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The Kitaev superconducting chain is a model of spinless fermions with triplet-like superconductiv-
ity. It has raised interest since for some values of its parameters it presents a non-trivial topological
phase that host Majorana fermions. The physical realization of a Kitaev chain is complicated by the
scarcity of triplet superconductivity in real physical systems. Many proposals have been put forward
to overcome this difficulty and fabricate artificial triplet superconducting chains. In this work we
study a superconducting chain of spinful fermions forming Cooper pairs, in a triplet S = 1 state, but
with Sz = 0. The motivation is that such pairing can be induced in chains that couple through an
antisymmetric hybridization to an s-wave superconducting substrate. We study the nature of edge
states and the topological properties of these chains. In the presence of a magnetic field the chain
can sustain gapless superconductivity with pairs of Fermi points. The momentum space topology
of these Fermi points is non-trivial, in the sense that they can only disappear by annihilating each
other. For small magnetic fields, we find well defined degenerate edge modes with finite Zeemann
energy. These modes are not symmetry protected and decay abruptly in the bulk as their energy
merges with the continuum of excitations.
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I. INTRODUCTION

The Kitaev chain, a prototypical one-dimensional toy model of spinless fermions and p-wave superconductivity is
well known to host Majorana zero modes (MZMs) at the ends of the chain. These spinless fermions form Cooper pairs
in a triplet state with S = 1 and a finite Sz component of the total spin. The MZMs have, in principle, a prospect
of being applied to fault-tolerant topological quantum computation1–3. However, p-wave superconductivity is very
difficult to find in real materials4,5. One realistic model, proposed to experimentally search for MZMs is the one-
dimensional (1D) semiconductor-superconductor (SM-SC) nanowire6–13, where these modes are predicted to appear
at the ends of the wire under appropriate, specific conditions. The Majorana nanowire consists of a semiconductor
with a large Rashba-type SOC in proximity to a conventional s-wave superconductor under a magnetic (Zeeman spin
splitting) field to achieve an effective p-wave superconductor5.
In this work we consider a different model of a p-wave superconducting chain. It has spinful fermions14–16 that

form Cooper pairs in a triplet state, S = 1, but with Sz = 0. This type of p-wave pairing opens the possibility for
obtaining new chiral superconductors with topological properties17,18.

The main motivation for studying these chains is the following. When atoms are deposited on a superconducting
substrate, in general its orbitals hybridize with those of the substrate19 providing a mechanism for inducing super-
conductivity in the chain. If the substrate is a BCS superconductor and the hybridization Vij between the orbitals at
site i of the substrate and at site j of the chain is antisymmetric, i.e., Vji = −Vij , or in momentum space V−k = −Vk,
the induced superconductivity in the chain is of the type S = 1, Sz = 0. The energy scale involved in this process can
be significant19.

The mechanism that induces this type of superconductivity in the wire is similar to that occurring in multi-band
superconductors20–26. Consider a two-band (a and b) superconductor with an attractive interaction in the a band that
gives rise to a BCS pairing of the electrons in this band (substrate). An anti-symmetric hybridization Vk between
these electrons and those in the non-interacting b-band induces a pairing gap with p-wave symmetry, of the type
S = 1, Sz = 0 in the b-band (the chain)20,22,23. The induced p-wave pairing ∆p

ind(k), with S = 1, Sz = 0, is given
by20–23, (see also note27),

∆p
ind(k) =

Vk√
(ϵbk − ϵak)

2 + 4|Vk|2
∆s

a, (1.1)

where the quasi-particles in the interacting a-band, with a dispersion relation ϵak in the normal state, condense in
an s-wave BCS singlet superconducting state with an s-wave gap ∆a

s . The dispersion of the non-interacting band is
given by, ϵbk. The anti-symmetric hybridization Vk between the orbitals of different parities in the interacting and
non-interacting bands is responsible for an induced p-wave pairing ∆p

