed descriptions of these tests can be found in Appendices B and C. Notably,
depyf is the sole decompiler to successfully pass all the tests. Our testing approach is
conducted in a continuous integration manner, whereby every new commit undergoes testing
against the nightly version of PyTorch across all supported Python versions. This proactive
strategy allows us to identify and resolve any compatibility issues before the release of new
PyTorch versions. Furthermore, we engage in discussions with the PyTorch team to propose
solutions that maintain this compatibility.

Additionally, we have collected all the outputs from these experiments. This collection
serves as a valuable resource for newcomers to PyTorch compilers, offering insights into
the computational aspects of common deep learning models. More details can be found in
Appendix D.

5 Conclusion

In this paper, we introduced depyf, a novel tool designed to open the opaque box of the
PyTorch compiler, facilitating machine learning researchers’ understanding and adaptation
to torch.compile.

3. https://depyf.readthedocs.io/en/latest/
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Appendix A. Usage

We provide two convenient context managers for users: with depyf.prepare debug()

and with depyf.debug(). The first one will capture all the calls to functions using
torch.compile, and dump many internal details in a directory specified by users (i.e.,
the argument of with depyf.prepare debug()). The second one will pause the program
for users to set breakpoints in the dumped source code, and any call to functions related
with torch.compile can be stepped through line by line using standard Python debuggers.

There are three types of source code dumped by depyf: computation graphs (prefixed by
compiled), decompiled source code (prefixed by transformed), and descriptive source

code (prefixed by full code).

Python equivalent for
PyTorch C implementation

computation
graph

optimization

decompiled
source code
for bytecode

Original Code
import torch

@torch.compile
def function(inputs):

x = inputs["x"]
y = inputs["y"]
x = x.cos().cos()
if x.mean() > 0.5:

x = x / 1.1
return x * y

def main():
for _ in range(100):

inputs = {}
inputs["x"] = torch.randn(10)
inputs["y"] = torch.randn(10)
function(inputs)

main()

Using depyf for understanding
# ...
# same as the original code

import depyf
with depyf.prepare_debug("./out"):

main()

Using depyf for debugging
# ...
# same as the original code

import depyf
with depyf.prepare_debug("./out"):

main()

with depyf.debug():
main()

__compiled_fn_0 AFTER POST GRAD 0.py
__compiled_fn_0 Captured Graph 0.py
__compiled_fn_0 Forward graph 0.py
__compiled_fn_0 kernel 0.py
__compiled_fn_3 AFTER POST GRAD 0.py
__compiled_fn_3 Captured Graph 0.py
__compiled_fn_3 Forward graph 0.py
__compiled_fn_3 kernel 0.py

__transformed_code_0_for_function.py
__transformed_code_0_for_resume_in_function.py

full_code_for_function_0.py

depyf generated code

Figure 2: Two usage of depyf.

Appendix B. Tested PyTorch Models

This section lists all of the PyTorch models we test in Table 1. These models come from
three suites of deep learning models: TorchBench (Constable et al., 2020) collects models
from famous (highly cited projects as ranked by https://paperswithcode.com/) machine
learning repositories like Segment Anything (Kirillov et al., 2023) and SuperSloMo (Jiang
et al., 2018); Huggingface Transformers (Wolf et al., 2020) is the most popular library for
transformers models including LLaMA (Touvron et al., 2023) and BERT (Devlin et al.,
2019); TIMM (Wightman, 2023) is the most popular library for computer vision models
including ResNet (He et al., 2016) and ViT (Dosovitskiy et al., 2021b).

To be specific, the models include:

5
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• BertForMaskedLM, BertForQuestionAnswering, BERT pytorch, hf Bert (Devlin et al.,
2019)

• AlbertForMaskedLM, AlbertForQuestionAnswering (Lan et al., 2020)
• AllenaiLongformerBase (Beltagy et al., 2020)
• BartForCausualLM, BartForConditionalGeneration, hf Bart (Lewis et al., 2019)
• BlenderbotForCausualLM, BlenderbotForConditionalGeneration, Blenderbot-

SmallForCausualLM, BlenderbotSmallForConditionalGeneration (Shuster et al.,
2022)

• CamemBart (Martin et al., 2020)
• DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaV2ForMaskedLM,

