
depyf: Open the Opaque Box of PyTorch Compiler for
Machine Learning Researchers

Kaichao You† * youkaichao@gmail.com

Runsheng Bai† brs21@mails.tsinghua.edu.cn

Meng Cao§ mengcao@apple.com

Jianmin Wang† jimwang@tsinghua.edu.cn

Ion Stoica‡ istoica@cs.berkeley.edu

Mingsheng Long† B mingsheng@tsinghua.edu.cn
† School of Software, BNRist, Tsinghua University, Beijing 100084, China
§ AIML, Apple ‡ Division of Computer Science, UC Berkeley, CA 94720-1776, USA

Abstract

PyTorch 2.x introduces a compiler designed to accelerate deep learning programs. How-
ever, for machine learning researchers, adapting to the PyTorch compiler to full potential
can be challenging. The compiler operates at the Python bytecode level, making it appear
as an opaque box. To address this, we introduce depyf, a tool designed to demystify the
inner workings of the PyTorch compiler. depyf decompiles bytecode generated by Py-
Torch back into equivalent source code, and establishes connections between in-memory
code objects and their on-disk source code counterparts. This feature enables users to step
through the source code line by line using debuggers, thus enhancing their understanding
of the underlying processes. Notably, depyf is non-intrusive and user-friendly, primarily
relying on two convenient context managers for its core functionality. The project is openly
available and is recognized as a PyTorch ecosystem project.

Keywords: PyTorch, Deep Learning Compiler, Decompilation

1 Introduction

Deep learning has profoundly impacted our daily lives, especially with the recent advance-
ments in Large Language Models (LLMs) like ChatGPT (Schulman et al., 2022). These
models demand considerable computational resources, prompting the swift development of
specialized hardware (LeCun, 2019), such as GPUs (Markidis et al., 2018) and TPUs (Jouppi
et al., 2020). However, fully leveraging the capabilities of these advanced hardware is chal-
lenging. It requires in-depth knowledge of hardware-specific programming, exemplified by
technologies like FlashAttention (Dao et al., 2022). Such expertise often extends beyond
the focus of machine learning researchers who concentrate on algorithm development. To
bridge this gap, domain-specific deep learning compilers have been introduced (Li et al.,
2020). These compilers are crafted to optimize deep learning programs for efficient operation
on modern hardware. While these compilers simplify the optimization process, adapting
them to maximize benefits remains a complex endeavor. This complexity highlights the

* . This work is conducted during Kaichao You’s internship at Apple.
B. Mingsheng Long is the corresponding author.

©2022 You et.al..

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

ar
X

iv
:2

40
3.

13
83

9v
1 

 [
cs

.L
G

] 
 1

4 
M

ar
 2

02
4

https://github.com/thuml/depyf
https://github.com/thuml/depyf
https://pytorch.org/ecosystem/
https://creativecommons.org/licenses/by/4.0/


You et.al.

ongoing tension between hardware advancements and software optimization in the rapidly
evolving field of deep learning.

PyTorch (Paszke et al., 2019), a widely-used deep learning framework among machine
learning researchers, was traditionally imperative and user-friendly. To keep pace with re-
cent hardware advancements and to enable better optimization for large-scale distributed
training (Rasley et al., 2020; Shoeybi et al., 2020), PyTorch recently underwent a signifi-
cant update, transitioning from PyTorch 1.x to PyTorch 2.x. This update included the
integration of a built-in deep learning compiler, the torch.compile 1 function. This addi-
tion narrows the gap for machine learning researchers in utilizing modern hardware, but a
notable gap remains and is still challenging to bridge.

This paper first describes the challenges machine learning researchers face in under-
standing the PyTorch compiler, illustrated through a concrete example. It then discusses
how the proposed tool addresses these challenges, concluding with practical usage examples
and experimental results.

2 Challenges in Understanding the PyTorch Compiler

2.1 Dynamo: The Frontend of the PyTorch Compiler

The most complex component of the PyTorch compiler is its frontend named Dynamo.
Dynamo’s key functionality is to separate user code into distinct segments: pure Python
code and pure PyTorch code, which forms the computation graph. Figure 1 (left) provides
a detailed example of Dynamo’s operation. This process involves three primary steps:

• Identifying the first operation that cannot be represented in the computation graph
but requires the value of a previously computed tensor in the graph. Examples include
operations like printing a tensor’s value or using a tensor’s value to determine the
control flow in Python if statements.

• Dividing preceding operations into two segments: a computation graph focused solely
on tensor computations and Python code dedicated to manipulating Python objects.

• Handling the subsequent operations as one or more new functions (referred to as
resume functions) and recursively reinitiating the analysis described above.