ind(k), of the type S = 1, Sz = 0, as given by
Eq. 1.1(see note27). Notice that Vk in Eq. 1.1 is a one-body term, or simply, an inter-band hopping that transfer
electrons between orbitals of different parities between the bands. This mechanism for induced superconductivity
is different from the usual proximity effect that involves Cooper pair tunneling or Andreev reflections at the non-
superconductor-superconductor boundary28,29.
In this paper we consider a model that describes a BCS superconducting substrate on top of which is deposited

a chain with non-interacting electrons. This kind of setup has already been implemented experimentally26,31. The
electrons in the chain, the non-interacting b-band, hybridize with those in the a-band of the superconducting substrate
where the Cooper pairs are formed. If this hybridization is anti-symmetric, the induced superconductivity in the chain
is unconventional and corresponds to the pairing ∆p

ind in Eq. 1.1. In this equation, ∆s
a is the BCS s-wave pairing

of the substrate27. The model is valid whenever the main coupling between the chain and substrate is through the
hybridization between their orbitals. Notice that the hybridization, contrary to the spin-orbit interaction, has no
spin-flip terms and the Cooper pairs in the chains preserve the anti-parallel coupling of the spins inherited from the
BCS Cooper pairs of the substrate. The antisymmetric character of the total wave-function of the induced Cooper
pair is conferred by the antisymmetric hybridization Vk that plays the role of the spatial dependent wave function of
the pair and allows for a symmetric state of the spins27. Then, the superconductivity induced in the chain is triplet
S = 1, but with Sz = 0. Notice that the antisymmetric character of the hybridization arises when it mixes orbitals
with angular momenta that differ by an odd number20,22,23. This includes the important cases that the orbitals in the
chain-substrate system have s−p or p−d character. For completeness the model also includes the spin-orbit coupling
(SOC) in the wire and the effect of a magnetic field. In the case of SOC, this limits the validity of our results to the
case that the spin-orbit interaction vanishes or is smaller than the induced superconducting parameter in the wire.

With the motivation of a physical mechanism to obtain an S = 1, Sz = 0, p-wave-superconducting chain, and its
possible applications30, we present here a study of the topological properties and excitations of such a chain. In the
absence of a magnetic field and the conditions stated above for the SOC, the S = 1, Sz = 0 chain is topological, for a
range of parameters. It presents four Majorana modes, two in each extremity of a finite chain. As the magnetic field
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is turned on, these modes acquire a finite Zeeman energy. They are not symmetry protected and disappear as they
merge with the continuum of Bogoliubov excitations for a sufficiently high magnetic field.

The S = 1, Sz = 0 chain, in the presence of a large magnetic field12, presents gapless superconductivity due to the
presence of pairs of Fermi points32,33. The non-trivial momentum space topology of these Fermi points implies their
stability, since they can only be destroyed by annihilating in pairs34,35. The dispersion at the Fermi points is linear,
like in Dirac points. This is in contrast with the Kitaev chain that is a gapped superconductor with Majorana edge
modes.

The paper is organized as follows. In Section II we present the Hamiltonian of the model. In Section III we obtain
the energy spectra of an infinite chain. In Section IV we study a finite chain described by the Hamiltonian written in
terms of Majorana operators. The numerical results are shown in Section V. Section VI is devoted to the calculation
of the topological invariant and topological indexes of the several phases of the model. We conclude in Section VII.

II. HAMILTONIAN

The Hamiltonian describing the chain of N sites and spinful fermions with a S = 1, Sz = 0, p-wave induced
superconducting interaction is given by H = HN +HHS , where

HN = −µ
N∑

j=1,σ

c†j,σcj,σ − h
N∑

j=1,σ

σc†j,σcj,σ −
N−1∑
j=1,σ

(
t c†j,σcj+1,σ + h.c

)
+ iλ

N−1∑
j=1,σ,σ̄

(
c†j,σ(σ

y)σσ̄cj+1,σ̄ + h.c.
)

HHS = −1

2

N−1∑
j=1,σ

(
∆(c†j,σc

†
j+1,−σ − c†j+1,σc

†
j,−σ) + h.c.