DebertaV2ForQuestionAnswering (He et al., 2021)
• DistilBertForMaskedLM, DistilBertForQuestionAnswering (Sanh et al., 2020)
• DistilGPT (Radford et al., 2019; Sanh et al., 2020)
• ElectraForCausalLM, ElectraForQuestionAnswering (Clark et al., 2020)
• GPT2ForSequenceClassification, hf GPT2 (Radford et al., 2019)
• GPTJForCausalLM, GPTJForQuestionAnswering (Radford et al., 2022)
• GPTNeoForCausalLM, GPTNeoForSequenceClassification (Gao et al., 2020)
• LayoutLMForMaskedLM, LayoutLMForSequenceClassification (Xu et al., 2020)
• M2M100 (Fan et al., 2020)
• MBartForCausalLM, MBartForSequenceClassification (Liu et al., 2020)
• MT5ForConditionalGeneration (Xue et al., 2021)
• MegatronBertForMaskedLM, MegatronBertForQuestionAnswering (Fan et al., 2020)
• MobileBertForMaskedLM, MobileBertForQuestionAnswering (Sun et al., 2020)
• OPTForCausalLM (Zhang et al., 2022)
• PLBartForCausalLM, PLBartForConditionalGeneration (Ahmad et al., 2021)
• PegasusForCausalLM, PegasusFOrConditionalGeneration (Zhang et al., 2020b)
• RoBERTaForCausalLM, RoBERTaForQuestionAnswering (Liu et al., 2019)
• S2T2 (Lin and Ng, 2022)
• T5ForConditionalGeneration, T5Small, hf T5 (Raffel et al., 2023)
• TrOCRForCausalLM (Li et al., 2022)
• XGLMForCausalLM (Lin et al., 2022)
• XLNetLMHeadModel (Yang et al., 2020)
• YituTechConvBert (Jiang et al., 2021)
• gluon inception v3, inception v3 (Szegedy et al., 2015)
• adv inception v3 (Kurakin et al., 2018)
• beit base patch16 224 (Bao et al., 2022)
• botnet26t 256 (Srinivas et al., 2021)
• eca botnext26ts 256, sebotnet33ts 256 (Srinivas et al., 2021; Wightman et al.,
2021)

• cait m36 384 (Touvron et al., 2021c)
• coat lite mini (Xu et al., 2021)
• convit base (d’Ascoli et al., 2022)
• convmixer 768 32 (Ng et al., 2022)
• convnext base (Liu et al., 2022)
• crossvit 9 240 (Chen et al., 2021a)
• cspdarknet53 (Wang et al., 2019; Bochkovskiy et al., 2020)
• deit base distilled patch16 224 (Touvron et al., 2021b)

6
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• dla102 (Yu et al., 2019)
• dm nfnet f0, nfnet l0, timm nfnet (Brock et al., 2021):
• dpn107 (Chen et al., 2017)
• eca halonext26ts (Vaswani et al., 2021; Wightman et al., 2021)
• ese vovnet19b dw, timm vovnet (Lee and Park, 2020)
• fbnetc 100, fbnetv3 b (Wu et al., 2019)
• gernet l (Lin et al., 2020a)
• ghostnet 100 (Han et al., 2020a)
• mixer b16 224, gmixer 24 224 (Tolstikhin et al., 2021)
• gmlp s16 224 (Liu et al., 2021a)
• hrnet w18 (Wang et al., 2020)
• jx nest base (Zhang et al., 2021)
• lcnet 050 (Cui et al., 2021)
• levit 128 (Graham et al., 2021)
• mixnet l, tf mixnet l (Tan and Le, 2019)
• mnasnet 100, mnasnet1 0 (Tan et al., 2019)
• mobilenetv2 100, mobilenet v2 (Sandler et al., 2019; Wightman et al., 2021)
• mobilenetv3 large 100, mobilenet v3 large (Howard et al., 2019)
• mobilevit s (Mehta and Rastegari, 2022)
• pit b 224 (Heo et al., 2021)
• pnasnet5large (Liu et al., 2018)
• poolformer m36 (Yu et al., 2022)
• regnety 002, timm regnet (Radosavovic et al., 2020)
• repvgg a2 (Ding et al., 2021)
• res2net101 26w 4s, res2net50 14w 8s, res2next50, resnet18, resnet50 (Gao
et al., 2021)

• resmlp 12 224 (Touvron et al., 2021a)
• resnest101e, timm resnest (Zhang et al., 2020a)
• rexnet 100 (Han et al., 2021a)
• selecsls42b (Mehta et al., 2020)
• spnasnet 100 (Stamoulis et al., 2019)
• swin base patch4 window7 224 (Liu et al., 2021b)
• swsl resnext101 32x16d, resnext50 32x4d (Xie et al., 2017)
• tf efficientnet b0, timm efficientnet (Tan and Le, 2020; Xie et al., 2020)
• tinynet a (Han et al., 2020b)
• tnt s patch16 224 (Han et al., 2021b)
• twins pcpvt base (Chu et al., 2021)
• visformer small (Chen et al., 2021b)
• vit base patch16 224, timm vision transformer (Dosovitskiy et al., 2021a)
• volo d1 224 (Yuan et al., 2021)
• xcit large 24 p8 224 (El-Nouby et al., 2021)
• Background Matting (Lin et al., 2020b)
• LearningToPaint (Huang et al., 2019)
• alexnet (Krizhevsky et al., 2017)
• dcgan (Radford et al., 2016)
• densenet121 (Huang et al., 2018)
• nvidia deeprecommender (Kuchaiev and Ginsburg, 2017)

7
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• pytorch unet (Ronneberger et al., 2015)
• shufflenet v2 x1 0 (Zhang et al., 2017)
• squeezenet1 1 (Iandola et al., 2016)
• vgg16 (Simonyan and Zisserman, 2015)

Appendix C. Tested Python Syntax

We also collect commonly used Python features in the above models, and store them in
a simple Python test with over 80 testcases in https://github.com/thuml/depyf/blob/

master/tests/test.py.

Appendix D. Collected Output

We collect all the output from PyTorch in https://github.com/thuml/learn_torch.

compile. It includes many commonly used models, how PyTorch converts them, and what
is the shape of tensors across training and inference. All details are in self-contained scripts.
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