Dynamo functions at the Python bytecode level (see LOAD, JUMP, CALL instructions in Fig-
ure 1), which is a more fundamental level than Python source code. It’s important to note
that very few machine learning researchers are proficient in interpreting this bytecode.

2.2 The Backend of the PyTorch Compiler

After the frontend extracts a computation graph, the backend optimizes this graph and
ultimately generates binary executables suitable for CPU, GPU, and TPU hardware. A
computation graph in Python is a dynamically generated function, meaning it must be
executed in its entirety. Consequently, users are unable to employ debuggers for a step-by-
step analysis of the function. This becomes particularly challenging when the computation
results in a NaN (Not a Number) error, as it precludes the possibility of tracing through the
code line by line to identify the operation responsible for the numeric issue.

1. https://pytorch.org/docs/stable/torch.compiler.html

2

https://pytorch.org/docs/stable/torch.compiler.html


depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers

debuggable source code

Source Code
def function(inputs):

x = inputs["x"]
y = inputs["y"]
x = x.cos().cos()
if x.mean() > 0.5:

x = x / 1.1
return x * y

Python Bytecode Analysis

The first operation that
requires the value of a
tensor, but cannot be
represented in graph.

Python operation
(not related to

tensor computation)

PyTorch operations
(pure tensor computation)

resume function 1

0 LOAD_FAST                    0 (inputs)
2 LOAD_CONST       1 ('x')
4 BINARY_SUBSCR
6 STORE_FAST         1 (x)

8 LOAD_FAST                    0 (inputs)
10 LOAD_CONST      2 ('y')
12 BINARY_SUBSCR
14 STORE_FAST        2 (y)

16 LOAD_FAST                  1 (x)
18 LOAD_METHOD     0 (cos)
20 CALL_METHOD      0
22 LOAD_METHOD    0 (cos)
24 CALL_METHOD     0
26 STORE_FAST        1 (x)

28 LOAD_FAST                  1 (x)
30 LOAD_METHOD      1 (mean)
32 CALL_METHOD   0
34 LOAD_CONST          3 (0.5)
36 COMPARE_OP        4 (>)
38 POP_JUMP_IF_FALSE 24 (to 48)

40 LOAD_FAST                  1 (x)
42 LOAD_CONST        4 (1.1)
44 BINARY_TRUE_DIVIDE
46 STORE_FAST         1 (x)
48 LOAD_FAST                  1 (x)
50 LOAD_FAST      2 (y)
52 BINARY_MULTIPLY
54 RETURN_VALUE

5

resume function 2

def __compiled_fn_0(x, y):
cos = x.cos()
x_1 = cos.cos()
mean = x_1.mean()
gt = mean > 0.5
return y, x_1, gt

Captured Computation Graph

recursively trigger bytecode analysis

PyTorch Compiler Workflow

call resume 
functions

0 LOAD_GLOBAL      2 (__compiled_fn_0)
2 LOAD_FAST                     0 (inputs)
4 LOAD_CONST        1 ('x')
6 BINARY_SUBSCR
8 LOAD_FAST                     0 (inputs)
10 LOAD_CONST         2 ('y')
12 BINARY_SUBSCR
14 CALL_FUNCTION   2
16 UNPACK_SEQUENCE 3
18 STORE_FAST          2 (y)
20 STORE_FAST        1 (x)
22 POP_JUMP_IF_FALSE 17 (to 34)
24 LOAD_GLOBAL 3 (__resume_at_40_1)
26 LOAD_FAST                   1 (x)
28 LOAD_FAST                   2 (y)
30 CALL_FUNCTION   2
32 RETURN_VALUE
34 LOAD_GLOBAL     4 (__resume_at_48_2)
36 LOAD_FAST                   1 (x)
38 LOAD_FAST                   2 (y)
40 CALL_FUNCTION   2
42 RETURN_VALUE

Transformed Bytecode

execute python
operation and call
computation graph

>>

>>

Resume Functions

0 JUMP_ABSOLUTE  25 (to 50)
2 LOAD_FAST                2 (inputs)
4 LOAD_CONST                  1 ('x')
6 BINARY_SUBSCR
........