)
. (2.1)

The first equation describes the normal chain in the presence of a uniform external magnetic field h parallel to the
wire7,8,13. The quantity µ is the chemical potential, t a nearest neighbor hopping. In our strict one-dimensional model,
the Rashba-like term is essentially an antisymmetric spin-flip hopping λ due to the spin-orbit interaction5,6,11,36,37.

The Hamiltonian HHS represents the induced superconductivity in the chain due to its hybridization with the BCS
superconducting substrate (see Eq. 1.1). Since this hybridization is antisymmetric, ∆ is the induced antisymmetric
superconducting pairing (∆ij = −∆ji = ∆) between fermions with antiparallel spins in neighboring sites of the wire.
In momentum space it is defined by Eq. 1.1, where we removed all indices for simplicity. N is the number of sites
in the chain, and σ = ±, corresponds to spin up and spin down, respectively. The total antisymmetry of the order
parameter with antiparallel spins is guaranteed by the spatial antisymmetric wave function of the Cooper pairs. Then
the induced superconductivity is a triplet state with S = 1, but with the z-component of the total spin of the Cooper
pair, Sz = 0. The term h.c. stands for Hermitian conjugate.

III. INFINITE CHAIN

For an infinite chain with periodic boundary conditions we can Fourier transform Hamiltonian Eq. (1.1) in momen-

tum space. We choose the basis Ψk = (c†k,σ, c
†
k,−σ, c−k,σ, c-k,−σ)

T , with σ =↑ and −σ =↓ to obtain,

H =
1

2

∑
k

Ψ†
kH(k)Ψk +

1

2

∑
k

[εk↑ + ε−k↓], (3.1)

where εk↑↓ = −(2t cos k + µ± h), λk = 2iλ sin(k) and ∆k = 2i∆sin k,

H(k) =

 εkσ λk 0 ∆∗
k

λ∗
k εk−σ ∆∗

k 0
0 ∆k −ε−kσ −λ∗

−k

∆k 0 −λ−k −ε−k−σ

 . (3.2)

Notice that λ∗
−k = λk, with a similar relation for ∆k. We remark that in the present Hamiltonian, the gap parameter

is k-dependent and has p-wave symmetry, distinctively from other previous approaches, as for instance, in Refs.8,9,33.
The Hamiltonian, Eq. 3.2, can be written as H = (ϵk−µ)σz ⊗ τ0−hσz ⊗ τz + iλkσz ⊗ τy − i∆kσy ⊗ τx, where σi and

τi are Pauli matrices (i = x, y, z) and τ0 = σ0 are the 2 x 2 identity matrix and ϵk = −2t cos k. It has particle-hole



4

-4 -2 0 2 4
-4

-2

0

2

4

h

μ

FIG. 1. (Color online) Gap closing lines. At the blue lines, h= ± 2t± µ the gap closes at the time-reversal invariant momenta
k = 0 and k = ±π. Along the red (dashed) lines, the gap closes at k = ±π/2 (we consider only the case, λ < ∆). In the figure
we chose t as the unity of energy (t = 1). The red dashed lines correspond to λ = 0.1 and ∆ = 0.5.

symmetry since UpH∗(k)U†
p = −H(−k), where Up = iσx ⊗ σ0. On the other hand, we have, UtH∗(k)U†

t ̸= H(−k),
with Ut = iσ0 ⊗ σy, implying that the system is not time-reversal invariant. Time-reversal invariance is broken by
the magnetic field, but also by the triplet pairing of the quasi-particles. The Hamiltonian, Eq. 3.2, has an additional
chiral symmetry that will be discussed further on.

The Hamiltonian of the infinite chain can be diagonalized and the dispersion relations of the quasi-particles are
given by,

ω1(k) =

√
ϵ2k + h2 + λ2

k +∆2
k + 2

√
(h2 + λ2

k)(ϵ
2
k +∆2

k)

ω2(k) =

√
ϵ2k + h2 + λ2

k +∆2
k − 2

√
(h2 + λ2

k)(ϵ
2
k +∆2

k), (3.3)

ω3(k) = −ω1(k) and ω4(k) = −ω2(k). These dispersions have several gap closing lines, as shown in Fig.1. Closing of
the gaps occur at the time-reversal invariant points of the Brillouin zone, k = 0 and k = ±π, but also for k = ±π/2.
In the former case the critical fields at which the gap closes are given by, hc = ±2t ± µ and are independent of the
other parameters of the model.

The critical fields for gap closing at k±π/2 are given by, hc = ±
√
4(∆2 − λ2) + µ2 and depend on ∆ and λ, besides

the chemical potential µ. We can distinguish two cases, λ > ∆ and λ < ∆, but here we consider only the case of
small spin orbit coupling, λ < ∆. Notice that for µ = 0, and assuming λ = 0, for simplicity, the first gap closing with
increasing field occurs for k± = ±π/2 and hc = ±2∆ (∆ < 2t). This vanishing of the gap at a wavevector that is not
time-reversal invariant is particularly interesting and we will explore this case numerically further on. We will also
discuss the topological nature of the different phases of the model.

IV. FINITE SIZE CHAINS

For the purpose of studying the edge modes in the system, we consider a finite size chain with N sites and open
boundary conditions. We neglect spin-orbit coupling (λ = 0), for simplicity, in this section. We rewrite Eq. 1.1 in
terms of new real operators

cj,σ =
1

2
(γB

j,σ + iγA
j,σ) (4.1)

c†j,σ =
1

2
(γB

j,σ − iγA
j,σ)

where the Majorana operators satisfy, γβ
j.σ = γβ†

j,σ, {γ
β
i,σ, γ

β
j,σ′} = δij,σσ′ and γβ

j.σγ
β
j.σ = 1 (β = A,B). The symbol σ

in γB
j,σ does not mean a Majorana of spin σ. It is only a label to distinguish the various operators, since we need two

Majoranas to represent an electron of spin up and two for an electron of spin down.
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In terms of these new operators the Hamiltonian can be rewritten as,

H = −1

2

N∑
j=1,σ

(µ+ σh)(1 + iγB
j,σγ

A
j,σ)−

it

4

N−1∑
j=1,σ

(γB
j,σγ

A
j+1,σ − γA

j,σγ
B
j+1,σ)− (4.2)

i∆

4

N−1∑
j=1,σ

(γB
j,σγ

A
j+1,−σ + γA

j,σγ
B
j+1,−σ).

Next, we introduce more four Majorana operators given by,

αA±
j,σ = γA

j,σ ± γA
j,−σ (4.3)

αB±
j,σ = γB

j,σ ± γB
j,−σ.

Notice that

αA±
j,σ = ±αA±

j,−σ (4.4)

αB±
j,σ = ±αB±

j,−σ.

Finally, in term of these new operators, the Hamiltonian of the superconducting chain can be written as,

H = − iµ

4

N∑
j=1

(
αB+
j,↑ αA+

j,↑ + αB−
j,↑ αA−

j,↑

)
− i

8

N−1∑
j=1

(t+∆)
(
αB+
j,↑ αA+

j+1,↑ − αA−
j,↑ αB−

j+1,↑

)
(4.5)

− i

8

N−1∑
j=1

(t−∆)
(
αB−
j,↑ αA−

j+1,↑ − αA+
j,↑ α

B+
j+1,↑

)
− ih

4

N∑
j=1

(
αB+
j,↑ αA−

j,↑ + αB−
j,↑ αA+

j,↑

)
,

where the sum over σ has been performed and expressed in terms of σ =↑. This index σ =↑ now becomes redundant
but we keep it anyway. The α-operators are such that,

αA±
ℓ,↑ = γA

ℓ,↑ ± γA
ℓ,↓ (4.6)

αB±
ℓ,↑ = γB

ℓ,↑ ± γB
ℓ,↓.

The Hamiltonian Eq. 4.5 describes two independent (±) sub-chains that are coupled by the magnetic field term, the
last term in Eq. 4.5 (see Fig 2). Notice from Eqs. 4.4 and Eq. 4.5 that the magnetic field term breaks time-reversal
symmetry, as it is not invariant under the change σ → −σ.