50 LOAD_FAST            0 (x)
52 LOAD_FAST            1 (y)
54 BINARY_MULTIPLY
56 RETURN_VALUE

__resume_at_48_2
0 JUMP_ABSOLUTE   21 (to 42)
2 LOAD_FAST         2 (inputs)
4 LOAD_CONST                  1 ('x')
6 BINARY_SUBSCR
...…

42 LOAD_FAST            0 (x)
44 LOAD_CONST       4 (1.1)
46 BINARY_TRUE_DIVIDE
48 STORE_FAST           0 (x)

50 LOAD_FAST         0 (x)
52 LOAD_FAST         1 (y)
54 BINARY_MULTIPLY
56 RETURN_VALUE

__resume_at_40_1

>>

>>

>>

Input
inputs:

x: torch.Tensor

y: torch.Tensor

generate guard based on
bytecode and input

def guard(inputs): 
return conditions

Guard

guard on device/dtype
shape of x and y
if guard(inputs): 

def function(inputs):
__temp_1 = __compiled_fn_0(inputs['x'], 

inputs['y‘])
y = __temp_1[0]
x = __temp_1[1]
if __temp_1[2]:

return __resume_at_40_1(x, y)
return __resume_at_48_2(x, y)

Decompiled Source Code
for Transformed Bytecode

Decompiled Source Code for
Resume Functions

def __resume_at_40_1(x, y):
x = x / 1.1
return x * y

def __resume_at_48_2(x, y):
return x * y

def __compiled_fn_0(x, y):
cos = x.cos()
x_1 = cos.cos()
mean = x_1.mean()
gt = mean > 0.5
return y, x_1, gt

Captured Computation Graph

How depyf helps

Dynamo Workflow depyf Workflow explanation

Figure 1: The workflow of the PyTorch compiler (left), and how depyf helps (right).

3 Solution

Bytecode Decompilation: The primary goal is to free machine learning researchers from
the complexities of bytecode. The process of converting bytecode back into source code is
called “decompilation”. Before depyf, existing Python decompilers could transform Python
bytecode into source code, but they have significant limitations:

• They typically support only old versions of Python with limited compatibility.

• Designed for decompiling bytecode compiled from source code, they struggle with
program-generated bytecode like that from PyTorch.

To overcome these issues, we created a new Python bytecode decompiler 2 through symbolic
execution of the bytecode. This approach requires handling only about two hundred types
of Python bytecode, ensuring compatibility with all Python versions supported by PyTorch.

Moreover, the core component of the PyTorch compiler, written in C, is replicated in
Python within depyf to elaborate the underlying mechanisms for users.

Function Execution Hijacking: To facilitate line-by-line code execution with debuggers,
the bytecode executed by Python must originate from an on-disk source code file. We
utilize advanced Python features to intercept and replace critical function calls in PyTorch.
This replacement involves dynamically generated functions with counterparts that include
debugging information.

2. The name depyf stands for: decompile Python functions. We focus on function bytecodes, which is also
the main focus of the PyTorch compiler.

3



You et.al.

Decompiler Python 3.8 Python 3.9 Python 3.10 Python 3.11 PyTorch

decompyle3 90.6%(77/85) ✗ ✗ ✗ ✗

uncompyle6 91.8%(78/85) ✗ ✗ ✗ ✗

pycdc 74.1%(63/85) 74.1%(63/85) 74.1%(63/85) 67.1%(57/85) 19.3%(27/140)

depyf 100%(85/85) 100%(85/85) 100%(85/85) 100%(85/85) 100%(140/140)

Table 1: Correctness of decompilers in Python and PyTorch tests.

Usage: Using depyf is straightforward and non-intrusive. Users simply need to enclose
their code within the context manager with depyf.prepare debug(). This action enables
depyf to capture all internal PyTorch details in that context, including decompiled source
code and the computation graph. For those wishing to step through decompiled code with
debuggers, an additional context manager, with depyf.debug(), is available. Appendix A
gives more details about the usage.

Overview: Figure 1 provides an overview of the depyf process. More comprehensive
details can be found on our documentation page 3. The advantages of depyf are threefold:

• It offers a Python implementation analogous to PyTorch’s C implementation, aiding
users in grasping the PyTorch compiler’s logic. (See full code xxx.py in Figure 2)

• It includes a Python bytecode decompiler that transforms bytecode into equivalent
source code, helping users understand the transformed bytecode from PyTorch. (See
transformed xxx.py in Figure 2)

• It hijacks critical functions in PyTorch, enabling users to step through computation
graph functions line by line using debuggers. (See compiled xxx.py in Figure 2)

4 Experiments

Table 1 presents the compatibility status of various existing decompilers with Python and
PyTorch. Detailed descriptions of these tests can be found in Appendices B and C. Notably,
depyf is the sole decompiler to successfully pass all the tests. Our testing approach is
conducted in a continuous integration manner, whereby every new commit undergoes testing
against the nightly version of PyTorch across all supported Python versions. This proactive
strategy allows us to identify and resolve any compatibility issues before the release of new
PyTorch versions. Furthermore, we engage in discussions with the PyTorch team to propose
solutions that maintain this compatibility.

Additionally, we have collected all the outputs from these experiments. This collection
serves as a valuable resource for newcomers to PyTorch compilers, offering insights into
the computational aspects of common deep learning models. More details can be found in
Appendix D.

5 Conclusion

In this paper, we introduced depyf, a novel tool designed to open the opaque box of the
PyTorch compiler, facilitating machine learning researchers’ understanding and adaptation
to torch.compile.

3. https://depyf.readthedocs.io/en/latest/

4

https://github.com/rocky/python-decompile3
https://github.com/rocky/python-uncompyle6
https://github.com/zrax/pycdc
https://github.com/thuml/depyf
https://depyf.readthedocs.io/en/latest/


depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers

Acknowledgments and Disclosure of Funding

We thank the PyTorch team for helpful discussions and guidance on many internal details.
Special thanks for Jason Ansel, Horace He, and Edward Yang.

We thank many colleagues from the Machine Learning Group in Tsinghua University
(THUML) for providing helpful feedback on the draft and documentation.

Kaichao You is partly supported by the Apple Scholar in AI/ML.
This work is supported by the National Natural Science Foundation of China through

the Fund for Creative Research Groups (62021002) and Fund for Excellent Young Scholars
(62022050).

Appendix A. Usage

We provide two convenient context managers for users: with depyf.prepare debug()

and with depyf.debug(). The first one will capture all the calls to functions using
torch.compile, and dump many internal details in a directory specified by users (i.e.,
the argument of with depyf.prepare debug()). The second one will pause the program
for users to set breakpoints in the dumped source code, and any call to functions related
with torch.compile can be stepped through line by line using standard Python debuggers.

There are three types of source code dumped by depyf: computation graphs (prefixed by
compiled), decompiled source code (prefixed by transformed), and descriptive source

code (prefixed by full code).

Python equivalent for
PyTorch C implementation

computation
graph

optimization

decompiled
source code
for bytecode

Original Code
import torch

@torch.compile
def function(inputs):

x = inputs["x"]
y = inputs["y"]
x = x.cos().cos()
if x.mean() > 0.5:

x = x / 1.1
return x * y

def main():
for _ in range(100):

inputs = {}
inputs["x"] = torch.randn(10)
inputs["y"] = torch.randn(10)
function(inputs)

main()

Using depyf for understanding
# ...
# same as the original code

import depyf
with depyf.prepare_debug("./out"):

main()

Using depyf for debugging
# ...
# same as the original code

import depyf
with depyf.prepare_debug("./out"):

main()

with depyf.debug():
main()

__compiled_fn_0 AFTER POST GRAD 0.py
__compiled_fn_0 Captured Graph 0.py
__compiled_fn_0 Forward graph 0.py
__compiled_fn_0 kernel 0.py
__compiled_fn_3 AFTER POST GRAD 0.py
__compiled_fn_3 Captured Graph 0.py
__compiled_fn_3 Forward graph 0.py
__compiled_fn_3 kernel 0.py

__transformed_code_0_for_function.py
__transformed_code_0_for_resume_in_function.py

full_code_for_function_0.py

depyf generated code

Figure 2: Two usage of depyf.

Appendix B. Tested PyTorch Models

This section lists all of the PyTorch models we test in Table 1. These models come from
three suites of deep learning models: TorchBench (Constable et al., 2020) collects models
from famous (highly cited projects as ranked by https://paperswithcode.com/) machine
learning repositories like Segment Anything (Kirillov et al., 2023) and SuperSloMo (Jiang
et al., 2018); Huggingface Transformers (Wolf et al., 2020) is the most popular library for
transformers models including LLaMA (Touvron et al., 2023) and BERT (Devlin et al.,
2019); TIMM (Wightman, 2023) is the most popular library for computer vision models
including ResNet (He et al., 2016) and ViT (Dosovitskiy et al., 2021b).

To be specific, the models include:

5

https://paperswithcode.com/


You et.al.

• BertForMaskedLM, BertForQuestionAnswering, BERT pytorch, hf Bert (Devlin et al.,
2019)

• AlbertForMaskedLM, AlbertForQuestionAnswering (Lan et al., 2020)
• AllenaiLongformerBase (Beltagy et al., 2020)
• BartForCausualLM, BartForConditionalGeneration, hf Bart (Lewis et al., 2019)
• BlenderbotForCausualLM, BlenderbotForConditionalGeneration, Blenderbot-

SmallForCausualLM, BlenderbotSmallForConditionalGeneration (Shuster et al.,
2022)

• CamemBart (Martin et al., 2020)
• DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaV2ForMaskedLM,