1                         2                          3                         4

A            B           A            B           A           B            A           B
CHAIN +

-
SITE                 

B A            B           A B            A           B            A

FIG. 2. (Color online) Eq. 4.7 describes two independent sub-chains (±) in terms of the operators α±. The figure represents a
topological phase, with Majoranas at the edges of each sub-chain.

For t = ∆ = 0, the Hamiltonian, Eq. 4.5, describes trivial chains coupled by the magnetic field. On the other hand,
if we take µ = h = 0 and t = ∆, we obtain,

H =
−i∆

4

N−1∑
j=1

(
αB+
j,↑ αA+

j+1,↑ − αA−
j,↑ αB−

j+1,↑

)
. (4.7)

Now the system consists of two decoupled ± chains, as shown schematically in Fig. 2. The Majoranas αB−
1,↑ and αA+

1,↑
at the beginning of these chains do not enter the Hamiltonian, as also the Majoranas αB+

N,↑ and αA−
N,↑ at the ends of

the chains. These are the zero energy edge modes that signal the existence of a non-trivial topological phase in the
superconducting chain. Notice that the ± chains are not associated with a given spin direction. As we show below,
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these zero modes persist for |µ/2t| < 1, which characterizes the topological phase of the system in the absence of a
magnetic field (h = 0).
Then, for h = µ = 0 and t = ∆, the system is formed of two independent Kitaev-like chains, each with two

Majoranas. We can combine the Majoranas at the edges of each chain to obtain,

g− = αB−
1,↑ + iαA−

N,↑ (4.8)

g+ = αB+
N,↑ + iαA+

1,↑ ,

to form a pair of non-local fermions, one in each sub-chain. Then, in the absence of a magnetic field, which couples
the ± sub-chains, the latter are the zero energy edge modes of the system. In terms of the original fermions operators,
we have

g− = (c1,↑ − c†N,↑)− (c†1,↓ + cN,↓)−
(
(c1,↓ − c†N,↓)− (c†1,↑ + cN,↑)

)
. (4.9)

We recall that in the Kitaev spinless p-wave superconducting chain, with S = 1, Sz = 1, the non-local fermion is
given by38,

fK = (c1 − c†N )− (c†1 + cN ). (4.10)

In the presence of a magnetic field, we can combine two Majoranas, either in the same sites or on different edges,
to form the fermions. In the former case we have,

g1 = αB−
1,↑ + iαA+

1,↑ (4.11)

gN = αB+
N,↑ + iαA−

N,↑,

or in terms of fermion operators,

g1 = 2(c1,↑ − c†1,↓) (4.12)

gN = 2(cN,↑ + c†N,↓).

These modes are present for |µ/2t| < 1, for 0 < h < h∗, i.e., for finite fields but below a critical field hc, as we
show below. They are localized at the edges of the chain and have a finite Zeemann energy. They are not symmetry
protected, as they exist in a region of the phase diagram that is topologically trivial, as evidenced by the topological
invariant calculated further on.

V. NUMERICAL RESULTS

In this section, we discuss the dispersion relations for an infinite chain and obtain numerical results on finite chains
of size N with open boundary conditions, in the presence of SOC and magnetic field. We consider two different
situations that are distinguished by the points of the Brillouin zone at which the gap closes. This may occur either
at the time-reversal invariant momenta, k = 0, k = ±π, or at the points k = ±π/2.

A. Gap closing at k = ±π/2

First, for the infinite chain, with µ = λ = 0, the superconducting gap decreases with increasing magnetic field and
finally closes at the non-time-reversal wave-vectors, k = ±π/2 at a critical magnetic field hc = 2∆, as shown in the
dispersion relations of Fig. 3. For magnetic fields 2∆ < h < 2t, the system enters a topological phase characterized
by the presence of pairs of monopoles 32,33,39 at the field-dependent wave-vectors k = ±k1 and k = ±k2, as shown in
Fig. 3b. Finally, for h = 2t the monopoles annihilate each other at the time-reversal k-points of the Brillouin zone,
Fig. 3c. These results are not qualitatively affected by the presence of the spin-orbit interaction, as can be seen in
Fig. 3, where it is taken finite. In the next section we will give a detailed analysis of the topological nature of this
phase. Notice that we are neglecting the possibility of any finite momentum pairing, since the superconductivity in
the wire is induced by the s-wave substrate.