DebertaV2ForQuestionAnswering (He et al., 2021)
• DistilBertForMaskedLM, DistilBertForQuestionAnswering (Sanh et al., 2020)
• DistilGPT (Radford et al., 2019; Sanh et al., 2020)
• ElectraForCausalLM, ElectraForQuestionAnswering (Clark et al., 2020)
• GPT2ForSequenceClassification, hf GPT2 (Radford et al., 2019)
• GPTJForCausalLM, GPTJForQuestionAnswering (Radford et al., 2022)
• GPTNeoForCausalLM, GPTNeoForSequenceClassification (Gao et al., 2020)
• LayoutLMForMaskedLM, LayoutLMForSequenceClassification (Xu et al., 2020)
• M2M100 (Fan et al., 2020)
• MBartForCausalLM, MBartForSequenceClassification (Liu et al., 2020)
• MT5ForConditionalGeneration (Xue et al., 2021)
• MegatronBertForMaskedLM, MegatronBertForQuestionAnswering (Fan et al., 2020)
• MobileBertForMaskedLM, MobileBertForQuestionAnswering (Sun et al., 2020)
• OPTForCausalLM (Zhang et al., 2022)
• PLBartForCausalLM, PLBartForConditionalGeneration (Ahmad et al., 2021)
• PegasusForCausalLM, PegasusFOrConditionalGeneration (Zhang et al., 2020b)
• RoBERTaForCausalLM, RoBERTaForQuestionAnswering (Liu et al., 2019)
• S2T2 (Lin and Ng, 2022)
• T5ForConditionalGeneration, T5Small, hf T5 (Raffel et al., 2023)
• TrOCRForCausalLM (Li et al., 2022)
• XGLMForCausalLM (Lin et al., 2022)
• XLNetLMHeadModel (Yang et al., 2020)
• YituTechConvBert (Jiang et al., 2021)
• gluon inception v3, inception v3 (Szegedy et al., 2015)
• adv inception v3 (Kurakin et al., 2018)
• beit base patch16 224 (Bao et al., 2022)
• botnet26t 256 (Srinivas et al., 2021)
• eca botnext26ts 256, sebotnet33ts 256 (Srinivas et al., 2021; Wightman et al.,
2021)

• cait m36 384 (Touvron et al., 2021c)
• coat lite mini (Xu et al., 2021)
• convit base (d’Ascoli et al., 2022)
• convmixer 768 32 (Ng et al., 2022)
• convnext base (Liu et al., 2022)
• crossvit 9 240 (Chen et al., 2021a)
• cspdarknet53 (Wang et al., 2019; Bochkovskiy et al., 2020)
• deit base distilled patch16 224 (Touvron et al., 2021b)

6



depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers

• dla102 (Yu et al., 2019)
• dm nfnet f0, nfnet l0, timm nfnet (Brock et al., 2021):
• dpn107 (Chen et al., 2017)
• eca halonext26ts (Vaswani et al., 2021; Wightman et al., 2021)
• ese vovnet19b dw, timm vovnet (Lee and Park, 2020)
• fbnetc 100, fbnetv3 b (Wu et al., 2019)
• gernet l (Lin et al., 2020a)
• ghostnet 100 (Han et al., 2020a)
• mixer b16 224, gmixer 24 224 (Tolstikhin et al., 2021)
• gmlp s16 224 (Liu et al., 2021a)
• hrnet w18 (Wang et al., 2020)
• jx nest base (Zhang et al., 2021)
• lcnet 050 (Cui et al., 2021)
• levit 128 (Graham et al., 2021)
• mixnet l, tf mixnet l (Tan and Le, 2019)
• mnasnet 100, mnasnet1 0 (Tan et al., 2019)
• mobilenetv2 100, mobilenet v2 (Sandler et al., 2019; Wightman et al., 2021)
• mobilenetv3 large 100, mobilenet v3 large (Howard et al., 2019)
• mobilevit s (Mehta and Rastegari, 2022)
• pit b 224 (Heo et al., 2021)
• pnasnet5large (Liu et al., 2018)
• poolformer m36 (Yu et al., 2022)
• regnety 002, timm regnet (Radosavovic et al., 2020)
• repvgg a2 (Ding et al., 2021)
• res2net101 26w 4s, res2net50 14w 8s, res2next50, resnet18, resnet50 (Gao
et al., 2021)

• resmlp 12 224 (Touvron et al., 2021a)
• resnest101e, timm resnest (Zhang et al., 2020a)
• rexnet 100 (Han et al., 2021a)
• selecsls42b (Mehta et al., 2020)
• spnasnet 100 (Stamoulis et al., 2019)
• swin base patch4 window7 224 (Liu et al., 2021b)
• swsl resnext101 32x16d, resnext50 32x4d (Xie et al., 2017)
• tf efficientnet b0, timm efficientnet (Tan and Le, 2020; Xie et al., 2020)
• tinynet a (Han et al., 2020b)
• tnt s patch16 224 (Han et al., 2021b)
• twins pcpvt base (Chu et al., 2021)
• visformer small (Chen et al., 2021b)
• vit base patch16 224, timm vision transformer (Dosovitskiy et al., 2021a)
• volo d1 224 (Yuan et al., 2021)
• xcit large 24 p8 224 (El-Nouby et al., 2021)
• Background Matting (Lin et al., 2020b)
• LearningToPaint (Huang et al., 2019)
• alexnet (Krizhevsky et al., 2017)
• dcgan (Radford et al., 2016)
• densenet121 (Huang et al., 2018)
• nvidia deeprecommender (Kuchaiev and Ginsburg, 2017)

7



You et.al.

• pytorch unet (Ronneberger et al., 2015)
• shufflenet v2 x1 0 (Zhang et al., 2017)
• squeezenet1 1 (Iandola et al., 2016)
• vgg16 (Simonyan and Zisserman, 2015)

Appendix C. Tested Python Syntax

We also collect commonly used Python features in the above models, and store them in
a simple Python test with over 80 testcases in https://github.com/thuml/depyf/blob/

master/tests/test.py.

Appendix D. Collected Output

We collect all the output from PyTorch in https://github.com/thuml/learn_torch.

compile. It includes many commonly used models, how PyTorch converts them, and what
is the shape of tensors across training and inference. All details are in self-contained scripts.

References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified
pre-training for program understanding and generation, 2021.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image
transformers, 2022.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document trans-
former, 2020.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed
and accuracy of object detection, 2020.

Andrew Brock, Soham De, Samuel L. Smith, and Karen Simonyan. High-performance
large-scale image recognition without normalization, 2021.

Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale
vision transformer for image classification, 2021a.

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng. Dual
path networks, 2017.

Zhengsu Chen, Lingxi Xie, Jianwei Niu, Xuefeng Liu, Longhui Wei, and Qi Tian. Visformer:
The vision-friendly transformer, 2021b.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia
Xia, and Chunhua Shen. Twins: Revisiting the design of spatial attention in vision
transformers, 2021.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. Electra:
Pre-training text encoders as discriminators rather than generators, 2020.

8

https://github.com/thuml/depyf/blob/master/tests/test.py
https://github.com/thuml/depyf/blob/master/tests/test.py
https://github.com/thuml/learn_torch.compile
https://github.com/thuml/learn_torch.compile


depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers

Will Constable, Xu Zhao, Victor Bittorf, Eric Christoffersen, Taylor Robie, Eric Han, Peng
Wu, Nick Korovaiko, Jason Ansel, Orion Reblitz-Richardson, and Soumith Chintala.
TorchBench: A collection of open source benchmarks for PyTorch performance and us-
ability evaluation, September 2020. URL https://github.com/pytorch/benchmark.

Cheng Cui, Tingquan Gao, Shengyu Wei, Yuning Du, Ruoyu Guo, Shuilong Dong, Bin
Lu, Ying Zhou, Xueying Lv, Qiwen Liu, Xiaoguang Hu, Dianhai Yu, and Yanjun Ma.
Pp-lcnet: A lightweight cpu convolutional neural network, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness. In NeurIPS, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In NAACL, 2019.

Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun.
Repvgg: Making vgg-style convnets great again, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale, 2021a.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. In ICLR, 2021b.

Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and
Levent Sagun. Convit: improving vision transformers with soft convolutional inductive
biases*. Journal of Statistical Mechanics: Theory and Experiment, 2022(11):114005,
November 2022. ISSN 1742-5468. doi: 10.1088/1742-5468/ac9830. URL http://dx.

doi.org/10.1088/1742-5468/ac9830.

Alaaeldin El-Nouby, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze,
Armand Joulin, Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, and
Hervé Jegou. Xcit: Cross-covariance image transformers, 2021.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal,
Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal,
Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, and Ar-
mand Joulin. Beyond english-centric multilingual machine translation, 2020.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor
Leahy. The pile: An 800gb dataset of diverse text for language modeling, 2020.

Shang-Hua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, and
Philip Torr. Res2net: A new multi-scale backbone architecture. IEEE Transactions on

9

https://github.com/pytorch/benchmark
http://dx.doi.org/10.1088/1742-5468/ac9830
http://dx.doi.org/10.1088/1742-5468/ac9830


You et.al.

Pattern Analysis and Machine Intelligence, 43(2):652–662, February 2021. ISSN 1939-
3539. doi: 10.1109/tpami.2019.2938758. URL http://dx.doi.org/10.1109/TPAMI.

2019.2938758.

Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé
Jégou, and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for faster
inference, 2021.