For finite chains at h = 0, we confirm numerically, the presence of four zero energy Majorana modes, two at each
edge of the chain, for |µ/2t| ≤ 1. Their wave functions are localized at the ends of the chain. This is expected since
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FIG. 3. (Color online) a) Dispersion relations for t = 1, µ = 0, λ = 0.15 and ∆ = 0.5 a) gap closing at k = π/2 for the critical

field hc =
√

4(∆2 − λ2). b) Two pairs of monopoles in the non-trivial topological phase for hc < h < 2t (h = 1.2). c) For
h = 2t the two pairs of monopoles annihilate at k = 0, and k = ±π). The color code indicates the degree of superposition
between particles and hole states.

in this limit of h = 0, the system consists of two decoupled Kitaev chains, as we obtained before. Then, for h = 0 we
find a topological phase with zero energy edge modes for |µ/2t| < 1.

As we turn on the magnetic field in the finite chain, the four edge modes persist in the presence of a small field, but
now they are separated in two double degenerate modes with finite energies, as shown in Fig. 4. The lower energy
states correspond to the Zeemann energy of an electron with spin parallel to the field and the excited state, with
positive energy, to that of an electron with spin antiparallel to the field. The wave functions of these edge modes
decay in the bulk with a penetration length which is nearly field independent and corresponds to that of the system
in the absence of the field. Further increasing the magnetic field (µ = λ = 0), as it reaches the value, h∗ = ∆, i.e.,
before the gap closes, the energy of the local modes merge with the continuum of Bogoliubon excitations and their
wave functions become abruptly delocalized. The closest analogy of this phenomenon is the Chandrasekhar-Clogston
limit in conventional superconductors40 where the magnetic field is screened up to a critical field beyond which it
penetrates abruptly in the bulk.

Further increasing the field, the gap decreases and closes for a critical field hc = ±
√
4(∆2 − λ2) + µ2, in the presence

of SOC (λ < ∆). The effect of SOC in this case is to compete with the superconducting gap, reducing it. Finally, for
h > hc, Fermi points appear in the system. These Fermi points are topologically protected as we discuss further on.
Notice in Fig. 4a that the spectra are always particle-hole symmetric and this holds for any values of the parameters
of the Hamiltonian, in agreement with what was obtained previously. Further on, we will discuss the existence of a
hidden chiral symmetry of the Hamiltonian.

It is interesting to investigate how the edge modes give rise to a full electronic spin. They can combine either on



8

0 200 400 600 800 1000 1200

-1.0

-0.5

0.0

0.5

1.0

N

E

1.0 1.5 2.0 2.5 3.0 3.5 4.0
-0.10

-0.05

0.00

0.05

0.10

N

E

0 200 400 600 800 1000 1200
0.000

0.002

0.004

0.006

0.008

0.010

4n

|ψ
0

2

a)

b)

c)

FIG. 4. (Color online) Spectrum of eigenvalues for a chain of 300 sites with µ = 0, ∆ = 0.6, λ = 0.1 and h = 0.2, in units of
the hopping t (t = 1). In b) the energy of the 4 edge modes, with two degenerate, is emphasized. In c) the wave functions of
the modes shown in b (see also Fig. 5).

the same edge or on different edges as a delocalized quasi-particle. The numerical results in Fig. 5 show that the wave
functions of the modes with negative energy, i.e., with spins aligned parallel to the field are localized on two opposite
edges of the chain. Consequently, the wave function of the electron with spin up, parallel to the magnetic field, is
delocalized with equal weight on different edges of the chain, as shown in Fig. 5. The same holds for the excited state
with spin down. Notice also in Fig. 5 that the energy of two edge modes are required to give the Zeeman energy of a
single electron.

Finally it is shown in Fig. 6, that for large enough fields, local modes reappear when their Zeemann energy falls in
a gap of the spectra of bogoliubons.

B. Gap closing at time-reversal wave vectors

The gap closing phenomena that occurs at the time-reversal invariant wave-vectors in the present study are asso-
ciated with the annihilation of monopoles, shown in Fig. 3c. Monopoles of different charges annihilate each other
exactly at these points, k = 0 and k = ±π. These monopoles, or Fermi points are non-trivial topological objects in
momentum space32. They are characterized by a topological charge, given by a winding number32.

For h = 0 we observe gap closing as a function of the chemical potential for µ = ±2t at the time-reversal point
k = 0. Also for h = 0 the spin-orbit interaction can promote gap closing for λ = ∆. However, we restrict our study
here for the case λ < ∆.

VI. TOPOLOGICAL INVARIANT

In order to characterize the different phases and transitions at the gap closing points, we calculate topological indices
for our problem. First we seek for a chiral symmetry of the Hamiltonian, Eq. 3.2. We want to find an operator K, i.e.,
a matrix K that anticommutes with H and, such that it satisfies K.K = 1. Imposing these conditions, {K,H} = 0
and K2 = 1, we find they can be satisfied with K = σx ⊗ σ0. Applying the same unitary transformation UKUT that
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FIG. 5. (Color online) The energy of the edge modes aligned with the magnetic field and their wave functions, for µ = 0,
∆ = 0.6, λ = 0.1 and h = 0.4. These modes combine to a form a single quasi-particle with the correct total Zeemann energy.
This quasi-particle is delocalized since its wave function resides in the two opposite edges of the chain.
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FIG. 6. (Color online) As a new gap opens and the Zeemann energy falls in a gap, the edge modes reappear. In this case at
the trivial topological phase with M = 0, for t = 1, h = 2.3, ∆ = 0.5, λ = 0.1 and µ = 0 (see Fig. 7).

diagonalizes the matrix K, to the Hamiltonian H, we obtain, H′ = UHUT as,

H′ =

[
0 A
A∗ 0

]
where,

A =

[
−2(ϵk + h− µ) −2(∆k + λk)
−2(∆k − λk) −2(ϵk − h− µ)

]
with ϵk = −2t cos k, ∆k = 2i∆sin k and λk = 2iλ sin k. This chiral symmetry of the Hamiltonian is due to the
particle-hole symmetry of the spectrum that we observe for all values of the parameters, even in the presence of a
magnetic field.

In order to calculate the topological invariant we first obtain,

G(k) =
∂ ln det[A(k)]

∂k
, (6.1)
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which is given by,

G(k) =
−4tµ sin k − 4

(
t2 − (∆2 − λ2)

)
sin 2k

−h2 + µ2 + 4t cos k(µ+ t cos k) + 4(∆2 − λ2) sin2 k
. (6.2)

Introducing,

M(k) =
1

2πi

∫
G(k)dk (6.3)

and performing the integration, we get

M(k) =
1

2π
ℑm

[
ln(−h2 + µ2 + 4t cos k(µ+ t cos k) + 4(∆2 − λ2) sin2 k)

]
. (6.4)

The topological invariant is obtained from,

M = 2 [M(π)−M(0)] . (6.5)

We get,

• M = 1, for (2t− µ)2 < h2 and (2t+ µ)2 > h2.

• M = −1, for (2t+ µ)2 < h2 and (2t− µ)2 > h2

• M = 2, for h = 0 and µ < 2t.

• M = 0, for h = 0 and µ > 2t.

For λ = h = 0 and |µ/2t| < 1 we find M = 2, due to the two pairs of Majoranas in the uncoupled chains, as we
obtained previously, and in agreement with simulations.

2

0
1

-1

0

1

1 1

1

0

1

-1
0

2

0

0

-4 -2 0 2 4
-4

-2

0

2

4

h

μ

__

FIG. 7. (Color online) Topological indexes M of the different regions of the phase diagram. The red line, corresponding to
h = 0, |µ/2t| < 1, has M = 2. To obtain the gap-closing lines at (π/2), we used ∆ = 0.5 and λ = 0.1, in units of t. Phases
with topological indexed (1,-1) and (2,-2) are gapless phases with one and two pairs of Fermi points, respectively.