Dongyoon Han, Sangdoo Yun, Byeongho Heo, and YoungJoon Yoo. Rethinking channel
dimensions for efficient model design, 2021a.

Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet:
More features from cheap operations, 2020a.

Kai Han, Yunhe Wang, Qiulin Zhang, Wei Zhang, Chunjing Xu, and Tong Zhang. Model
rubik’s cube: Twisting resolution, depth and width for tinynets, 2020b.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer
in transformer, 2021b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-
enhanced bert with disentangled attention, 2021.

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, and
Seong Joon Oh. Rethinking spatial dimensions of vision transformers, 2021.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3, 2019.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks, 2018.

Zhewei Huang, Wen Heng, and Shuchang Zhou. Learning to paint with model-based deep
reinforcement learning, 2019.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and
¡0.5mb model size, 2016.

Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller, and
Jan Kautz. Super slomo: High quality estimation of multiple intermediate frames for
video interpolation. In CVPR, 2018.

Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, and Shuicheng Yan.
Convbert: Improving bert with span-based dynamic convolution, 2021.

10

http://dx.doi.org/10.1109/TPAMI.2019.2938758
http://dx.doi.org/10.1109/TPAMI.2019.2938758


depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers

Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil, James Laudon,
Cliff Young, and David Patterson. A domain-specific supercomputer for training deep
neural networks. Communications of the ACM, 2020.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross
Girshick. Segment Anything. 2023.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. Commun. ACM, 2017.

Oleksii Kuchaiev and Boris Ginsburg. Training deep autoencoders for collaborative filtering,
2017.

Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao, Ming Liang,
Tianyu Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou
Ren, Alan Yuille, Sangxia Huang, Yao Zhao, Yuzhe Zhao, Zhonglin Han, Junjiajia Long,
Yerkebulan Berdibekov, Takuya Akiba, Seiya Tokui, and Motoki Abe. Adversarial attacks
and defences competition, 2018.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
Radu Soricut. Albert: A lite bert for self-supervised learning of language representations,
2020.

Yann LeCun. Deep Learning Hardware: Past, Present, and Future. In ISSCC, 2019.

Youngwan Lee and Jongyoul Park. Centermask : Real-time anchor-free instance segmenta-
tion, 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension, 2019.

Minghao Li, Tengchao Lv, Jingye Chen, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang,
Zhoujun Li, and Furu Wei. Trocr: Transformer-based optical character recognition with
pre-trained models, 2022.

Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan,
Lin Gan, Guangwen Yang, and Depei Qian. The deep learning compiler: A comprehensive
survey. IEEE Transactions on Parallel and Distributed Systems, 2020.

Ming Lin, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin. Neural architecture
design for gpu-efficient networks, 2020a.

Qian Lin and Hwee Tou Ng. A semi-supervised learning approach with two teachers to
improve breakdown identification in dialogues, 2022.

Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta, Brian Curless, Steve Seitz, and
Ira Kemelmacher-Shlizerman. Real-time high-resolution background matting, 2020b.

11



You et.al.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig,
Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer,
Punit Singh Koura, Vishrav Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettlemoyer,
Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, and Xian Li. Few-shot learning with
multilingual language models, 2022.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-
Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture
search, 2018.

Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. Pay attention to mlps, 2021a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach, 2019.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad,
Mike Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine
translation, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows, 2021b.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. A convnet for the 2020s, 2022.

Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S. Vetter.
Nvidia tensor core programmability, performance & precision. In 2018 IEEE international
parallel and distributed processing symposium workshops (IPDPSW), 2018.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Ro-
mary, Éric de la Clergerie, Djamé Seddah, and Benôıt Sagot. Camembert: a tasty french
language model. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computational Linguistics, 2020. doi: 10.18653/
v1/2020.acl-main.645. URL http://dx.doi.org/10.18653/v1/2020.acl-main.645.

Dushyant Mehta, Oleksandr Sotnychenko, Franziska Mueller, Weipeng Xu, Mohamed El-
gharib, Pascal Fua, Hans-Peter Seidel, Helge Rhodin, Gerard Pons-Moll, and Chris-
tian Theobalt. Xnect: real-time multi-person 3d motion capture with a single rgb
camera. ACM Transactions on Graphics, 39(4), August 2020. ISSN 1557-7368. doi:
10.1145/3386569.3392410. URL http://dx.doi.org/10.1145/3386569.3392410.

Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-weight, general-purpose, and
mobile-friendly vision transformer, 2022.

Dianwen Ng, Yunqi Chen, Biao Tian, Qiang Fu, and Eng Siong Chng. Convmixer: Feature
interactive convolution with curriculum learning for small footprint and noisy far-field
keyword spotting. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, May 2022. doi: 10.1109/icassp43922.
2022.9747025. URL http://dx.doi.org/10.1109/ICASSP43922.2022.9747025.