Since the gap may also close at k = π/2, we have additionally36,37,

M = 2M(π/2)−M(π)−M(0) (6.6)

that yields,



11

• M = 2, for (2t± µ)2 > h2 and h2 > 4(∆2 − λ2) + µ2.

• M = 1, for h2 > µ2 + 4(∆2 − λ2) and

(2t+ µ)2 > h2 > (2t− µ)2 or

(2t− µ)2 > h2 > (2t+ µ)2

• M = 0, for h2 > µ2 + 4(∆2 − λ2) and h2 < (µ± 2t)2.

In these cases the indexes are not universal in the sense that the phase boundaries depend on the parameters ∆ and
λ. The latter competes with superconductivity and it’s role is to renormalize (reduce) the superconducting gap. The
topological indexes of the different phases are shown in Fig. 7.

It is interesting to look at the phase diagram in Fig. 7 together with the dispersion relations shown in Fig. 3b.
These relations were obtained for µ = 0 and 2t > h >

√
4(∆2 − λ2). This region of the phase diagram is associated

with a topological index M = 2 that in this case counts the number of pairs of topological Fermi points in this phase.
The topological charge of a Fermi point is characterized by a winding number, similar to the one we calculated. It is
integrated in a closed contour in momentum space that embraces the Fermi point32,33. In a one-dimensional system,
this involves integrating all along the Brillouin zone, as in the calculation of the winding number, Eq. 6.3.

M = 2

|μ/2t| < 1
h = 0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Δ

λ

FIG. 8. (Color online) Region of the phase diagram, in color, where protected Majorana edge modes are observed. It is
characterized by a topological index M = 2, and requires that h = 0 and |µ/2t| < 1. The uncolored region, λ > ∆, has no
Majorana edge modes.

It is also relevant that the region of the phase diagram with µ = 0 and h < ∆, where we observed magnetically
polarized edge modes, is topologically trivial, with M = 0. This implies that these modes are not symmetry protected.
Finally, Fig.8 shows the region of the phase diagram where protected Majorana modes are observed. They occur

only at h = 0, for |µ|/2t| < 1 and λ < ∆.

VII. CONCLUSIONS

In this work we presented a study of the topological properties of a superconducting chain with electrons pairing
in a spin triplet state S = 1, but with the zth-component Sz = 0. The motivation for this study is that this type of
pairing can be induced in a chain whose orbitals have an anti-symmetric hybridization with those of a BCS s-wave
superconducting substrate. Alternative pairings to the simple spinless case studied by Kitaev have been considered to
obtain topological superconductors. In particular, equal spin pairing41 and d-wave pairing36,37 were proposed. Here
we studied the case S = 1, Sz = 0 with a concrete physical motivation. We have obtained the symmetry properties
and calculated the topological indexes of the model and obtained a rich phase diagram with trivial and topological
phases distinguished by these indexes.

We pointed out the existence of a topological phase, in the absence of a magnetic field, with four Majorana modes,
two in each edge of the finite chain. In small finite fields h < ∆, these modes become spin polarized. Each pair of edge
modes gives rise to a full electronic spin that can align parallel or antiparallel to the magnetic field. A full polarized
electronic spin has a wave-function on both edges of the chain and corresponds to a delocalized quasi-particle. These
edge modes are not symmetry protected, as they occur in a region of the phase diagram characterized by a trivial
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topological index, M = 0. For magnetic fields h > ∆ these edge modes disappear as they merge with the spectrum
of bogoliubons. This occurs before the gap closes at h = 2∆.
For h > 2

√
∆2 − λ2 the topological excitations are in momentum space and correspond to pairs of Fermi points. At

these points the dispersion relations are linear in momentum. These Fermi points occur in a large region of parameters
of the phase diagram. They appear in pairs (Weyl fermions) and can only be destroyed by annihilating each other32,33

at the time-reversal wave-vectors of the Brillouin zone. We have found nontrivial phases42 with a single pair, M = 1
and two pairs of Fermi points, M = 2.
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