12

http://dx.doi.org/10.18653/v1/2020.acl-main.645
http://dx.doi.org/10.1145/3386569.3392410
http://dx.doi.org/10.1109/ICASSP43922.2022.9747025


depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In NeurIPS, 2019.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks, 2016.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners, 2019.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya
Sutskever. Robust speech recognition via large-scale weak supervision, 2022.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár.
Designing network design spaces, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer, 2023.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. DeepSpeed: System
Optimizations Enable Training Deep Learning Models with Over 100 Billion Parameters.
In KDD, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks, 2019.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter, 2020.

John Schulman, Barret Zoph, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi Weng,
Juan Felipe Ceron Uribe, Liam Fedus, Luke Metz, and Michael Pokorny. ChatGPT:
Optimizing language models for dialogue. OpenAI blog, 2022.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. Megatron-LM: Training Multi-Billion Parameter Language Models
Using Model Parallelism, 2020.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen Roller,
Megan Ung, Moya Chen, Kushal Arora, Joshua Lane, Morteza Behrooz, William Ngan,
Spencer Poff, Naman Goyal, Arthur Szlam, Y-Lan Boureau, Melanie Kambadur, and
Jason Weston. Blenderbot 3: a deployed conversational agent that continually learns to
responsibly engage, 2022.

13



You et.al.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition, 2015.

Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, Pieter Abbeel, and Ashish
Vaswani. Bottleneck transformers for visual recognition, 2021.

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha,
Jie Liu, and Diana Marculescu. Single-path nas: Designing hardware-efficient convnets
in less than 4 hours, 2019.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
Mobilebert: a compact task-agnostic bert for resource-limited devices, 2020.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision, 2015.

Mingxing Tan and Quoc V. Le. Mixconv: Mixed depthwise convolutional kernels, 2019.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional
neural networks, 2020.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard,
and Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile, 2019.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lu-
cic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021.

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby,
Edouard Grave, Gautier Izacard, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, and
Hervé Jégou. Resmlp: Feedforward networks for image classification with data-efficient
training, 2021a.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles,
and Hervé Jégou. Training data-efficient image transformers & distillation through at-
tention, 2021b.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou.
Going deeper with image transformers, 2021c.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and
Efficient Foundation Language Models, 2023.

Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake Hechtman,
and Jonathon Shlens. Scaling local self-attention for parameter efficient visual backbones,
2021.

14



depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers

Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua Wu, Ping-Yang Chen, and
Jun-Wei Hsieh. Cspnet: A new backbone that can enhance learning capability of cnn,
2019.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong
Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep high-
resolution representation learning for visual recognition, 2020.

Ross Wightman. PyTorch Image Models, 2023.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved
training procedure in timm, 2021.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor Sanh, Clement Delangue, An-
thony Moi, Pierric Cistac, Morgan Funtowicz, Joe Davison, and Sam Shleifer. Trans-
formers: State-of-the-art natural language processing. In EMNLP, 2020.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong
Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient
convnet design via differentiable neural architecture search, 2019.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V. Le. Self-training with noisy
student improves imagenet classification, 2020.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks, 2017.

Weijian Xu, Yifan Xu, Tyler Chang, and Zhuowen Tu. Co-scale conv-attentional image
transformers, 2021.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm:
Pre-training of text and layout for document image understanding. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’20. ACM, August 2020. doi: 10.1145/3394486.3403172. URL http://dx.doi.

org/10.1145/3394486.3403172.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text
transformer, 2021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and
Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language understanding,
2020.

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation,
2019.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng,
and Shuicheng Yan. Metaformer is actually what you need for vision, 2022.

15

http://dx.doi.org/10.1145/3394486.3403172
http://dx.doi.org/10.1145/3394486.3403172


You et.al.

Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and Shuicheng Yan. Volo: Vision outlooker
for visual recognition, 2021.

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun,
Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander Smola. Resnest: Split-
attention networks, 2020a.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. Pegasus: Pre-training with
extracted gap-sentences for abstractive summarization, 2020b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott,
Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. Opt: Open pre-trained transformer language models,
2022.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices, 2017.

Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan O. Arik, and Tomas Pfister.
Nested hierarchical transformer: Towards accurate, data-efficient and interpretable visual
understanding, 2021.

16


	Introduction
	Challenges in Understanding the PyTorch Compiler
	Dynamo: The Frontend of the PyTorch Compiler
	The Backend of the PyTorch Compiler

	Solution
	Experiments
	Conclusion
	Usage
	Tested PyTorch Models
	Tested Python Syntax
	Collected Output

